English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94040/124493 (76%)
Visitors : 29079237      Online Users : 415
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/78092


    Title: 鐵磁材料/拓樸絕緣體(鎳鐵合金/碲化鉍)雙層薄膜結構之自旋幫浦效應
    Spin-pumping Effect in Ferromagnet/Topological Insulator (NiFe/Bi2Te3) Bilayer structure
    Authors: 邱文凱
    Chiu, Wen Kai
    Contributors: 李尚凡
    Lee, Shang Fan
    邱文凱
    Chiu, Wen Kai
    Keywords: 鐵磁共振
    拓樸絕緣體
    碲化鉍
    自旋幫浦效應
    有效場
    ferromagnetic resonance
    Topological Insulator
    Bi2Te3
    spin pumping effect
    effective field
    Date: 2015
    Issue Date: 2015-09-01 16:18:31 (UTC+8)
    Abstract: 我們主要研究拓樸絕緣體與鐵磁物質之間的自旋幫浦效應(spin pumping effect),我們選用的鐵磁材料是具有鐵磁性的鎳鐵合金(Py),厚度固定為40nm,而拓樸絕緣體則是選用碲化鉍(Bi2Te3),厚度範圍是0~100nm,碲化鉍已被確定為一個三維拓撲絕緣體,拓撲絕緣體其表面電子態呈線性色散關係,本身中心是絕緣體,但其表面容許有導電態。此導電態一個最有用的特性是其電子的動量與自旋維持一定方向關係(spin-momentum locking),這使得以自旋來傳遞訊息成為可能。但是實驗上要達到中心是絕緣體相當困難。

    過去的實驗已驗證鐵磁共振(Ferromagnetic resonance,FMR)現象在鐵磁/一般金屬雙層膜以及鐵磁/半導體雙層膜,可以使其鐵磁層產生一純自旋流流向非磁性層,這被稱為自旋幫浦效應(spin pumping effect)。當此自旋流跨越膜面介面時,不同自旋的電子由於自旋軌道耦合作用(Spin–orbit interaction),將發生逆自旋霍爾效應(ISHE)並產生一橫向電荷流。在我們的研究中,鐵磁共振(FMR)現象透過網路分析儀在設定的外加磁場下掃描頻率。測得的共振頻率與磁場作圖並以Kittel equation擬合(fitting)出有效場(effective field)。我們發現於絕對溫度5K,隨著碲化鉍(Bi2Te3)膜厚從0nm到15nm增加時,其有效場也增加,但當薄膜厚度大於15nm時,有效磁場將下降。我們分析碲化鉍(Bi2Te3)的表面態(surface state)與塊材(bulk)對有效場變化之貢獻。
    Reference: [1] M.I. Dyakonov and V.I. Perel, Phys. Lett. A, 35: 459 (1971)
    [2] J. E. Hirsch, Phys. Rev. Lett, 83: 1834 (1999)
    [3] Shufeng Zhang, Phys. Rev. Lett, 85: 393 (2000)
    [4] Shuichi Murakami, Phys. Lett. B, 69: 241202 (2004)
    [5] Jairo Sinova, Dimitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett, 92: 126603 (2004)
    [6] YK Kato, RC Myers, AC Gossard, and DD Awschalom, Science 306 (5703), 1910-1913 (2004)
    [7] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett, 94: 047204 (2005)
    [8] S. O. Valenzuela, and M. Tinkham, Nature 442, 176-179 (2006)
    [9] Takeshi Seki, Yu Hasegawa, Seiji Mitani, Saburo Takahashi, Hiroshi Imamura, Sadamichi Maekawa, Junsaku Nitta, and Koki Takanashi, Nature Materials 7, 125 - 129 (2008)
    [10] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett, 98: 156601 (2007)
    [11] Sadamichi Maekawa, and Teruya Shinjo, Spin dependent transport in magnetic nanostructures. CRC Press
    [12] Arne Brataas, Andrew D. Kent, and Hideo Ohno, Nature Materials 11, 372–381 (2012)
    [13] Tomas Jungwirth, Jörg Wunderlich, and Kamil OlejníkNature, Nature Materials 11, 382–390 (2012)
    [14] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
    [15] Shuichi Murakami, Naoto Nagaosa, and Shou-Cheng Zhang, Science 301, 1348-1351 (2003)
    [16] D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H.MacDonald, and Q. Niu, Phys. Rev. Lett. 93, 46602 (2004)
    [17] Axel Hoffmann, Electric Control and Detection of Spin Waves (http://online.kitp.ucsb.edu/online/spintronics_c13/hoffmann/pdf/Hoffmann_Spintronics13Conf_KITP.pdf)
    [18] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509–182509 (2006)
    [19] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)
    [20] Igor Žutić, Jaroslav Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323(2004)
    [21] E. H. Hall, Philos. Mag. 10, 301 (1880); 12, 157 (1881)
    [22] E. H. Hall, Philos. Mag. 12, 157 (1881)

    [23] Yaroslav Tserkovnyak, Arne Brataas, and Gerrit E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002)
    [24] Igor Žutić, and Hanan DeryNature, Nature Materials 10, 647–648 (2011)
    [25] Bakun A. A. , Zakharchenya B. P. , Rogachev A. A. , Tkachuk M. N., and Fleisher V. G, Sov. Phys. JETP Lett. 40: 1293 (1984)
    [26] Jung-Chuan Lee, Leng-Wei Huang, Dung-Shing Hung, Tung-Han Chiang, J. C. A. Huang, Jun-Zhi Liang, and Shang-Fan Lee, Appl. Phys. Lett. 104, 209903 (2014)
    [27] Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi, Shou-Cheng Zhang, Science 318 (5851): 766–770 (2007)
    [28] Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, Kouji Segawa, Yoichi Ando, and E. Saitoh, Phys. Rev. Lett. 113, 196601 (2014)
    [29] HuJun Jiao and Gerrit E. W. Bauer, Phys. Rev. Lett. 110, 217602 (2013)
    [30] A. A. Baker, A. I. Figueroa, L. J. Collins-McIntyre, G. van der Laan, and T. Hesjedala, Sci. Rep. 5, 7907, Supplementary Information (2015)
    [31] Yokoyama, T., Zang, J. & Nagaosa, N. Theoretical study of the dynamics of magnetization on the topological surface. Phys. Rev. B 81, 241410 (2010).
    [32] Garate, I. & Franz, M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010).
    [33] Lee. H. W., K. C. Kim, and J. Lee, IEEE Trans. Magn., Vol. 42, No. 7, 1917-1925 (2006)
    [34] Condensed Matter Group:TutSputtering, http://www.stoner.leeds.ac.uk/Research/TutSputtering
    [35] 網路分析的基本概念, http://www.ni.com/white-paper/11640/zht/
    [36] Agilent Technologies, Understanding the Fundamental Principles of Vector Network Analysis. Agilent AN 1287-1, Application Note.
    [37] Hai-Zhou Lu, and Shun-Qing Shen, Proc. Of Spie. 9167, 91672E (2014)
    [38] Hong-Tao He, Gan Wang, Tao Zhang, Iam-Keong Sou, George K. L Wong, Jian-Nong Wang, Hai-Zhou Lu, Shun-Qing Shen, and Fu-Chun Zhang, Phys. Rev. Lett. 106, 166805 (2011)
    [39] Shao-Pin Chiu, and Juhn-Jong Lin, Phys. Rev. B 87, 035122 (2013)
    [40] Jianshi Tang, Li-Te Chang, Xufeng Kou, Koichi Murata, Eun Sang Choi, Murong Lang, Yabin Fan, Ying Jiang, Mohammad Montazeri, Wanjun Jiang, Yong Wang, Liang He, and Kang L. Wang, Nano Lett. 14, 5423−5429 (2014)
    [41] http://mathworld.wolfram.com/PolygammaFunction.html
    [42] http://www.originlab.com/doc/LabTalk/ref/Real-polygamma-func
    [43] L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, J.H. Correia, Thin Solid FilmsVolume 518, Issue 10, Pages 2816–2821 (2010)
    [44] Faria Basheer Abdulahad, Dung-Shung Hung, Yu-Che Chiu, and Shang-Fan. Lee, IEEE Trans. Magn., VOL. 47, NO. 10(2011)
    [45] M. Jamali, J. S. Lee, Y. Lv, Z. Zhao, N. Samarth, and J. P. Wang, Room Temperature Spin Pumping in Topological Insulator Bi2Se3. arXiv:1407.7940 (2014)
    [46] CN Wu, YH Lin, YT Fanchiang, HY Hung, HY Lin, PH Lin, JG Lin, SF Lee, M Hong, and J Kwo, J. Appl. Phys. 117, 17D148 (2015)
    Description: 碩士
    國立政治大學
    應用物理研究所
    102755012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102755012
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    501201.pdf21547KbAdobe PDF36View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback