English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 111316/142225 (78%)
Visitors : 48381434      Online Users : 604
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/75281
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/75281


    Title: Structure of weakly 2-dependent siphons
    Authors: Chao, Daniel Yuh;Chen, Jiun-Ting
    趙玉;陳俊廷
    Contributors: 資管系
    Keywords: Complementary sets;Complete problems;Elementary siphon;Linear integer programming;Nondeterministic polynomial;Optimal sequence;Resource requirements;Sequential process;Flexible manufacturing systems;Integer programming;Petri nets;Structural optimization;Siphons
    Date: 2013-09
    Issue Date: 2015-05-21 17:30:31 (UTC+8)
    Abstract: Deadlocks arising from insufficiently marked siphons in flexible manufacturing systems can be controlled by adding monitors to each siphon-too many for large systems. Li and Zhou add monitors to elementary siphons only while controlling the rest of (called dependent) siphons by adjusting control depth variables of elementary siphons. Only a linear number of monitors are required. The control of weakly dependent siphons (WDSs) is rather conservative since only positive terms were considered. The structure for strongly dependent siphons (SDSs) has been studied earlier. Based on this structure, the optimal sequence of adding monitors has been discovered earlier. Better controllability has been discovered to achieve faster and more permissive control. The results have been extended earlier to S3PGR2 (systems of simple sequential processes with general resource requirements). This paper explores the structures for WDSs, which, as found in this paper, involve elementary resource circuits interconnecting at more than (for SDSs, exactly) one resource place. This saves the time to compute compound siphons, their complementary sets and T-characteristic vectors. Also it allows us (1) to improve the controllability of WDSs and control siphons and (2) to avoid the time to find independent vectors for elementary siphons. We propose a sufficient and necessary test for adjusting control depth variables in S3PR (systems of simple sequential processes with resources) to avoid the sufficient-only time-consuming linear integer programming test (LIP) (Nondeterministic Polynomial (NP) time complete problem) required previously for some cases. © 2013 Taylor & Francis.
    Relation: International Journal of Control, 86(9), 1518-1533
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1080/00207179.2013.787692
    DOI: 10.1080/00207179.2013.787692
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2692View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback