政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/158548
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117578/148609 (79%)
Visitors : 71510153      Online Users : 305
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158548


    Title: 基於大型語言模型分析2024年美國總統大選期間川普社群媒體發文與比特幣關係研究
    The Study of the Relationship Between Trump's Social Media Posts and Bitcoin Returns During the 2024 U.S. Presidential Election with A Large Language Model Analysis
    Authors: 柯昱安
    Cahiadharma, Ignatius Harry
    Contributors: 卞中佩
    羅秉政

    Pien, Chung-Pei
    Kendro Vincent

    柯昱安
    Ignatius Harry Cahiadharma
    Keywords: 情緒分析
    自然語言處理(NLP)
    大型語言模型(LLMs)
    Truth Social
    比特幣報酬
    政治傳播
    加密貨幣敘事
    時間序列分析
    OLS 回歸
    Python
    R
    大數據分析
    Sentiment Analysis
    Natural Language Processing (NLP)
    Large Language Models (LLMs)
    Truth Social
    Bitcoin Returns
    Political Communication
    Cryptocurrency Narratives
    Time Series Analysis
    OLS Regression
    Python
    R
    Big Data analysis
    Date: 2025
    Issue Date: 2025-08-04 14:18:47 (UTC+8)
    Abstract: 鑑於2024年美國總統⼤選結果對於美國及全球的經濟將有極大的影響,尤其在近年越來越受到注目的加密貨幣的領域上,當美國總統候選人唐納・川普(Donald Trump)在競選期間在社交媒體Truth Social積極推廣加密貨幣,卻仍少有研究川普的加密貨幣相關社群貼文對於比特幣市場及價格的關係。以往社群貼文的相關研究⼤多依賴傳統的情緒分析⼯具,這些⼯具難以掌握政治語⾔中的情緒張⼒與修辭複雜性。本研究彌補了這⼀研究缺⼝,運用大型語言模型,深度分析川普社群貼文的情緒及主題,是否與比特幣的市場表現相關。

    本研究運⽤⾃然語⾔處理(NLP)技術,分析超過4,000則非結構化貼⽂,並比較傳統情緒分析模型(如 VADER)與基於 transformer 架構的⼤型語⾔模型(如 GPT-3o 與 GPT-4o)之表現,並運用表現最好的模型評估川普加密貨幣敘事的效果。研究樣本取⾃川普在選舉期間發佈的 4,131則 Truth Social 帖⽂,彙整為170筆每⽇情緒觀察值,再與每⽇比特幣報酬率進⾏連結,採⽤具 Newey–West 強健標準誤的普通最⼩平⽅法(OLS)進⾏迴歸分析。情緒分類為正⾯、負⾯與中性,使⽤分類準確率最⾼的 GPT-4o 模型,並控制總體經濟變數、比特幣內部指標與川普的⽀持率。

    分析結果顯⽰川普具有⼀致性的發⽂模式,包括常使⽤⺠粹式修辭、反菁英語調與訴諸「⼈⺠」的語⾔風格。雖然⼤多貼⽂情緒偏負⾯,但整體與正向情緒,特別是與加密貨幣相關的內容,與比特幣報酬率的上升呈現顯著正相關。另外,其貼⽂在美國晚間發佈時更易引起受眾關注。GPT-4o 在辨識情緒的表現上優於 GPT-3o 與 VADER,顯⽰其處理政治修辭語境的優勢。本研究也提出⼀個全新的框架,探討加密貨幣敘事如何放⼤情緒訊息對⾦融市場的影響。透過結合情緒分析與敘事建模,超越傳統線性分析途徑,深入揭⽰具情緒渲染與敘事導向的政治訊息如何在⾼波動的去中⼼化市場中形塑投資者⾏為。本研究透過大型語言模型研究社群網路及市場的關係,希望對財務經濟學、政治傳播與⾃然語⾔處理領域皆具學術與實務貢獻,對投資⼈、交易者、政策制定者與學者提供參考價值。
    Given the heightened economic uncertainty during the 2024 U.S. presidential election and Donald Trump’s active promotion of cryptocurrency narratives on Truth Social, it is essential to examine how his digital communication influences investor perception and Bitcoin returns. While prior studies have typically relied on traditional sentiment analysis tools that struggle to capture the emotional and rhetorical complexity of political language, this study addresses that gap by analyzing Trump’s posting behavior, key topics, and sentiment. It specifically investigates whether optimism, especially when combined with crypto-related narrativesaffects Bitcoin returns.

    Utilizing Natural Language Processing (NLP) on more than 4,000 unstructured posts, the study compares the performance of traditional sentiment models such as VADER with transformer-based large language models like GPT-3o and GPT-4o, while also assessing the moderating role of crypto narratives. Drawing from 4,131 Truth Social posts made by Trump during the election period, the content is aggregated into 170 daily sentiment observations and linked to daily Bitcoin returns using OLS regression with Newey–West standard errors Sentiments are classified as positive, negative, or neutral using GPT-4o, the model with the highest classification accuracy, with additional controls for macroeconomic factors, internal Bitcoin indicators, and Trump’s favorability rating.

    The analysis reveals consistent posting patterns, with Trump frequently employing populist rhetoric, anti-elite framing, and appeals to “the people.” Although his posts were often negatively charged, average and positive sentiments, particularly those referencing cryptocurrency, were significantly associated with increases in Bitcoin returns. Posts that engaged audiences most were typically made during U.S. evening hours. GPT-4o outperformed other models in detecting nuanced populist sentiment, demonstrating its strength over both GPT-3o and VADER. This study introduces a novel moderation framework to explore how crypto-related narratives amplify the effects of Trump’s sentiment on financial markets. By combining sentiment analysis with narrative modeling, it moves beyond linear frameworks to offer a richer understanding of how emotionally framed, narrative-driven messages from influential political figures can shape investor behavior in volatile, decentralized markets. As one of the first to apply GPT-4o in this context, this research contributes to the literature in financial economics, political communication, and NLP, with practical implications for investors, traders, regulators, and scholars.
    Reference: Adimi Gikay, A., & Gabriel Stănescu, C. (2019). Technological Populism and Its Archetypes: Blockchain and Cryptocurrencies. https://doi.org/http://dx.doi.org/10.2139/ssrn.3379756
    Ahmed, W. M. A. (2022). Robust drivers of Bitcoin price movements: An extreme bounds analysis. North American Journal of Economics and Finance, 62. https://doi.org/10.1016/j.najef.2022.101728
    Ajjoub, C., Walker, T., & Zhao, Y. (2021). Social media posts and stock returns: The Trump factor. International Journal of Managerial Finance, 17(2), 185–213. https://doi.org/10.1108/IJMF-02-2020-0068
    Ali, R. H., Pinto, G., Lawrie, E., & Linstead, E. J. (2022). A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00633-z
    Ante, L. (2023). How Elon Musk’s Twitter activity moves cryptocurrency markets. Technological Forecasting and Social Change, 186. https://doi.org/10.1016/j.techfore.2022.122112
    Antypas, D., Preece, A., & Camacho-Collados, J. (2023). Negativity spreads faster: A large-scale multilingual twitter analysis on the role of sentiment in political communication. Online Social Networks and Media, 33, 100242. https://doi.org/10.1016/J.OSNEM.2023.100242
    Atmawijaya, T. D. (2024). Reclaiming the Narrative: A Critical Discourse Analysis of Donald Trump’s 2024 Super Tuesday Campaign Speech. K@ta, 26(2), 87–102. https://doi.org/10.9744/kata.26.2.87-102
    Aysan, A. F., Demir, E., Gozgor, G., & Lau, C. K. M. (2019). Effects of the geopolitical risks on Bitcoin returns and volatility. Research in International Business and Finance, 47, 511–518. https://doi.org/10.1016/J.RIBAF.2018.09.011
    Babac, M. B. (2021). Mihael Kampić Sentiment Analysis of President Trump’s Tweets: From Winning the Election to the Fight against COVID-19 2 PRELIMINARY COMMUNICATION. COMMUNICATION MANAGEMENT REVIEW, 6. https://doi.org/10.22522/cmr20210272
    Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of Financial Economics, 49(3), 307–343. https://doi.org/10.1016/S0304-405X(98)00027-0
    Baur, D. G., Dimpfl, T., & Kuck, K. (2018). Bitcoin, gold and the US dollar – A replication and extension. Finance Research Letters, 25, 103–110. https://doi.org/10.1016/j.frl.2017.10.012
    Ben Jabeur, S., Dhifaoui, Z., Bakkar, Y., & Ballouk, H. (2025). ‘Crypto president’: Do narrative political signals drive cryptocurrency returns? Finance Research Letters, 78. https://doi.org/10.1016/j.frl.2025.107194
    Białkowski, J., Dang, H. D., & Wei, X. (2022). High policy uncertainty and low implied market volatility: An academic puzzle? Journal of Financial Economics, 143(3), 1185–1208. https://doi.org/10.1016/J.JFINECO.2021.05.011
    Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/J.JOCS.2010.12.007
    Bono, J. E., & Ilies, R. (2006). Charisma, positive emotions and mood contagion. The Leadership Quarterly, 17(4), 317–334. https://doi.org/10.1016/J.LEAQUA.2006.04.008
    Boos, T. (2024). Bitcoin, techno-utopianism and populism: Unveiling Bukele’s crypto-populism in El Salvador’s adoption of Bitcoin. Economy and Society. https://doi.org/10.1080/03085147.2024.2407227
    Brans, H., & Scholtens, B. (2020). Under his thumb the effect of president Donald Trump’s Twitter messages on the US stock market. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0229931
    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. http://arxiv.org/abs/2005.14165
    Cakra, Y. E., & Distiawan Trisedya, B. (2015). Stock Price Prediction using Linear Regression based on Sentiment Analysis. 147–154. https://doi.org/10.1109/ICACSIS.2015.7415179
    Cambria, E., Poria, S., Gelbukh, A., Nacional, I. P., & Thelwall, M. (2017). AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS Sentiment Analysis Is a Big Suitcase. www.computer.org/intelligent
    Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average? (Vol. 21, Issue 4). https://www.jstor.org/stable/40056860
    Cavalheiro, E. A., Vieira, K. M., & Thue, P. S. (2024). The impact of investor greed and fear on cryptocurrency returns: a Granger causality analysis of Bitcoin and Ethereum. Review of Behavioral Finance, 16(5), 819–835. https://doi.org/10.1108/RBF-08-2023-0224
    Cheah, E. T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, 32–36. https://doi.org/10.1016/J.ECONLET.2015.02.029
    Ciaian, P., Rajcaniova, M., & Kancs, d’Artis. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799–1815. https://doi.org/10.1080/00036846.2015.1109038
    Conway, B. A., Kenski, K., & Wang, D. (2015). The Rise of Twitter in the Political Campaign: Searching for Intermedia Agenda-Setting Effects in the Presidential Primary. Journal of Computer-Mediated Communication, 20(4), 363–380. https://doi.org/10.1111/jcc4.12124
    Corbet, S., McHugh, G., & Meegan, A. (2017). The influence of central bank monetary policy announcements on cryptocurrency return volatility. Investment Management and Financial Innovations, 14(4), 60–72. https://doi.org/10.21511/imfi.14(4).2017.07
    Datesman, M. Kearny., Crandall, J. Ann., & Kearny, E. N. . (2014). American Ways : an Introduction to American Culture. Pearson Education.
    Demir, E., Gozgor, G., Lau, C. K. M., & Vigne, S. A. (2018). Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Finance Research Letters, 26, 145–149. https://doi.org/10.1016/J.FRL.2018.01.005
    Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. In Source: Journal of the American Statistical Association (Vol. 74, Issue 366).
    Fama, E. F. (1970). American Finance Association Efficient Capital Markets: A Review of Theory and Empirical Work. In Source: The Journal of Finance (Vol. 25, Issue 2). https://doi.org/https://doi.org/10.2307/2325486
    Ge, Q., Kurov, A., & Wolfe, M. H. (2019). DO INVESTORS CARE ABOUT PRESIDENTIAL COMPANY-SPECIFIC TWEETS? Journal of Financial Research, 42(2), 213–242. https://doi.org/10.1111/jfir.12177
    Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D. N., & Giaglis, G. M. (2015). Using Time-Series and Sentiment Analysis to detect the Determinants of Bitcoin Prices. https://doi.org/https://dx.doi.org/10.2139/ssrn.2607167
    Gjerstad, P., Meyn, P. F., Molnár, P., & Næss, T. D. (2021). Do President Trump’s tweets affect financial markets? Decision Support Systems, 147. https://doi.org/10.1016/j.dss.2021.113577
    Grayscale. (2024). Election 2024: The Role of Crypto.
    Guo, S., Jiao, Y., & Xu, Z. (2021). Trump’s Effect on the Chinese Stock Market. Journal of Asian Economics, 72. https://doi.org/10.1016/j.asieco.2020.101267
    Gupta, S., Gupta, S., Mathew, M., & Sama, H. R. (2021). Prioritizing intentions behind investment in cryptocurrency: a fuzzy analytical framework. Journal of Economic Studies, 48(8), 1442–1459. https://doi.org/10.1108/JES-06-2020-0285
    Gurgul, V., Lessmann, S., & Härdle, W. K. (2025). Deep learning and NLP in cryptocurrency forecasting: Integrating financial, blockchain, and social media data. International Journal of Forecasting. https://doi.org/10.1016/J.IJFORECAST.2025.02.007
    Herold, M., Kanz, A., & Muck, M. (2021). Do opinion polls move stock prices? Evidence from the US presidential election in 2016. Quarterly Review of Economics and Finance, 80, 665–690. https://doi.org/10.1016/j.qref.2021.03.013
    Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. http://sentic.net/
    Huynh, T. L. D. (2021). Does Bitcoin React to Trump’s Tweets? Journal of Behavioral and Experimental Finance, 31. https://doi.org/10.1016/j.jbef.2021.100546
    Isabella, L. A. (1990). Evolving Interpretations as a Change Unfolds: How Managers Construe Key Organizational Events. In Source: The Academy of Management Journal (Vol. 33, Issue 1). https://about.jstor.org/terms
    Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://nlp.stanford.edu/sentiment/
    Kinyua, J. D., Mutigwe, C., Cushing, D. J., & Poggi, M. (2021). An analysis of the impact of President Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis. Journal of Behavioral and Experimental Finance, 29. https://doi.org/10.1016/j.jbef.2020.100447
    Kirtac, K., & Germano, G. (2024). Sentiment trading with large language models. Finance Research Letters, 62, 105227. https://doi.org/10.1016/J.FRL.2024.105227
    Kjeldgaard-Christiansen, J. (2024). The Voice of the People: Populism and Donald Trump’s Use of Informal Voice. Society, 61(3), 289–302. https://doi.org/10.1007/s12115-024-00969-7
    Knif, J., Kolari, J., & Pynnönen, S. (2008). Stock market reaction to good and bad inflation news. Journal of Financial Research, 31(2), 141–166. https://doi.org/10.1111/j.1475-6803.2008.00235.x
    Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
    Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 54(7), 4997–5053. https://doi.org/10.1007/s10462-021-09973-3
    Loewenstein, J., Ocasio, W., & Jones, C. (2012). Vocabularies and Vocabulary Structure: A New Approach Linking Categories, Practices, and Institutions. Academy of Management Annals, 6(1), 41–86. https://doi.org/10.5465/19416520.2012.660763
    MacCallum, N., & Lee, J. (2025, April 14). GPT-4.1 Prompting Guide.
    Mackintosh, S. P. M. (2019). Review of Narrative Economics: How Stories Go Viral and Drive Major Economic Events by Robert Shiller. Business Economics, 56.
    Malkiel, B. (2003). The Efficient Market Hypothesis and Its Critics. Journal of Economic Perspectives. https://doi.org/10.1257/089533003321164958
    Miba’am, B. W., & Güngör, H. (2025). Do Uncertainties in US Affect Bitcoin Returns? Evidence from Time Series Analysis. Computational Economics. https://doi.org/10.1007/s10614-024-10842-8
    Mnasri, A., & Essaddam, N. (2021). Impact of U.S. presidential elections on stock markets’ volatility: Does incumbent president’s party matter? Finance Research Letters, 39, 101622. https://doi.org/10.1016/J.FRL.2020.101622
    Moffitt, B. (2016). The Global Rise of Populism: Performance, Political Style and Representation (1st ed.). Stanford University Press. https://doi.org/https://doi.org/10.2307/j.ctvqsdsd8
    Mondal, L., Raj, U., S, A., S, B. G., P, S., & Chandra, A. (2023). Causality between Sentiment and Cryptocurrency Prices. http://arxiv.org/abs/2306.05803
    Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org
    Nguyen, K. Q., Nguyen, T. H., & Do, B. L. (2023). Narrative attention and related cryptocurrency returns. Finance Research Letters, 56. https://doi.org/10.1016/j.frl.2023.104174
    Nofer, M., & Hinz, O. (2015). Using Twitter to Predict the Stock Market: Where is the Mood Effect? Business and Information Systems Engineering, 57(4), 229–242. https://doi.org/10.1007/s12599-015-0390-4
    Nofsinger, J. R. (2005). Social Mood and Financial Economics. Journal of Behavioral Finance, 6(3), 144–160. https://doi.org/10.1207/s15427579jpfm0603_4
    Ortiz, D. P. (2023). Economic policy statements, social media, and stock market uncertainty: An analysis of Donald Trump’s tweets. Journal of Economics and Finance, 47(2), 333–367. https://doi.org/10.1007/s12197-022-09608-5
    Pandey, T. D. (2024). Impact of Musk’s remarks on volatility of Bitcoin and Dogecoin amid COVID-19 pandemic. Journal of Digital Economy, 3, 85–102. https://doi.org/10.1016/J.JDEC.2024.12.002
    Pang, B., & Lee, L. J. (2008). Opinion Mining and Sentiment Analysis. Now Publishers.
    Pietrzak, M. (2023). What can monetary policy tell us about Bitcoin? Annals of Finance, 19(4), 545–559. https://doi.org/10.1007/s10436-023-00432-3
    Plisiecki, H., Flakus, M., & Pokropek, A. (2024). High Risk of Political Bias in Black Box Emotion Inference Models Uncovering Political Bias in Emotion Inference Models: Implications for sentiment analysis in social science research. https://doi.org/10.48550/arXiv.2407.13891
    Pozzi, F. A., Fersini, E., Messina, E., & Liu, B. (2017). Challenges of Sentiment Analysis in Social Networks: An Overview. In Sentiment Analysis in Social Networks (pp. 1–11). Elsevier Inc. https://doi.org/10.1016/B978-0-12-804412-4.00001-2
    Prechter, R. R., & Parker, W. D. (2007). The Financial/Economic Dichotomy in Social Behavioral Dynamics: The Socionomic Perspective. Journal of Behavioral Finance, 8(2), 84–108. https://doi.org/10.1080/15427560701381028
    Reilly, F. K., Johnson, G. L., & Smith, R. E. (1970). Inflation, Inflation Hedges, and Common Stocks. In Source: Financial Analysts Journal (Vol. 26, Issue 1).
    Rodriguez, H., & Colombo, J. (2025). Is bitcoin an inflation hedge? Journal of Economics and Business, 133, 106218. https://doi.org/10.1016/j.jeconbus.2024.106218
    SAIYER SAEd ALJAED, B. (2024). THE IMPACTS OF BITCOIN ON THE FINANCIAL MARKET.
    Saleem, T., Yaqub, U., & Zaman, S. (2024). Twitter sentiment analysis and bitcoin price forecasting: implications for financial risk management. Journal of Risk Finance, 25(3), 407–421. https://doi.org/10.1108/JRF-09-2023-0241
    SCHAEFFER, K. (2024). Key facts about Americans and guns.
    Shah, K., Gerard, P., Luceri, L., & Ferrara, E. (2024). The 2024 Election Integrity Initiative Unfiltered Conversations: A Dataset of 2024 U.S. Presidential Election Discourse on Truth Social Unfiltered Conversations: A Dataset of 2024 U.S. Presidential Election Discourse on Truth Social. https://github.com/kashish-s/TruthSocial_2024ElectionInitiative
    Shahzad, S. J. H., Anas, M., & Bouri, E. (2022). Price explosiveness in cryptocurrencies and Elon Musk’s tweets. Finance Research Letters, 47. https://doi.org/10.1016/j.frl.2022.102695
    Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322–330. https://doi.org/10.1016/J.IRFA.2019.01.002
    Shiller, R. J. (2017). NARRATIVE ECONOMICS. http://cowles.yale.edu/
    Smith, V. L. (2003). Constructivist and Ecological Rationality in Economicst. American Economic Review. https://about.jstor.org/terms
    Suardi, S., Rasel, A. R., & Liu, B. (2022). On the predictive power of tweet sentiments and attention on bitcoin. International Review of Economics & Finance, 79, 289–301. https://doi.org/10.1016/J.IREF.2022.02.017
    Sy, T., Côté, S., & Saavedra, R. (2005). The contagious leader: Impact of the leader’s mood on the mood of group members, group affective tone, and group processes. Journal of Applied Psychology, 90(2), 295–305. https://doi.org/10.1037/0021-9010.90.2.295
    Teti, E., Dallocchio, M., & Aniasi, A. (2019). The relationship between twitter and stock prices. Evidence from the US technology industry. Technological Forecasting and Social Change, 149. https://doi.org/10.1016/j.techfore.2019.119747
    Törnberg, P. (2023). ChatGPT-4 Outperforms Experts and Crowd Workers in Annotating Political Twitter Messages with Zero-Shot Learning. http://arxiv.org/abs/2304.06588
    Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40–44. https://doi.org/10.1016/J.ECONLET.2018.02.017
    Wang, Z., Chu, Z., Doan, T. V., Ni, S., Yang, M., & Zhang, W. (2024). History, development, and principles of large language models: an introductory survey. AI and Ethics. https://doi.org/10.1007/s43681-024-00583-7
    Zhang, Y., Lukito, J., Suk, J., & McGrady, R. (2024). Trump, Twitter, and Truth Social: how Trump used both mainstream and alt-tech social media to drive news media attention. Journal of Information Technology and Politics. https://doi.org/10.1080/19331681.2024.2328156
    Description: 碩士
    國立政治大學
    應用經濟與社會發展英語碩士學位學程(IMES)
    112266019
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112266019
    Data Type: thesis
    Appears in Collections:[International Master`s Program of Applied Economics and Social Development] Theses

    Files in This Item:

    File SizeFormat
    601901.pdf2597KbAdobe PDF1View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback