English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94986/125531 (76%)
Visitors : 30972757      Online Users : 434
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/73287
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/73287


    Title: 熱帶橢圓曲線之研究
    On Tropical Elliptic Curves
    Authors: 黃明怡
    Huang, Ming Yi
    Contributors: 蔡炎龍
    Tsai, Yen lung
    黃明怡
    Huang, Ming Yi
    Keywords: 熱帶幾何
    橢圓曲線
    因子理論
    Picard 群
    tropical geometry
    elliptic curve
    divisor theory
    Picard group
    Date: 2014
    Issue Date: 2015-02-03 10:24:54 (UTC+8)
    Abstract: 在數學許多分枝中, 橢圓曲線都是一個非常重要的主題, 例如在數論及代數幾何中 等等。本篇論文主要是研究熱帶幾何中的橢圓曲線。首先, 我們先討論什麼是熱帶橢 圓曲線的合理定義。接著我們研究熱帶橢圓曲線上的因子理論。如同古典的情況"所有"在熱帶橢圓曲線上的點和該曲線的 Picard 群是一一對應的。更進一步的說, 我們 還可在熱帶橢圓曲線上給一個群的結構。最後, 我們指出幾個未來可能的研究方向。
    Elliptic curves has been important studying objects in many mathematics areas, such as number theory and algebraic geometry. In this thesis, we study tropical analogue of elliptic curves. We first discuss what is a reasonable way to define tropical elliptic curves. Then, we survey divisor theory on tropical elliptic curves. Like in classical elliptic curves, all “points” in a tropical elliptic curves are one-to-one corresponding to the Picard group of that elliptic curves. Moreover one can de- fine group structures on any tropical elliptic curves. Finally, we give some possible projects for future studies.
    Reference: [1] Omid Amini. Reduced divisors and embeddings of tropical curves, 2010.
    [2] Yang An, Matthew Baker, Greg Kuperberg, and Farbod Shokrieh. Canonical represen- tatives for divisor classes on tropical curves and the matrix-tree theorem. Forum Math. Sigma, 2:e24, 25, 2014.
    [3] Magnus Dehli Vigeland. The group law on a tropical elliptic curve. Math. Scand., 104(2): 188–204, 2009.
    [4] Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3–32, 2006.
    [5] Jan Hladký, Daniel Král’, and Serguei Norine. Rank of divisors on tropical curves, 2010.
    [6] San Ling, Huaxiong Wang, and Chaoping Xing. Algebraic curves in cryptography. Dis- crete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2013.
    [7] Alfred Menezes. Elliptic curve public key cryptosystems. The Kluwer International Series in Engineering and Computer Science, 234. Kluwer Academic Publishers, Boston, MA, 1993. With a foreword by Neal Koblitz, Communications and Information Theory.
    [8] Grigory Mikhalkin. Tropical geometry and its applications. In International Congress of Mathematicians. Vol. II, pages 827–852. Eur. Math. Soc., Zürich, 2006.
    [9] Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289–317. Amer. Math. Soc., Providence, RI, 2005.
    [10] David Speyer and Bernd Sturmfels. Tropical mathematics. Math. Mag., 82(3):163–173, 2009.
    [11] David Speyer and Bernd Sturmfels. Tropical mathematics. Math. Mag., 82(3):163–173, 2009.
    [12] Yen-Lung Tsai. Working with tropical meromorphic functions of one variable. Taiwanese J. Math., 16(2):691–712, 2012.
    [13] Yen-Lung Tsai. Working with tropical meromorphic functions of one variable. Taiwanese J. Math., 16(2):691–712, 2012.
    Description: 碩士
    國立政治大學
    應用數學研究所
    100751006
    103
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1007510061
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    006101.pdf2400KbAdobe PDF469View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback