English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118940/150005 (79%)
Visitors : 84386921      Online Users : 1971
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158278


    Title: 台灣股價加權指數報酬率與重要總體變數選擇探討
    Exploration of the Relationship Between Taiwan’s Weighted Stock Index Returns and Key Macroeconomic Variables
    Authors: 洪子逸
    Hung, Zih-Yi
    Contributors: 蔡致遠
    李浩仲

    Tsai, Chi-Yuan
    Li, Hao-Chung

    洪子逸
    Hung, Zih-Yi
    Keywords: 台灣股價加權指數超額報酬
    因子
    樣本外預測
    機器學習
    TAIEX Excess Returns
    Factors
    Out-of-Sample Forecasting
    Machine Learning
    Date: 2025
    Issue Date: 2025-08-04 12:51:21 (UTC+8)
    Abstract: 本文蒐集2004年1月至2023年12月共80項對於台灣股價加權指數具潛在影響力總體變數,探討不同降維方法所萃取之潛在因子對模型預測力的影響。本文以擴散指數模型為框架,第一階段將變數以不區分類別與區分類別的兩種方式,進行四種降維演算法,分別是主成分分析、核主成分分析、偏最小平方迴歸與偏分量迴歸,第二階段採取遞迴式最小平方法建立預測模型,並以隨機漫步模型為基準,衡量樣本外預測能力。結果顯示,核主成分分析在大多數設定下皆具最佳預測表現,進行類別區分可進一步提升監督式降維方法的預測能力,大宗資產與就業類因子對台灣股價加權指數超額報酬率之邊際貢獻最為顯著。
    This study compiles 80 macroeconomic and financial variables that may affect the Taiwan Stock Exchange Capitalization Weighted Index (TAIEX) for the period from January 2004 to December 2023 and investigates how latent factors extracted through alternative dimension reduction techniques influence out of sample predictive performance. Within a diffusion index framework, the analysis proceeds in two stages. In the first stage, the variables are processed under two schemes (without prior classification and with pre-classification), and four dimension reduction algorithms are applied: principal component analysis (PCA), kernel PCA (KPCA), partial least squares regression (PLS) and partial quantile regression (PQR). In the second stage, rolling recursive ordinary least squares models are estimated, using a random walk specification as the benchmark for forecast evaluation. The results show that KPCA provides the highest predictive accuracy in most settings, while pre-classification further improves the performance of the supervised methods. Factor importance analysis indicates that commodity related and labour market factors make the largest marginal contributions to forecasting TAIEX excess returns.
    Reference: 徐士勛、管中閔與羅雅惠(2005)。以擴散指標為基礎之總體經濟預測。台灣經濟預測與政策。36(1),1-28。
    劉祥熹與涂登才(2012)。美國股市及其總體經濟變數間關連性與波動性之研究—VEC GJR DCC-GARCH-M 之模型應用。《經濟研究》,48(1),139–189。
    張天惠(2012)。我國金融情勢指數與總體經濟預測。中央銀行季刊,34(2),11-42。
    李偉銘、吳淑貞與黃啟泰(2015)。總體經濟變數對臺灣股市之大盤及類股熊市預測表現之探討。經濟研究,51(2),171-224。
    葉錦徽與潘宗麟(2024)。探索預測台灣通膨隱而未現的重要因子-監督式降維模型的實證。管理評論,43(3),19-40。
    Bai, J., & Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.
    Camacho, M., & Sancho, I. (2003). Spanish diffusion indexes. Spanish Economic Review, 5(3), 173–203.
    Chen, N., Roll, R., & Ross, S. (1986). Economic forces and the stock market. Journal of Business, 59(3), 383–403.
    Cooper, J. P. (1972). The predictive performance of quarterly econometric models of the United States. In B. G. Hickman (Ed.), Econometric models of cyclical behavior (pp. 813–947). NBER.
    Dhakal, D., Kandil, M., & Sharma, S. (1993). Causality between the money supply and share prices: A VAR investigation. Quarterly Journal of Business and Economics, 32(3), 52–74.
    Giglio, S., Kelly, B., & Pruitt, S. (2016). Systemic risk and the macroeconomy: An empirical evaluation. Journal of Financial Economics, 119(3), 457–471.
    Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 1545–1578.
    Kelly, B., & Pruitt, S. (2015). The three-pass regression filter: A new approach to forecasting using many predictors. Journal of Econometrics, 186(2), 294–316.
    Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1(1), 41–66.
    Lo, A. W., & MacKinlay, A. C. (1989). The size and power of the variance ratio test in finite samples: A Monte Carlo investigation. Journal of Econometrics, 40(2), 203–238.
    Sims, C. A. (1980a). Macroeconomics and reality. Econometrica, 48(1), 1–48.
    Stock, J. H., & Watson, M. W. (1998). Diffusion indexes (NBER Working Paper No. 6702). National Bureau of Economic Research.
    Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.
    Chiang, T. C. (2023). Real stock market returns and inflation: Evidence from uncertainty hypotheses. Finance Research Letters, 53, 103606.
    Keswani, S., Puri, V., & Jha, R. (2024). Relationship among macroeconomic factors and stock prices: Cointegration approach from the Indian stock market. Cogent Economics & Finance, 12(1), 2355017.
    Humpe, A., McMillan, D. G., & Schöttl, A. (2025). Macroeconomic determinants of the stock market: A comparative study of Anglosphere and BRICS. Finance Research Letters, 75, 106869.
    Description: 碩士
    國立政治大學
    經濟學系
    112258021
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112258021
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802101.pdf1307KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback