English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109948/140897 (78%)
Visitors : 46127976      Online Users : 668
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/85501
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85501

    Title: Computing the Eigenproblem of a Real Orthogonal Matrix
    Authors: 鄭月雯
    Cheng, Yueh-Wen
    Contributors: 王太林
    Wang, Tai-Lin
    Cheng, Yueh-Wen
    Keywords: 正交矩陣的特徵問題
    orthogonal eigenproblem
    Schur parameters
    singular value problem
    Date: 2000
    Issue Date: 2016-04-18 16:31:54 (UTC+8)
    Abstract: 設H是一個實數正交的矩陣,我們要求它的特徵值以及特徵向量。H可以表示成Schur參數的形式。根據Ammar,Gragg及Reichel的論文,我們把H的特徵問題轉換成兩個元素由Schur參數決定的二對角矩陣的奇異值(奇異向量)的問題。我們用這個方法寫成程式並且與CLAPACK的程式比較準確度及速度。最後列出一些數值的結果作為結論。
    Let H be an orthogonal Hessenberg matrix whose eigenvalues, and possibly eigenvectors, are to be determined. Then H can be represented in Schur parametric form [2]. Following Ammar, Gragg, and Reichel`s paper [1], we compute the eigenproblem of H by finding the singular values (and vectors) of two bidiagonal matrices whose elements are explicitly known functions of the Schur parameters. We compare the accuracy and speed of our programs using the method described aboved with those in CLAPACK. Numerical results conclude this thesis.
    Reference: [1] S. Ammar, W. B. Gragg, L. Reichel, On the Eigenproblem for Orthogonal Matrices, Proc. 25th IEEE Conference on Decision and Control, pp.1963--1966. Athens: Greece (1986).
    [2] W. B. Gragg, The QR Algorithm for Unitrary Hessenberg Matrices, J. Comput. Appl. Math. vol. 16, pp.1--8 (1986).
    [3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney, S. Ostrouchov, D. Sorensen, LAPACK Users` Guide, 2nd ed., SIAM, Philadelphia (1995).
    [4] J. Demmel, W. Kahan, Computing Small Singular Values of Bidiagonal Matrices With Guaranteed High Relative Accuracy, SIAM J. Sci. Statist. Comput. vol. 11, no. 5, pp. 873--912 (1990).
    [5] W. B. Gragg, L. Reichel, A Divide and Conquer Method for Unitrary and Orthogonal Eigenproblems, Numer. Math. vol. 57, pp. 695--718 (1990).
    [6] G. S. Ammar, L. Reichel, D. C. Sorensen, An Implementation of a Divide and Conquer Algorithm for the Unitrary Eigenproblem, ACM Trans. Math. Softw. vol. 18, no. 3, pp. 292--307 (1992).
    [7] T. L. Wang, Lecture Notes on Basic Matrix Eigenproblem Computations with the QR Transformation, unpublished manuscript.
    [8] V. F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. R. Astr. Soc. vol. 33, pp. 347--366 (1973).
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001743
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    著作權政策宣告 Copyright Announcement
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback