English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 96274/126892 (76%)
Visitors : 32309774      Online Users : 341
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/76766
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/76766

    Title: Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation
    Authors: Wu, Shun-Tang
    Tsai, Long Yi
    Contributors: 應數系
    Keywords: Boundary value problems;Estimation;Nonlinear equations;Problem solving;Blow-up;Dissipation;Life span;Non-linear wave equations;Wave equations
    Date: 2006-07
    Issue Date: 2015-07-21 15:29:52 (UTC+8)
    Abstract: The initial boundary value problem for non-linear wave equations of Kirchhoff type with dissipation in a bounded domain is considered. We prove the blow-up of solutions for the strong dissipative term - Δ ut and the linear dissipative term ut by the energy method and give some estimates for the life span of solutions. We also show the nonexistence of global solutions with positive initial energy for non-linear dissipative term by Vitillaro's argument. © 2005 Elsevier Ltd. All rights reserved.
    Relation: Nonlinear Analysis, Theory, Methods and Applications, 65(2), 243-264
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.na.2004.11.023
    DOI: 10.1016/j.na.2004.11.023
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    243-264.pdf212KbAdobe PDF542View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback