政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81414
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51000573      Online Users : 216
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81414


    Title: Heterogeneous and nonlinear development of human posterior parietal cortex function
    Authors: 張葶葶
    Chang, Ting-Ting
    Metcalfe, Arron W.S.
    Padmanabhan, Aarthi
    Chen, Tianwen
    Menon, Vinod
    Contributors: 心理系
    Keywords: Cognition;Connectivity;Mental arithmetic;Posterior parietal cortex;Intraparietal sulcus;Supramarginal gyrus;Angular gyrus
    Date: 2016-02
    Issue Date: 2016-02-25 17:09:50 (UTC+8)
    Abstract: Human cognitive problem solving skills undergo complex experience-dependent changes from childhood to adulthood, yet most neurodevelopmental research has focused on linear changes with age. Here we challenge this limited view, and investigate spatially heterogeneous and nonlinear neurodevelopmental profiles between childhood, adolescence, and young adulthood, focusing on three cytoarchitectonically distinct posterior parietal cortex (PPC) regions implicated in numerical problem solving: intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SMG). Adolescents demonstrated better behavioral performance relative to children, but their performance was equivalent to that of adults. However, all three groups differed significantly in their profile of activation and connectivity across the PPC subdivisions. Activation in bilateral ventral IPS subdivision IPS-hIP1, along with adjoining anterior AG subdivision, AG-PGa, and the posterior SMG subdivision, SMG-PFm, increased linearly with age, whereas the posterior AG subdivision, AG-PGp, was equally deactivated in all three groups. In contrast, the left anterior SMG subdivision, SMG-PF, showed an inverted U-shaped profile across age groups such that adolescents exhibited greater activation than both children and young adults. Critically, greater SMG-PF activation was correlated with task performance only in adolescents. Furthermore, adolescents showed greater task-related functional connectivity of the SMG-PF with ventro-temporal, anterior temporal and prefrontal cortices, relative to both children and adults. These results suggest that nonlinear up-regulation of SMG-PF and its interconnected functional circuits facilitate adult-level performance in adolescents. Our study provides novel insights into heterogeneous age-related maturation of the PPC underlying cognitive skill acquisition, and further demonstrates how anatomically precise analysis of both linear and nonlinear neurofunctional changes with age is necessary for more fully characterizing cognitive development.
    Relation: NeuroImage,126(1),184-195
    Data Type: article
    DOI link: http://dx.doi.org/10.1016/j.neuroimage.2015.11.053
    DOI: 10.1016/j.neuroimage.2015.11.053
    Appears in Collections:[Department of Psychology] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    184-195.pdf1820KbAdobe PDF2744View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback