English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 95844/126434 (76%)
Visitors : 31569799      Online Users : 531
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/74493
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/74493

    Title: On continuous top-k similarity joins
    Authors: Li, D.J.;Wang, E.T.;Tsai, Y.-C.;Chen, Arbee L. P.
    Contributors: 資科系
    Keywords: Continuous data;Continuous queries;Data integration;Data sets;Data stream;Duplicate detection;Dynamic environments;Fundamental operations;Processing time;Similarity functions;Similarity join;Sliding Window;Static environment;Top-k query;Algorithms;Data communication systems;Data structures;Experiments;Pattern recognition;Data processing
    Date: 2012
    Issue Date: 2015-04-10 17:26:26 (UTC+8)
    Abstract: Given a similarity function and a threshold σ within a range of [0, 1], a similarity join query between two sets of records returns pairs of records from the two sets, which have similarity values exceeding or equaling σ. Similarity joins have received much research attention since it is a fundamental operation used in a wide range of applications such as duplicate detection, data integration, and pattern recognition. Recently, a variant of similarity joins is proposed to avoid the need to set the threshold σ, i.e. top-k similarity joins. Since data in many applications are generated as a form of continuous data streams, in this paper, we make the first attempt to solve the problem of top-k similarity joins considering a dynamic environment involving a data stream, named continuous top-k similarity joins. Given a set of records as the query, we continuously output the top-k pairs of records, ranked by their similarity values, for the query and the most recent data, i.e. the data contained in the sliding window of a monitored data stream. Two algorithms are proposed to solve this problem. The first one extends an existing approach for static datasets to find the top-k pairs regarding the query and the newly arrived data and then keep the obtained pairs in a candidate result set. As a result, the top-k pairs can be found from the candidate result set. In the other algorithm, the records in the query are preprocessed to be indexed using a novel data structure. By this structure, the data in the monitored stream can be compared with all records in the query at one time, substantially reducing the processing time of finding the top-k results. A series of experiments are performed to evaluate the two proposed algorithms and the experiment results demonstrate that the algorithm with preprocessing outperforms the other algorithm extended from an existing approach for a static environment.
    Relation: DATA 2012 - Proceedings of the International Conference on Data Technologies and Applications
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback