English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118786/149850 (79%)
造訪人次 : 81854051      線上人數 : 445
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/158511
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158511


    題名: 特質性波動率於加密貨幣市場中之風險探討
    Idiosyncratic Volatility Risk in the Cryptocurrency Market
    作者: 童思謙
    Tung, Szu-Chien
    貢獻者: 岳夢蘭
    Yueh, Meng-Lan
    童思謙
    Tung, Szu-Chien
    關鍵詞: 加密貨幣
    異質性波動
    樂透型偏好
    Cryptocurrency
    Idiosyncratic Volatility
    Lottery-like Preference
    日期: 2025
    上傳時間: 2025-08-04 14:08:24 (UTC+8)
    摘要: 受到 Ang et al. (2006)的啟發,本文旨在探討異質性波動(Idiosyncratic Volatility, IVOL)於加密貨幣市場中對橫斷面報酬的影響。本文採用單變量投資組合分析、雙變量投資組合分析以及Fama-MacBeth橫斷面迴歸等多元實證方法進行檢驗。實證結果發現,IVOL較高的加密貨幣具有顯著偏低的未來報酬,IVOL在加密貨幣市場展現出的定價效應與Ang et al. (2006)在美國股市中的發現相同。

    此外,本文進一步研究MAX(一個月內前五大單日報酬的平均值),發現MAX變數同樣會對加密貨幣報酬造成負向影響,且MAX與IVOL高度相關。將MAX納入橫斷面迴歸後,IVOL與未來報酬的負向關係不再顯著,此結果在控制同樣為極端報酬的 MIN(一個月內最小單日報酬)後依然穩健。最終,當以 IVOL 對MAX迴歸的殘差項作為分析變數時,亦無統計顯著影響。

    本文研究結果指出,IVOL的定價效應係由MAX所驅動,異質性波動在加密貨幣市場的定價效應可由Bali et al. (2011)提出的樂透型偏好理論所解釋。
    Motivated by Ang et al. (2006), this study aims to investigate the impact of idiosyncratic volatility (IVOL) on the cross-sectional returns in the cryptocurrency market. Using a combination of univariate portfolio analysis, bivariate portfolio analysis, and Fama-MacBeth cross-sectional regressions, we find that cryptocurrencies with higher IVOL tend to have significantly lower future returns, the pricing effect of IVOL in the cryptocurrency market is consistent with Ang et al. (2006) findings in the U.S. stock market.

    Furthermore, this paper explores the role of MAX (the maximum daily return) and finds that MAX also has a negative impact on cryptocurrency returns and is highly correlated with IVOL. After including MAX in the cross-sectional regressions, the previously observed negative relationship between IVOL and future returns disappears, and this result remains robust even when controlling for MIN (the minimum daily return), which is another measure of extreme returns. Finally, when using the residuals from the regression of IVOL on MAX as an explanatory variable, we also find no statistically significant effect.

    These results suggest that the pricing effect of IVOL in the cryptocurrency market is driven by MAX, and the apparent anomaly in IVOL can be explained by the lottery like preference theory proposed by Bali et al. (2011).
    參考文獻: Ahmed, M. S., El-Masry, A. A., Al-Maghyereh, A. I., & Kumar, S. (2024). Cryptocurrency Volatility: A Review, Synthesis, and Research Agenda. Research in International Business and Finance, 102472.
    Almeida, J., & Gonçalves, T. C. (2023). A Systematic Literature Review of Investor Behavior in the Cryptocurrency Markets. Journal of Behavioral and Experimental Finance, 37, 100785.
    Amihud, Y. (2002). Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. Journal of Financial Markets, 5(1), 31-56.
    Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The Cross‐Section of Volatility and Expected Returns. The Journal of Finance, 61(1), 259-299.
    Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing Out: Stocks as Lotteries and the Cross-Section of Expected Returns. Journal of Financial Economics, 99(2), 427-446.
    Bali, T. G., Demirtas, K. O., & Levy, H. (2009). Is There an Intertemporal Relation between Downside Risk and Expected Returns? Journal of Financial and Quantitative Analysis, 44(4), 883-909.
    Barberis, N., & Huang, M. (2008). Stocks as Lotteries: The Implications of Probability Weighting for Security Prices. American Economic Review, 98(5), 2066-2100.
    Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of Exchange or Speculative Assets? Journal of International Financial Markets, Institutions and Money, 54, 177-189.
    Brunnermeier, M. K., Gollier, C., & Parker, J. A. (2007). Optimal Beliefs, Asset Prices, and the Preference for Skewed Returns. American Economic Review, 97(2), 159-165.
    Fama, E. F., & French, K. R. (1992). The Cross‐Section of Expected Stock Returns. The Journal of Finance, 47(2), 427-465.
    Fama, E. F., & French, K. R. (1993). Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics, 33(1), 3-56.
    Fama, E. F., & French, K. R. (2015). A Five-Factor Asset Pricing Model. Journal of Financial Economics, 116(1), 1-22.
    Fama, E. F., & MacBeth, J. D. (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy, 81(3), 607-636.
    Grobys, K., & Junttila, J. (2021). Speculation and Lottery-Like Demand in Cryptocurrency Markets. Journal of International Financial Markets, Institutions and Money, 71, 101289.
    Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics. McGraw-hill.
    Lammer, D. M., Hanspal, T., & Hackethal, A. (2020). Who Are the Bitcoin Investors? Evidence from Indirect Cryptocurrency Investments.
    Lintner, J. (1965). Security Prices, Risk, and Maximal Gains from Diversification. The Journal of Finance, 20(4), 587-615.
    Liu, Y., & Tsyvinski, A. (2021). Risks and Returns of Cryptocurrency. The Review of Financial Studies, 34(6), 2689-2727.
    Liu, Y., Tsyvinski, A., & Wu, X. (2022). Common Risk Factors in Cryptocurrency. The Journal of Finance, 77(2), 1133-1177.
    Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica: Journal of the Econometric Society, 768-783.
    Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, 19(3), 425-442.
    Stambaugh, R. F., Yu, J., & Yuan, Y. (2015). Arbitrage Asymmetry and the Idiosyncratic Volatility Puzzle. The Journal of Finance, 70(5), 1903-1948.
    Tversky, A., & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5, 297-323.
    Urquhart, A. (2016). The Inefficiency of Bitcoin. Economics Letters, 148, 80-82.
    Zhang, W., & Li, Y. (2020). Is Idiosyncratic Volatility Priced in Cryptocurrency Markets? Research in International Business and Finance, 54, 101252.
    Zhang, W., & Li, Y. (2023). Liquidity Risk and Expected Cryptocurrency Returns. International Journal of Finance & Economics, 28(1), 472-492.
    Zhang, W., Li, Y., Xiong, X., & Wang, P. (2021). Downside Risk and the Cross-Section of Cryptocurrency Returns. Journal of Banking & Finance, 133, 106246.
    描述: 碩士
    國立政治大學
    財務管理學系
    112357038
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112357038
    資料類型: thesis
    顯示於類別:[財務管理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    703801.pdf1884KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋