English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118524/149574 (79%)
造訪人次 : 78949049      線上人數 : 192
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/157107


    題名: CapST: Leveraging Capsule Networks and Temporal Attention for Accurate Model Attribution in Deep-fake Videos
    作者: 汪新
    Ahmad, Wasim;Peng, Yan Tsung;Chang, Yuan-Hao;Ganfure, Gaddisa Olani;Khan, Sarwar
    貢獻者: 群智博五
    日期: 2025-04
    上傳時間: 2025-05-27 11:09:35 (UTC+8)
    摘要: Deep-fake videos, generated through AI face-swapping techniques, have garnered considerable attention due to their potential for impactful impersonation attacks. While existing research primarily distinguishes real from fake videos, attributing a deep-fake to its specific generation model or encoder is crucial for forensic investigation, enabling precise source tracing and tailored countermeasures. This approach not only enhances detection accuracy by leveraging unique model-specific artifacts but also provides insights essential for developing proactive defenses against evolving deep-fake techniques. Addressing this gap, this article investigates the model attribution problem for deep-fake videos using two datasets—Deepfakes from Different Models (DFDM) and GANGen-Detection, which comprise deep-fake videos and images generated by GAN models. We select only fake images from the GANGen-Detection dataset to align with the DFDM dataset, which specifies the goal of this study, focusing on model attribution rather than real/fake classification. This study formulates deep-fake model attribution as a multiclass classification task, introducing a novel Capsule-Spatial-Temporal (CapST) model that effectively integrates a modified VGG19 (utilizing only the first 26 out of 52 layers) for feature extraction, combined with Capsule Networks and a Spatio-Temporal attention mechanism. The Capsule module captures intricate feature hierarchies, enabling robust identification of deep-fake attributes, while a video-level fusion technique leverages temporal attention mechanisms to process concatenated feature vectors and capture temporal dependencies in deep-fake videos. By aggregating insights across frames, our model achieves a comprehensive understanding of video content, resulting in more precise predictions. Experimental results on the DFDM and GANGen-Detection datasets demonstrate the efficacy of CapST, achieving substantial improvements in accurately categorizing deep-fake videos over baseline models, all while demanding fewer computational resources.
    關聯: ACM Transactions on Multimedia Computing, Communications and Applications, Vol.21, No.4, pp.1-23
    資料類型: article
    DOI 連結: https://doi.org/10.1145/3715138
    DOI: 10.1145/3715138
    顯示於類別:[社群網路與人智計算國際研究生博士學位學程(TIGP)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML165檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋