Reference: | [1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. In *International conference on machine learning* (pp. 1597-1607). PMLR.
[2] Chen, X., & He, K. (2021). Exploring simple siamese representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 15750-15758).
[3] Demirel, B. U., & Holz, C. (2023). Finding order in chaos: A novel data augmentation method for time series in contrastive learning. *Advances in Neural Information Processing Systems*, 36, 30750-30783.
[4] Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34, 8780-8794.
[5] Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time series generation with recurrent conditional gans.
[6] Guo, Z., Wang, H., Yang, J., & Miller, D. J. (2015). A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network. *PloS one*, 10(4), e0122385.
[7] He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 9729-9738).
[8] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33, 6840-6851.
[9] Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series classification with neural networks. *PLOS ONE*, 16(7).
[10] Jing, B., Wang, Y., Sui, G., Hong, J., He, J., Yang, Y., Li, D., & Ren, K. (2024, October). Automated contrastive learning strategy search for time series. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, CIKM '24* (pp. 4612-4620). ACM.
[11] Kalbande, D., Prabhu, P., Gharat, A., & Rajabally, T. (2021). A fraud detection system using machine learning. In *2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT)* (pp. 1-7). IEEE.
[12] Kong, Z., Ping, W., Huang, J., Zhao, K., & Catanzaro, B. (2021). Diffwave: A versatile diffusion model for audio synthesis.
[13] Lee, S., Lee, G., Kim, H., Kim, J., & Uh, Y. (2023). Sequential data generation with groupwise diffusion process.
[14] Lin, L., Li, Z., Li, R., Li, X., & Gao, J. (2024). Diffusion models for time-series applications: a survey. *Frontiers of Information Technology & Electronic Engineering*, 25(1), 19-41.
[15] Luo, D., Cheng, W., Wang, Y., Xu, D., Ni, J., Yu, W., Zhang, X., Liu, Y., Chen, Y., Chen, H., et al. (2023). Time series contrastive learning with information-aware augmentations. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 37, pp. 4534-4542).
[16] Ma, C., & Yan, S. (2022). Deep learning in the chinese stock market: the role of technical indicators. *Finance Research Letters*, 49, 103025.
[17] Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J. Y., & Ermon, S. (2022). Sdedit: Guided image synthesis and editing with stochastic differential equations.
[18] Rasul, K., Seward, C., Schuster, I., & Vollgraf, R. (2021). Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting. In *International conference on machine learning* (pp. 8857-8868). PMLR.
[19] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18* (pp. 234-241). Springer.
[20] Shobayo, O., Adeyemi-Longe, S., Popoola, O., & Ogunleye, B. (2024, October). Innovative sentiment analysis and prediction of stock price using finbert, gpt-4 and logistic regression: A data-driven approach. *Big Data and Cognitive Computing*, 8(11), 143.
[21] Solis-Martin, D., Galan-Paez, J., & Borrego-Diaz, J. (2023). D3a-ts: Denoising-driven data augmentation in time series.
[22] Song, J., Meng, C., & Ermon, S. (2022). Denoising diffusion implicit models.
[23] Wang, T., & Isola, P. (2020). Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In *International conference on machine learning* (pp. 9929-9939). PMLR.
[24] Wang, W., Song, H., Si, S., Lu, W., & Cai, Z. (2024). Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines. *Reliability Engineering & System Safety*, 252, 110394.
[25] Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., & Xu, H. (2021, August). Time series data augmentation for deep learning: A survey. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-2021* (pp. 4653-4660). International Joint Conferences on Artificial Intelligence Organization.
[26] Yoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series generative adversarial networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), *Advances in Neural Information Processing Systems* (Vol. 32). Curran Associates, Inc.
[27] Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A transformer-based framework for multivariate time series representation learning. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining* (pp. 2114-2124). |