English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116918/147948 (79%)
Visitors : 65115865      Online Users : 765
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157154


    Title: 大型資料之表徵學習:心理計量學如何從深度學習獲得助益?
    Representation Learning with Large Data Sets: How Can Psychometrics Benefit from Deep Learning?
    Authors: 黃柏僩
    Contributors: 心理系
    Keywords: 表徵學習;試題反應理論;測驗理論;自編碼器;潛在狄利克雷分配;變分法;機器學習;深度學習;人工智慧;對抗生成模型;自動試題生成
    representation learning;item response theory;test theory;autoencoder;latent Dirichlet allocation;variational inference;machine learning;deep learning;artificial intelligence;generative adversarial nets;automated item generation
    Date: 2023-10
    Issue Date: 2025-05-28 14:07:32 (UTC+8)
    Abstract: 近年來,深度學習已在電腦視覺、語音辨識等科學領域獲得空前的成功。本計畫試圖從近期深度學習的研究成果,思考心理計量可如何從中獲得助益。透過對深度學習文獻之回顧,我們提出了幾種應用深度學習於心理計量的研究方向,包括使用GPU計算與變分法(variational inference)加速複雜心理計量模型於大型資料之訓練、建立可整合結構與非結構資料之測量模型、以及使用生成對抗網路(generative adversarial network)協助自動試題的產生。申請人認為前述的這些研究方向,都是在建立智慧測驗評量系統時所需解決的關鍵步驟,並能協助古典心理計量學面對當代巨量資料之挑戰。
    Relation: 科技部, MOST109-2410-H004-197-MY3, 109.08-112.07
    Data Type: report
    Appears in Collections:[心理學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML81View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback