English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69763842      線上人數 : 110
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/157914
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/157914


    題名: Reduce-then-predict or simultaneous reduce-and-predict? Data-driven sparse modeling for improving R&D Efficiency
    作者: 莊皓鈞
    Chuang, Howard Hao-Chun;Hsiao, Pa-Chieh;Chou, Yen-Chun
    貢獻者: 資管系
    關鍵詞: Eye diagram;LASSO;machine learning;printed circuit boards;research and development;sparse principal component analysis (SPCA);unsupervised learning
    日期: 2025-06
    上傳時間: 2025-07-07 10:17:15 (UTC+8)
    摘要: Efficient research and development (R&D) workflows are critical in industries where early-stage results influence downstream outcomes. This study develops a predictive model to enhance R&D efficiency for a leading integrated device manufacturer specializing in printed circuit board design. To address challenges of limited data, noise and collinearity, we apply sparse principal component analysis (SPCA) to simplify simulation data, followed by least absolute shrinkage and selection operator (LASSO) regression to predict later-stage physical testing performance. Our SPCA-LASSO model reduces prediction errors by 22%–41% compared to direct LASSO regression while offering interpretable insights for engineers. In contrast, sparse principal component regression, which integrates dimension reduction and prediction, yields higher errors and unstable factor loadings. This empirical comparison between reduce-then-predict and simultaneous reduce-and-predict approaches contributes to sparse modeling and engineering analytics, offering actionable insights for improving sequential R&D processes across high-tech industries, software engineering, construction, and other sectors where early performance predictions are critical.
    關聯: IEEE Transactions on Engineering Management, Vol.72, pp.2646-2660
    資料類型: article
    DOI 連結: https://doi.org/10.1109/TEM.2025.3577580
    DOI: 10.1109/TEM.2025.3577580
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML31檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋