English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116884/147915 (79%)
Visitors : 64471052      Online Users : 347
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157884


    Title: 利用NMR模擬尋找MEGA-PRESS 在GSH量化的最佳回訊時間
    Determination of Optimal TE for GSH Quantification in MEGA-PRESS sequence using NMR Simulation
    Authors: 余竣傑
    Yu, Jun-Jie
    Contributors: 蔡尚岳
    Tsai, Shang-Yueh
    余竣傑
    Yu, Jun-Jie
    Keywords: 麩胱甘肽
    MEGA-PRESS
    回訊時間
    磁共振頻譜
    FID-A模擬
    Glutathione
    MEGA-PRESS
    Echo time
    Magnetic resonance spectroscopy
    FID-A simulation
    Date: 2025
    Issue Date: 2025-07-01 15:50:14 (UTC+8)
    Abstract: 本研究探討使用MEGA-PRESS (MEscher-GArwood Point-Resolved Spectroscopy) 技術進行麩胱甘肽 (Glutathione, GSH) 定量時的最佳回訊時間 (Echo Time, TE) 參數。GSH作為大腦內主要的抗氧化劑之一,其濃度變化與多種神經退行性疾病及精神疾病密切相關,因此準確定量GSH對於相關研究具有重要意義。
    然而,在常規¹H MRS頻譜中,GSH的信號與其他代謝物訊號重疊,特別是受到肌酸 (Cr) 和磷酸肌酸 (PCr) 的干擾。雖然MEGA-PRESS技術能夠透過J差異編輯減少這類干擾,但仍面臨N-乙醯天門冬氨酸 (NAA) 和N-乙醯天門冬氨酸麩氨酸 (NAAG) 因共編輯 (Co-editing) 效應產生的干擾問題。
    本研究使用FID-A (FID Appliance) 模擬工具箱,基於量子力學密度矩陣方法,模擬了不同NAA與NAAG (total NAA, tNAA)濃度以及不同組織環境條件 (不同線寬展寬值) 下的GSH+NAA+NAAG頻譜變化。研究評估GSH信號強度、負外側峰 (Negative Outer Lobes) 變化以及tNAA干擾程度三個關鍵指標,以確定最佳的TE參數。
    模擬結果顯示:(1) 考慮T₂衰減影響後,GSH積分面積在TE=130 ms達到最大值;(2) GSH的負外側峰在TE=120 ms之後趨近消失,TE=130 ms時已近乎消失;(3) 在所有模擬條件下,TE=130 ms的tNAA干擾面積均小於TE=120 ms。此外,較長的TE值還允許使用更長的編輯脈衝時間 (如40 ms),可進一步降低36.1%至50.3%的tNAA干擾。
    綜合以上發現,本研究建議在使用MEGA-PRESS頻譜編輯技術定量GSH時,採用TE=130 ms作為最佳參數,可兼顧GSH信號強度、譜線品質及減少NAA與NAAG的共編輯干擾,提高GSH定量的準確性。
    This study investigates the optimal echo time (TE) parameters for quantifying glutathione (GSH) using MEGA-PRESS (MEscher-GArwood Point-Resolved Spectroscopy) technique. As one of the primary antioxidants in the brain, GSH concentration changes are closely associated with various neurodegenerative and psychiatric disorders, making accurate GSH quantification crucial for related research.
    In conventional ¹H MRS spectra, GSH signals overlap with other metabolites, particularly creatine (Cr) and phosphocreatine (PCr). While MEGA-PRESS technique can reduce these interferences through J-difference editing, challenges remain due to co-editing effects from N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG).
    This research utilized the FID-A (FID Appliance) simulation toolkit, based on quantum mechanical density matrix methods, to simulate GSH+NAA+NAAG spectra under various tNAA(NAA+NAAG )concentrations and tissue environment conditions (different line broadening values). The study evaluated three key indicators: GSH signal intensity, negative outer lobes variation, and tNAA interference level to determine the optimal TE parameter.
    Simulation results demonstrated that: (1) Considering T₂ decay effects, GSH integral area reached its maximum at TE=130 ms; (2) GSH negative outer lobes approached disappearance after TE=120 ms and were almost invisible at TE=130 ms; (3) Under all simulated conditions, tNAA interference area at TE=130 ms was consistently smaller than at TE=120 ms. Additionally, longer TE values allowed for extended editing pulse durations (e.g., 40 ms), further reducing tNAA interference by 36.1% to 50.3%.Based on these findings, this study recommends TE=130 ms as the optimal parameter when quantifying GSH using MEGA-PRESS technique, balancing GSH signal strength, spectral quality, and reduced co-editing interference from NAA and NAAG, thereby improving GSH quantification accuracy.
    Reference: [1] Rae, C. D., & Williams, S. R. (2017). "Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy." Analytical Biochemistry, 529, 127-143. https://doi.org/10.1016/j.ab.2016.12.022
    [2] O'Gorman Tuura, R., Andreazza, A. C., Easter, R. E., et al. (2023). "Prefrontal glutathione levels in major depressive disorder are linked to a lack of positive affect. "Brain Sciences, 13(10), 1475. https://doi.org/10.3390/brainsci13101475
    [3] Griffith, H. R., O'Brien, J. L., Salazar, R. D., et al. (2022). "Association of anterior cingulate glutathione with sleep apnea in older adults at-risk for dementia. "Sleep, 39(4), 899–906. https://doi.org/10.1093/sleep/zsw068
    [4] Chen, J. J., Thiyagarajah, M., Song, J., Chen, C., Herrmann, N., Gallagher, D., … Lanctôt, K. L. (2022). Altered central and blood glutathione in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Alzheimer’s Research & Therapy, 14(23). https://doi.org/10.1186/s13195-022-00961-5
    [5] Harris, A. D., Saleh, M. G., & Edden, R. A. E. (2017). " Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites. " Magnetic Resonance in Medicine, 77(4), 1377–1389. https://doi.org/10.1002/mrm.26619
    [6] Garrett, R. H., & Grisham, C. M. (2005). "Biochemistry (3rd ed.). " Belmont, CA: Brooks/Cole – Thomson Learning.
    [7] An, L., Zhang, Y., Thomasson, D. M., Latour, L. L., Baker, E. H., Shen, J., & Warach, S. (2009). " Measurement of glutathione in normal volunteers and stroke patients at 3T using J-difference spectroscopy with minimized subtraction errors. " Journal of Magnetic Resonance Imaging, 30(2), 263–270. https://doi.org/10.1002/jmri.21832
    [8] Chan, K. L., Puts, N. A. J., Snoussi, K., Harris, A. D., Barker, P. B., & Edden, R. A. E. (2016). "Echo time optimization for J‐difference editing of glutathione at 3T. " Magnetic Resonance in Medicine, 77(2), 498–504. https://doi.org/10.1002/mrm.26122
    [9] Sanaei Nezhad , F., Anton, A., Parkes, L. M., Deakin, B., & Williams, S. R. (2017). "Quantification of glutathione in the human brain by MR spectroscopy at 3 Tesla: Comparison of PRESS and MEGA-PRESS. " Magnetic Resonance in Medicine, 78(4), 1257-1266. https://doi.org/10.1002/mrm.26532
    [10] Cohen-Tannoudji, C., Diu, B., & Laloë, F. (2019). "Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (2nd ed.). "Wiley-VCH
    [11] de Graaf, R. A. (2019). "In vivo NMR spectroscopy: Principles and techniques (3rd ed.). "Wiley.
    [12] Keeler, J. (2010). "Understanding NMR Spectroscopy (2nd ed.). " John Wiley & Sons.
    [13] Stagg, C. J., & Rothman, D. L. (Eds.). (Trans. Li, L., & Li, J.). (n.d.). "Magnetic resonance spectroscopy: Tools for neuroscience research and emerging clinical applications (Chinese ed.). " Beijing: Science Press.
    [14] Sakurai, J. J., & Napolitano, J. (2020). " Modern quantum mechanics (3rd ed.). "Cambridge University Press.
    [15] Wangsness, R. K., & Bloch, F. (1953). "The dynamical theory of nuclear induction. "Physical Review, 89(4), 728–739. https://doi.org/10.1103/PhysRev.89.728
    [16] Lambert, J. B., Mazzola, E. P., & Ridge, C. D. (n.d.). "Nuclear magnetic resonance spectroscopy: An introduction to principles, applications, and experimental methods (2nd ed., X. Junfeng & Q. Zhou, Trans.) . " Beijing: Chemical Industry Press.
    [17] M. Mescher, H. Merkle, J. Kirsch, M. Garwood, and R. Gruetter, "Simultaneous in vivo spectral editing and water suppression," NMR in Biomedicine, vol. 11,pp. 266-272, 1998.
    [18] Chan, K. L., Puts, N. A. J., Schär, M., Barker, P. B., & Edden, R. A. E. (2016).
    "HERMES: Hadamard encoding and reconstruction of MEGA‐edited spectroscopy. "
    Magnetic Resonance in Medicine, 76(1), 11–19.
    https://doi.org/10.1002/mrm.26233
    [19] Simpson, R., Devenyi, G. A., Jezzard, P., Hennessy, T. J., & Near, J. (2017). "Advanced processing and simulation of MRS data using the FID appliance (FID‐A)—An open-source, MATLAB-based toolkit. " Magnetic Resonance in Medicine, 77(1), 23–33. https://doi.org/10.1002/mrm.26091
    [20] Simpson, R. (2016). "FID-A: Advanced processing and simulation of MRS data using the FID appliance (FID-A) Manual. "Retrieved from https://www.opensourceimaging.org/project/fid-a-advanced-processing-and-simulation-of-mr-spectroscopy/
    [21] Govindaraju, V., Young, K., & Maudsley, A. A. (2000). "Proton NMR chemical shifts and coupling constants for brain metabolites. " NMR in Biomedicine, 13(3), 129-153.
    [22] Chan, K. L., Saleh, M. G., Oeltzschner, G., Barker, P. B., & Edden, R. A. E. (2017). "Simultaneous measurement of Aspartate, NAA, and NAAG using HERMES spectral editing at 3 Tesla. " NeuroImage, 159, 32-43. https://doi.org/10.1016/j.neuroimage.2017.04.043
    Description: 碩士
    國立政治大學
    應用物理研究所
    112755010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112755010
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    501001.pdf4038KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback