English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117578/148609 (79%)
Visitors : 70202580      Online Users : 623
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158554


    Title: 人工智慧投資與組織資本對租稅規避的影響
    The Impact of Artificial Intelligence Investment and Organizational Capital on Corporate Tax Avoidance
    Authors: 陳立穎
    Chen, Li-Ying
    Contributors: 何怡澄
    郭振雄

    Ho, Yi-Cheng
    Kuo, Jenn-Shyong

    陳立穎
    Chen, Li-Ying
    Keywords: 租稅規避
    組織資本
    人工智慧投資
    Corporate tax avoidance
    Organizational capital
    Artificial intelligence investment
    Date: 2025
    Issue Date: 2025-08-04 14:22:25 (UTC+8)
    Abstract: 本研究探討AI投資(Artificial Intelligence Investment)與組織資本(Organizational Capital, OC)的交互作用對企業租稅規避行為的影響。組織資本反映企業內部文化與商業流程的價值,提升營運與生產效率。AI投資輔助處理大量數據與模擬預測,降低資訊處理成本。本文認為企業依賴組織資本達到租稅規避的目標,若同時投資於AI技術將可進一步提高租稅規避的效果。本研究以2010年至2018年美國上市公司為樣本,實證結果顯示AI投資增強組織資本與租稅規避的正向關係。敏感性分析以不同租稅規避指標、組織資本指標、加入其他控制變數與不同的有效稅率極端值處理方式進行,均與主要測試一致。另以兩階段工具變數法、Lewbel(2012)方法、熵平衡與傾向分數配對四種方法,處理內生性疑慮。此外,AI投資增強組織資本與租稅規避正向關係的效果,於高經理人能力、高研發支出與高內部資訊品質的企業,更為顯著。額外測試發現對於公司價值亦有正向影響。
    This study investigates the impact of the interaction between Artificial Intelligence (AI) investment and Organizational Capital (OC) on corporate tax avoidance. OC reflects a firm's internal culture and business processes, enhancing operational and production efficiency. AI investment facilitates data processing and predictive simulations, thereby reducing information processing costs. This paper argue that firms rely on OC to achieve tax avoidance objectives, and that concurrent investment in AI technology can further enhance this effect. Using a sample of U.S. publicly listed firms from 2010 to 2018, our empirical findings reveal that AI investment strengthens the positive relationship between OC and tax avoidance. This result remains robust under various sensitivity analyses and endogeneity checks. Moreover, the moderating effect of AI investment is more pronounced in firms with high managerial ability, high R&D expenditures, and high internal information quality. Finally, additional test shows positive effect on firm value. This study contributes to the literature on off-balance-sheet intangible assets and tax avoidance, and provides empirical evidence suggesting that firms should consider the potential tax implications of AI investment.
    Reference: Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293–S340.
    Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Artificial intelligence: The ambiguous labor market impact of automating prediction. Journal of Economic Perspectives, 33(2), 31–50.
    Argilés-Bosch, J. M., Somoza, A., Ravenda, D., & García-Blandón, J. (2020). An empirical examination of the influence of e-commerce on tax avoidance in Europe. Journal of International Accounting, Auditing and Taxation, 41, 100339.
    Armstrong, C. S., Blouin, J. L., & Larcker, D. F. (2012). The incentives for tax planning. Journal of Accounting and Economics, 53(1–2), 391–411.
    Attig, N., & Cleary, S. (2014). Organizational capital and investment-cash flow sensitivity: The effect of management quality practices. Financial Management, 43(3), 473–504.
    Austin, P. C. (2011). Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics, 10(2), 150–161.
    Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine, 34(28), 3661–3679.
    Ayers, B. C., Laplante, S. K., & McGuire, S. T. (2010). Credit ratings and taxes: The effect of book–tax differences on ratings changes. Contemporary Accounting Research, 27(2), 359–402.
    Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, and product innovation. Journal of Financial Economics, 101, 103745.
    Badertscher, B. A., Katz, S. P., & Rego, S. O. (2013). The separation of ownership and control and corporate tax avoidance. Journal of Accounting and Economics, 56(2-3), 228–250.
    Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17, 99–120.
    Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018, September). Notes from the AI Frontier: Modeling the Impact of AI on the World Economy. McKinsey Global Institute.
    Cen, L., Maydew, E. L., Zhang, L., & Zuo, L. (2017). Customer–supplier relationships and corporate tax avoidance. Journal of Financial Economics, 123(2), 377–394.
    Chen, S., Chen, X., Cheng, Q., & Shevlin, T. (2010). Are family firms more tax aggressive than non-family firms? Journal of Financial Economics, 95(1), 41–61.
    Chen, J. Z., Hong, H. A., Kim, J.-B. & Ryou, J. W. (2021). Information processing costs and corporate tax avoidance: Evidence from the SEC’s XBRL mandate, Journal of Accounting and Public Policy, 40(2), 106822.
    Chen, H., Zhang, M., Zeng, J., & Wang, W. (2024). Artificial intelligence and corporate risk-taking: Evidence from China. China Journal of Accounting Research, 17, 100372.
    Chen, J., Lim, C. P., Tan, K. H., Govindan, K., & Kumar, A. (2025). Artificial intelligence-based human-centric decision support framework: An application to predictive maintenance in asset management under pandemic environments. Annals of Operations Research, 350, 493–516.
    Christensen, D. M., Kenchington, D. G., & Laux, R. C. (2022). How do most low ETR firms avoid paying taxes? Review of Accounting Studies, 27, 570–606.
    Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.
    Corrado, C. A., Hulten, C. R., & Sichel, D. E. (2009). Intangible capital and U.S. economic growth. Review of Income and Wealth, 55(3), 661–685.
    Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
    Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970–3983.
    Demerjian, P., B. Lev, & S. McVay. (2012). Quantifying Managerial Ability: A New Measure and Validity Tests. Management Science, 58(7), 1229–1248.
    Desai, M. A., & Dharmapala, D. (2009). Earnings management, corporate tax shelters, and book–tax alignment. National Tax Journal, 62(1), 169–186.
    Dhaliwal, D. S., Huang, S. X., Moser, W. J., & Pereira, R. (2011). Corporate tax avoidance and the level and valuation of firm cash holdings. 2011 American Accounting Association Annual Meeting – Tax Concurrent Sessions, Available at SSRN: http://dx.doi.org/10.2139/ssrn.1905076
    Dyreng, S. D., Hanlon, M., & Maydew, E. L. (2008). Long-run corporate tax avoidance. The Accounting Review, 83(1), 61–82.
    Dyreng, S. D., Hanlon, M., & Maydew, E. L. (2010). The effects of executives on corporate tax avoidance. The Accounting Review, 85(4), 1163–1189.
    Dyreng, S. D., Hanlon, M., & Maydew, E. L. (2019). When does tax avoidance result in tax uncertainty? The Accounting Review, 94(2), 179–203.
    Dyreng, S. D., Hanlon, M., Maydew, E. L., & Thornock, J. R. (2017). Changes in corporate effective tax rates over the past 25 years. Journal of Financial Economics, 124(3), 441–463.
    Dyreng, S. D., Lindsey, B. P., & Thornock, J. R. (2013). Exploring the role Delaware plays as a domestic tax haven. Journal of Financial Economics, 108(3), 751–772.
    Eisfeldt, A. L., & Papanikolaou, D. (2013). Organization capital and the cross-section of expected returns. The Journal of Finance, 68(4), 1365–1406.
    Eisfeldt, A. L., Schubert, G., & Zhang, M. B. (2023). Generative AI and firm values (NBER working paper series No. 31222). Cambridge, MA: National Bureau of Economic Research.
    Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709–1734.
    Evenson, R. E., & Westphal, L. E. (1995). Technological change and technology strategy. In J. Behrman & T. N. Srinivasan (Eds.), Handbook of development economics (Vol. 3A, 2209–2299). Amsterdam, Netherlands: North-Holland.
    Francis, B., Mani, S. B., Sharma, Z., & Wu, Q. (2021). The impact of organization capital on firm innovation. Journal of Financial Stability, 53, 100829.
    Gallemore, J., & Labro, E. (2015). The importance of the internal information environment for tax avoidance. Journal of Accounting and Economics, 60(1), 149–167.
    Graham, J. R. (2003). Taxes and corporate finance: A review. The Review of Financial Studies, 16(4), 1075–1129.
    Graham, J. R., Hanlon, M., Shevlin, T. J., & Shroff, N. (2014). Incentives for tax planning and avoidance: Evidence from the field. The Accounting Review, 89(3), 991–1023.
    Gupta, S. & Newberry, K. (1997). Determinants of the variability in corporate effective tax rates: Evidence from longitudinal data. Journal of Accounting and Public Policy, 16(1), 1–34.
    Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1), 25–46.
    Han, H., Shiwakoti, R. K., Jarvis, R., Mordi, C., & Botchie, D. (2023). Accounting and auditing with blockchain technology and artificial intelligence: A literature review. International Journal of Accounting Information Systems, 48, 100598.
    Hanlon, M., & Heitzman, S. (2010). A review of tax research. Journal of Accounting and Economics, 50(2–3), 127–178.
    Hasan, M. M., & Cheung, A. W.-K. (2018). Organization capital and firm life cycle. Journal of Corporate Finance, 48, 556–578.
    Hasan, M. M., Lobo, G. J., & Qiu, B. (2021). Organizational capital, corporate tax avoidance, and firm value. Journal of Corporate Finance, 70, 102050.
    Heitzman, S., & Huang, M. (2019). Internal information quality and the sensitivity of investment to market prices and accounting profits. Contemporary Accounting Research, 36(3), 1699–1723.
    Huseynov, F., & Klamm, B. K. (2012). Tax avoidance, tax management and corporate social responsibility. Journal of Corporate Finance, 18(4), 804–827.
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human–AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586.
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.
    Kaplan, R. S., & Norton, D. P. (2004). The strategy map: Guide to aligning intangible assets. Strategy & Leadership, 32(5), 10–17.
    Kemp, A. (2024). Competitive advantage through artificial intelligence: Toward a theory of situated AI. Academy of Management Review, 49(3), 618–635.
    Koester, A., Shevlin, T., & Wangerin, D. (2017). The role of managerial ability in corporate tax avoidance. Management Science, 63(10), 3285–3310.
    Krupa, T., & Mullaney, M. (2025). The use of artificial intelligence in decision-making: Evidence from the effectiveness of corporate tax strategies. Working paper. Available at SSRN: https://doi.org/10.2139/ssrn.4710463
    Kubick, T. R., & Lockhart, G. B. (2017). Corporate tax aggressiveness and the maturity structure of debt. Advances in Accounting, 36, 50–57.
    Lanis, R., & Richardson, G. (2015). Is corporate social responsibility performance associated with tax avoidance? Journal of Business Ethics, 127(2), 439–457.
    Laplante, S. K., Skaife, H. A., Swenson, L. A., & Wangerin, D. D. (2019). Limits of tax regulation: Evidence from strategic R&D classification and the R&D tax credit. Journal of Accounting and Public Policy, 38(2), 89–105.
    Le, H., & Nguyen-Phung, H. T. (2024). Assessing the impact of environmental performance on corporate financial performance: A firm-level study of GHG emissions in Africa. Sustainable Production and Consumption, 47, 644–654.
    Lev, B., & Radhakrishnan, S. (2005). The valuation of organization capital. In C. Corrado, J. Haltiwanger, & D. Sichel (Eds.), Measuring capital in the new economy (pp. 73–110). University of Chicago Press.
    Lev, B., Radhakrishnan, S., & Zhang, W. (2009). Organization capital. Abacus, 45(3), 275–298.
    Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67–80.
    Li, K., Qiu, B., & Shen, R. (2018). Organization capital and mergers and acquisitions. Journal of Financial and Quantitative Analysis, 53(4), 1871-1909.
    Lui, A. K. H., Lee, M. C. M., & Ngai, E. W. T. (2022). Impact of artificial intelligence investment on firm value. Annals of Operations Research, 308(1), 373–388.
    Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60.
    Martín‐de‐Castro, G., Navas‐López, J. E., López‐Sáez, P., & Alama‐Salazar, E. (2006). Organizational capital as competitive advantage of the firm. Journal of Intellectual Capital, 7(3), 324–337.
    McGuire, S. T., Omer, T. C., & Wang, D. (2012). Tax avoidance: Does tax-specific industry expertise make a difference? The Accounting Review, 87(3), 975–1003.
    McMullin, J. L., & Schonberger, B. (2020). Entropy-balanced accruals. Review of Accounting Studies, 25(1), 84–119.
    Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and organizational performance: An integrative model of IT business value. MIS Quarterly, 28(2), 283–322.
    Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434.
    Minevich, M. (2020, March 3). 4 ways that you can prove ROI from AI. Forbes.
    Modgil, S., Gupta, S., Kar, A. K., & Tuunanen, T. (2025). How could generative AI support and add value to non-technology companies – A qualitative study. Technovation, 139, 103124.
    Neuman, S. S., Omer, T. C., & Schmidt, A. P. (2020). Assessing tax risk: Practitioner perspectives. Contemporary Accounting Research, 37(3), 1788–1827.
    Olsen, K., & Stekelberg, J. (2016). CEO narcissism and corporate tax sheltering. Journal of the American Taxation Association, 38(1), 1–22.
    Peters, R. H., & Taylor, L. A. (2017). Intangible capital and the investment–q relation. Journal of Financial Economics, 123(2), 251–272.
    Phillips, J. D. (2003). Corporate tax-planning effectiveness: The role of compensation-based incentives. The Accounting Review, 78(3), 847–874.
    Qu, G., & Jing, H. (2025). Is new technology always good? Artificial intelligence and corporate tax avoidance: Evidence from China. International Review of Economics & Finance, 98, 103949.
    Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 46(1), 192–210.
    Rego, S. O. (2003). Tax-avoidance activities of U.S. multinational corporations. Contemporary Accounting Research, 20(4), 805–833.
    Rego, S. O., & Wilson, R. (2012). Equity risk incentives and corporate tax aggressiveness. Journal of Accounting Research, 50(3), 775–810.
    Rupar, K., Wang, S., & Yoon, H. (2025). Do sell-side analysts react too pessimistically to bad news for minority-led firms? Evidence from target price valuations. Journal of Accounting and Economics, 79(1), 101707.
    Saragih, A. H., & Ali, S. (2022). The role of XBRL adoption on the association between managerial ability and corporate tax outcomes: Empirical evidence from Indonesia. Journal of Applied Accounting Research, 24(2), 217–234.
    Schwab, C. M., Stomberg, B., & Williams, B. M. (2022). Effective Tax Planning. The Accounting Review, 97(1), 413–437.
    Shipman, J. E., Swanquist, Q. T., & Whited, R. L. (2017). Propensity score matching in accounting research. The Accounting Review, 92(1), 213–244.
    Subramaniam, M., & Youndt, M. A. (2005). The influence of intellectual capital on the types of innovative capabilities. The Academy of Management Journal, 48(3), 450–463.
    Taylor, G., Richardson, G., & Lanis, R. (2015). Multinationality, tax havens, intangible assets, and transfer pricing aggressiveness: An empirical analysis. Journal of International Accounting Research, 14(1), 25–57.
    Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects, Business Process Management Journal, 26(7), 1893-1924.
    Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180.
    Xiang, J., Zhu, L., & Kong, D. (2023). Labor cost and corporate tax avoidance. Journal of Economic Behavior & Organization, 205, 338–358.
    Description: 碩士
    國立政治大學
    財政學系
    112255017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112255017
    Data Type: thesis
    Appears in Collections:[財政學系] 學位論文

    Files in This Item:

    File SizeFormat
    501701.pdf1115KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback