Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/157736
|
Title: | 範數懲罰函數建構之投資組合實證研究:以川普首次執政至新冠肺炎前(2017-2019年)為例 An Empirical Study on the Performance of Penalized Norm Portfolios During Donald Trump's First Term and the Pre-COVID-19 Period (2017–2019) |
Authors: | 陳奕如 Chen, Yi-Ru |
Contributors: | 顏佑銘 Yen, Yu-Min 陳奕如 Chen, Yi-Ru |
Keywords: | 加權懲罰範數 最小變異數投資組合 凱基臺灣AI50(00952) 川普 Donald Trump KGI Taiwan Premium Selection AI 50 ETF Minimum Variance Portfolio Weighted-Norm Penalty |
Date: | 2025 |
Issue Date: | 2025-07-01 14:37:15 (UTC+8) |
Abstract: | 在2024年美國總統大選結果揭曉後,市場對於川普(Donald Trump)再度當選的政策與對市場的影響展開討論。回顧川普首次執政期間(2017-2021年),其政策對全球經濟及股票市場帶來重大影響。隨著川普再次掌權,市場預期其經濟政策可能為投資者帶來風險;本研究亦預期,其再次執政期間將延續其首任期間主要經濟政策,特別是關稅政策與弱勢美元導向。惟2020年新冠疫情爆發導致市場重大衝擊,推估疫情將成為干擾市場的因素,故本研究將聚焦於川普首次執政至疫情正式被醫界確認前的期間(2017-2019年底),以更準確分析投資組合績效,進而提出川普再次執政期間 AI 產業最適投資策略之參考依據。 本研究以加權範數懲罰函數,當作主要投資組合最佳化的方法。從先前研究得知,加權範數懲罰函數能有效增加投資組合稀疏性(sparsity),並能改善最小變異數投資組合(MVP)易出現極端權重問題。關於投資組合資產的選定,本研究聚焦於當前最受關注且快速發展的AI產業,選取相關ETF,凱基臺灣 AI50(00952)的資產標的進行實證分析,比較全樣本期間與川普首次執政至疫情確認前期間表現差異。本研究包括對比加權範數最小變異數投資組合(WNMVP)、無放空最小變異數投資組合(NSMVP)、全局最小變異數投資組合(GMVP)和簡易風險分散投資組合(1/N),並對WNMVP加上高報酬和低報酬限制,及使用三種替代性懲罰函數對比實證結果。 研究結果顯示,不論在全樣本期間或川普首次執政至疫情確認前期間,WNMVP與其他投資組合相比,其夏普比率(SR)表現最佳,能在相同風險水準下提供更高報酬。此外,加入目標報酬限制後,在所有期間績效均未提升,且設定低目標報酬的WNMVP表現優於高目標報酬。最後,在替代範數懲罰分析中,BERHU懲罰函數在所有期間皆展現最佳績效,相較於其他懲罰函數,其四個財務利益相關指標表現更優異,具備良好風險控管能力,有效提升報酬,甚至優於WNMVP、GMVP與NSMVP,證實BERHU懲罰函數可發揮替代性懲罰作用,提升投資組合績效。因此,若預期川普再次執政期間政策方向與首任期大致一致,本研究建議投資人可優先考慮以BERHU懲罰函數建構之投資組合,作為佈局AI產業的策略依據。 Following the 2024 U.S. presidential election, financial markets reassessed the economic implications of Donald Trump’s re-election. Given the substantial impact of his first-term policies (2017–2021) and the disruptions caused by the COVID-19 pandemic beginning in 2020, this study focuses on the period from Trump's first inauguration to the time around the official medical confirmation of the COVID-19 pandemic (2017 to the end of 2019), in order to more accurately evaluate portfolio performance.
This paper applies a weighted norm penalty function to optimize portfolios and investigates the performance of AI-related ETFs, particularly the KGI Taiwan Premium Selection AI 50 ETF (00952). It compares several strategies—Weighted Norm Minimum Variance Portfolio (WNMVP), No-Short Sale Minimum Variance Portfolio (NSMVP), Global Minimum Variance Portfolio (GMVP), and the naive 1/N strategy—across both Trump’s first-term pre-pandemic period and the full sample period. The results indicate that WNMVP consistently achieves the highest Sharpe ratio, offering superior risk-adjusted returns. Introducing return constraints does not improve performance; in fact, targeting lower returns results in better outcomes due to reduced risk exposure. Moreover, the BERHU penalty function outperforms alternative penalties in both periods, providing enhanced risk control and return potential, thereby establishing itself as a promising tool for portfolio optimization. |
Reference: | 林怡君 (2017),運用泛數懲罰函數來建構投資組合:以國際股票市場為例,國立政治大學國際經營與貿易學系研究所未出版碩士論文。 莊丹華 (2017) ,加權範數最小變異數投資組合之實證應用:以台灣股市為例,國立政治大學國際經營與貿易學系研究所未出版碩士論文。 陳芝羽 (2022),加權範數最小變異數投資組合之運用:以新冠疫情期間之台灣半導體產業為例,國立政治大學國際經營與貿易學系研究所未出版碩士論文。 黃怡穎 (2023),ESG基金成分股中加權範數懲罰函數的實證應用,國立政治大學國際經營與貿易學系研究所未出版碩士論文。 蔡宛廷 (2021),以範數懲罰函數建構之投資組合實證研究:以新冠肺炎區間為例,國立政治大學國際經營與貿易學系研究所未出版碩士論文。 凱基投信,凱基優選台灣AI 50 ETF 證券投資信託基金(基金之配息來源可能為收益平準金)公開說明書, https://www.kgifund.com.tw/Upload/Files/ManageFileUploadProspectus/J020.pdf?20250502165830,擷取日期:2025年3月1日。 凱基投信,凱基優選台灣AI 50 ETF基金, https://www.kgifund.com.tw/Fund/Detail?fundID=J020,擷取日期:2025年1月15日。 維基百科,2017年減稅與就業法案, https://zh.wikipedia.org/zh-tw/2017%E5%B9%B4%E5%87%8F%E7%A8%8E%E4%B8%8E%E5%B0%B1%E4%B8%9A%E6%B3%95%E6%A1%88,擷取日期:2025年3月1日。 維基百科,2019冠狀病毒病疫情時間軸, https://zh.wikipedia.org/zh-tw/2019%E5%86%A0%E7%8B%80%E7%97%85%E6%AF%92%E7%97%85%E7%96%AB%E6%83%85%E6%99%82%E9%96%93%E8%BB%B8,擷取日期:2025年3月1日。 聯合新聞網,凱基ETF 00952成立 9月5日掛牌上市, https://udn.com/news/story/123006/8188596?cv=1,擷取日期:2025年3月1日。 Black, F. and Litterman, R. (1992). Global Portfolio Optimalization. Financial Analysts Journal, 48, no.5, 28-43. Brodie, J., I. Daubechies, C. D. Mol, D. Giannone, and I. Loris. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences of the United States of America, 106, 12267-12272. Brown, S. J. (1976). Optimal portfolio choice under uncertainty: A Bayesian approach. Ph.D. Dissertation. University of Chicago. Clarke, R.G., de Silva, H., and Thorley, S. (2006). Minimum-Variance Portfolios in the U.S. Equity Market. The Journal of Portfolio Management, 33, 10-24. Clarke, R.oger;, de Silva, HarindraH.;, and Thorley, S.teven, (2013). Risk Parity, Maximum Diversification, and Minimum Variance: An Analytic Perspective, Journal of Portfolio Management, 39-53,11-12. DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009). A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Management Science, 55(5), 798-812. Duchin, R. and Levy, H. (2009). Markowitz Versus the Talmudic Portfolio Diversification Strategies. The Journal of Portfolio Management, 35(2), 71-74. Haugen, R. A., and Baker, N. L. (1991). The Efficient Market Inefficiency of Capitalization-Weighted Stock Portfolios. Journal of Portfolio Management, vol. 17, no. 3, spring: 35-40. Ledoit, O. and Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance 10, 603–621. Jagannathan, R., and Ma, T. (2003). Risk reduction in large portfolios: why imposing the wrong constraints helps. Journal of Finance, 58(4), 1651–1684. Jobson, J.D. and Korkie, B. (1980). Estimation for Markowitz Efficient Portfolios. Journal of the American Statistical Association. Vol.75, No.371, 544-554. Jorion, Philippe. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21(3), 279–292. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77-91. Michaud, R.O. (1989). The Markowitz Optimization Enigma: Is “Optimized” Optimal? Financial Analysts Journal, 45(1), 31-42. Tobin J. (1958). Liquidity Preference as Behavior Towards Risk. The Review of Economic Studies, Feb., Vol. 25, No. 2, 65- 86. Yen, Y. M. (2015). Sparse Weighted-Norm Minimum Variance Portfolios. Review of Finance, 20, 1259-1287. Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301-320. Yahoo Finance,KGI Taiwan Premium Selection AI 50 ETF (00952.TW), https://finance.yahoo.com/quote/00952.TW/,擷取日期:2025年1月15日。 |
Description: | 碩士 國立政治大學 國際經營與貿易學系 112351012 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112351012 |
Data Type: | thesis |
Appears in Collections: | [國際經營與貿易學系 ] 學位論文
|
Files in This Item:
File |
Size | Format | |
101201.pdf | 1168Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|