English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117629/148660 (79%)
Visitors : 71785016      Online Users : 502
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158680


    Title: 低劑量電腦斷層肺癌篩檢之書目計量及其視覺化分析
    Bibliometrics and Visual Analysis of Low-dose Computed Tomography Lung Cancer Screening
    Authors: 李聿芃
    Lee, Yu-Peng
    Contributors: 林巧敏
    Lin, Chiao-Min
    李聿芃
    Lee, Yu-Peng
    Keywords: 低劑量電腦斷層
    書目計量
    引用文獻分析法
    布萊德福定律
    布萊德福定律-齊夫定律
    洛卡定律
    Low-dose Computed Tomography(LDCT)
    Bibliometrics
    Citation Analysis
    Bradford’s Law
    Bradford-Zipf’s Law
    Lotka’s Law
    Date: 2025
    Issue Date: 2025-08-04 15:01:07 (UTC+8)
    Abstract: 本研究旨在應用書目計量學方法,探討低劑量電腦斷層肺癌篩檢的全球文獻資料。研究樣本選自Scopus引文索引資料庫,涵蓋1990年至2024年間的研究主題及其引用特性分布,並以視覺化方式呈現國家與研究機構間的網絡關係。同時,聚焦於文獻特性、期刊文獻的集中與分散特徵,以及作者生產力分布等面向,分析其在研究主題與學術群聚中的影響力,以揭示低劑量電腦斷層肺癌篩檢研究領域的現況與發展趨勢。
    研究結果歸納如下:(1)低劑量電腦斷層肺癌篩檢文獻累積成長曲線,整體趨勢接近指數型穩定增長。(2)低劑量電腦斷層肺癌篩檢研究產出所使用的語文多達21種,而英語佔總文獻數的90.73%。(3)低劑量電腦斷層肺癌篩檢相關研究涵蓋78個國家,以美國佔比最高,佔35%。(4)低劑量電腦斷層肺癌篩檢相關研究的產出機構分布顯示,在全球排名前50的機構中,美國佔有29所,充分展現在該領域的高度研究活躍度與領先地位。(5)低劑量電腦斷層肺癌篩檢文獻類型分布,期刊文獻與評述論文共佔 84.52%,為最主要的學術傳播形式,顯示醫學領域研究者主要透過正式期刊發表研究成果。(6)低劑量電腦斷層肺癌篩檢文獻其增長趨勢,不符合布萊德福定律,但仍有五種核心期刊,且大多被列入高被引期刊。(7)利用高生產力期刊與高被引期刊相互驗證布萊德福分區法所界定的核心期刊,發現核心期刊品質值得信任。(8)低劑量電腦斷層肺癌篩檢文獻發表數與作者人數成反比,合著情形普遍。(9)以洛卡定律最小平方法求得n值為-1.6421 ,進一步利用Kolmogorov-Smirnov 檢定法進行驗證,研究結果證明洛卡定律不適用於本研究採平等法統計之低劑量電腦斷層肺癌篩檢期刊文獻的作者分布。(10)依據作者關鍵字進行共現詞分析,其群組鏈結與詞頻共現總數,計有72個詞彙,9個群組,其主題網絡圖清晰呈現關鍵詞間的親疏關係,藉以揭示低劑量電腦斷層肺癌篩檢領域的研究熱點與前沿發展趨勢。
    This study explores bibliometric methods to investigate global literature on low-dose computed tomography (LDCT) lung cancer screening. The research sample is drawn from the Scopus citation index database, covering research themes and their citation characteristics from 1990 to 2024, with network relationships between countries and research institutions visualized. Additionally, the study focuses on analyzing literature characteristics, the concentration and dispersion patterns of journal articles, and author productivity distribution, examining their impact on research themes and academic clusters to reveal the current state and development trends in the field of LDCT lung cancer screening research. The findings are expected to provide insights for medical libraries to integrate knowledge mapping and information visualization analysis services, thereby meeting clinical teaching needs and advancing the overall development of medical research.

    The results summarize as follows:
    1.The cumulative growth curve of LDCT lung cancer screening literature exhibits a near-exponential stable growth trend.
    2.The literature is published in 21 languages, with English accounting for 90.73% of the total publications.
    3.LDCT lung cancer screening research spans 78 countries, with the United States leading at 35%, demonstrating its dominant position in the field.
    4.The distribution of institutions contributing to research on low-dose CT lung cancer screening reveals that, among the top 50 institutions worldwide, the United States accounts for 29, demonstrating its high research activity and leading position in this field.
    5.Journal articles and review papers constitute 84.52% of the literature, representing the primary forms of academic communication and highlighting the preference for publishing original research in formal journals.
    6.The growth trend of LDCT lung cancer screening literature does not conform to Bradford’s Law, yet five core journals are identified, most of which are highly cited.
    7.Cross-validation of high-productivity and high-citation journals confirms the reliability of core journals defined by Bradford’s zoning method.
    8.The number of publications is inversely proportional to the number of authors, with co-authorship being prevalent.
    9.Using the least squares method, the n value for Lotka's Law was calculated as -1.6421. Further validation with the Kolmogorov-Smirnov test confirmed that Lotka's Law is not applicable to the author distribution of journal literature on low-dose CT lung cancer screening analyzed in this study using equal-weight statistical methods.
    10.Based on the co-occurrence analysis of author keywords, encompassing group linkages and total word frequency co-occurrences, 72 keywords across 9 clusters were identified. The resulting thematic network map clearly delineates the relationships among keywords, thereby revealing research hotspots and emerging trends in the field of low-dose computed tomography (LDCT) lung cancer screening.
    Reference: 一、西文
    Abu-Salih, B. (2021). Domain-specific knowledge graphs:A survey. Journal of Network and Computer Applications,185,103076.
    Aggarwal, A., Lewison, G., Idir, S., Peters, M., Aldige, C., Boerckel, W., Boyle, P., Trimble, E. L., Roe, P., Sethi, T., Fox, J., & Sullivan, R. (2016). The State of Lung Cancer Research: A Global Analysis. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer, 11(7), 1040–1050. https://doi.org/10.1016/j.jtho.2016.03.010
    American Cancer Society (2024, January). Types of lung cancer. American Cancer Society. https://www.cancer.org/cancer/lung-cancer/about/what-is.html
    Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA: A Cancer Journal for Clinicians, 67(2), 93-99. https://doi.org/10.3322/caac.21388
    Andrés,A.(2009). Measuring Academic Research. Oxford : Chandos Publishing.
    Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science. Annual Review of Information Science and Technology, 41, 537-607.
    Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85-86.
    Cassidy, A., Balsan, J., Vesin, A., Wu, X., Liloglou, T., Brambilla, C., Timsit, J. F., Field, J. K., & EUELC Consortium (2009). Cancer diagnosis in first-degree relatives and non-small cell lung cancer risk: results from a multi-centre case-control study in Europe. European journal of cancer (Oxford, England : 1990),45(17), 3047–3053. https://doi.org/10.1016/j.ejca.2009.05.006
    Fang, H., Dong, T., Li, S., Zhang, Y., Han, Z., Liu, M., Dong, W., Hong, Z., Fu, M., & Zhang, H. (2023). A Bibliometric Analysis of Comorbidity of COPD and Lung Cancer: Research Status and Future Directions.International journal of chronic obstructive pulmonary disease,18, 3049–3065. https://doi.org/10.2147/COPD.S425735
    Friendly, M. (2005). Milestones in the History of Data Visualization: A Case Study in Statistical Historiography. In: Weihs C., Gaul W. (eds) Classification–the Ubiquitous Challenge. Berlin, Heidelberg: Springer Berlin Heidelberg.
    Gandini, S., Botteri, E., Iodice, S., Boniol, M., Lowenfels, A. B., Maisonneuve, P., & Boyle, P. (2008). Tobacco smoking and cancer: a meta-analysis.International journal of cancer,122(1), 155–164. https://doi.org/10.1002/ijc.23033
    Gencer A. (2024). Bibliometric analysis and research trends of artificial intelligence in lung cancer.Heliyon,10(2), e24665. https://doi.org/10.1016/j.heliyon.2024.e24665
    Gu, Z., Wu, L., Li, J., Liu, B., Huang, M., & Zheng, S. (2024). Bibliometric and visual analysis of photodynamic therapy for lung cancer from 2010 to 2022.Translational cancer research,13(2), 738–751. https://doi.org/10.21037/tcr-23-1238
    Hallinger, P., & Bryant, D. A. (2013). Review of research publications on educational leadership and management in Asia: a comparative analysis of three regions. Oxford Review of Education, 39(3), 307-328.
    Hausman D. M. (2019). What Is Cancer? Perspectives in biology and medicine,62(4), 778–784.
    Henschke, C. I., Yip, R., Shaham, D., Markowitz, S., Cervera Deval, J., Zulueta, J. J., Seijo, L. M., Aylesworth, C., Klingler, K., Andaz, S., Chin, C., Smith, J. P., Taioli, E., Altorki, N., Flores, R. M., Yankelevitz, D. F., & International Early Lung Cancer Action Program Investigators (2023). A 20-year Follow-up of the International Early Lung Cancer Action Program (I-ELCAP). Radiology, 309(2), e231988. https://doi.org/10.1148/radiol.231988
    Ikpaahindi, L. (1985). An overview of bibliometrics: its measurements, laws and their applications. Libri, 35, 163-177.
    Ke, S. P., Chen, S. M., Jiang, Y., Gong, H. X., Yu, J. L., Li, X., Chen, Y. Y., Li, X. H., Wang, Q. X., & Liu, Y. Z. (2023). Bibliometric and visualized analysis of applying tumor markers in lung cancer diagnosis from 2000 to 2022.Cancer innovation,2(4), 265–282. https://doi.org/10.1002/cai2.74
    Kelleher, C., Wagener, T. (2011) Ten guidelines for effective data visualization in scientific publications. Environ Model Softw.26(6), 822–827. https://doi.org/10.1016/j.envsoft.2010.12.006
    Lawani, S. M. (1981). Bibliometrics: its theoretical foundations, methods and applications. Libri, 31(1), 294-315.
    Lotka,A.J.(1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences,16,317–323.
    Mount Sinai Health System. (2025,May). Lung cancer screening. https://www.mountsinai.org/care/radiology/services/lung-screening
    Narin, F., Olivastro, D., & Stevens, K. A. (1994). Bibliometrics Theory, Practice and Problems. Evaluation Review, 18(1), 65-76.
    National Library of Medicine. (2024,June). MeSH (Medical Subject Headings) is the NLM controlled vocabulary thesaurus used for indexing articles for PubMed. https://www.ncbi.nlm.nih.gov/mesh/
    Nazemi, K., Burkhardt, D., Ginters, E., & Kohlhammer, J. (2015). Semantics visualization– definition, approaches and challenges. Procedia Computer Science, 75, 75-83.
    Pallis, A. G., & Syrigos, K. N. (2013). Lung cancer in never smokers: disease characteristics and risk factors. Critical reviews in oncology/hematology, 88(3), 494–503.
    Parsons, A., Daley, A., Begh, R., & Aveyard, P. (2010). Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ (Clinical research ed.), 340, b5569. https://doi.org/10.1136/bmj.b5569
    Peto, R., Darby, S., Deo, H., Silcocks, P., Whitley, E., & Doll, R. (2000). Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ (Clinical research ed.), 321(7257), 323–329. https://doi.org/10.1136/bmj.321.7257.323
    Pope, C. A., 3rd, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141. https://doi.org/10.1001/jama.287.9.1132
    Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348-349.
    Samanci, N. S., & Celik, E. (2020). The top 100 cited articles in lung cancer - a bibliometric analysis. Contemporary oncology (Poznan, Poland), 24(1), 17–28. https://doi.org/10.5114/wo.2020.94725
    Scopus(2024a). Scopus data. https://www.elsevier.com/zh-tw/products/scopus
    Scopus(2024b). Scopus AI Release: May2024.https://blog.scopus.com/posts/scopus-ai-release-may-2024
    Shneiderman, B. (1996). The eyes have it︰A task by data type taxonomy for information visualizations. IEEE Symposium on Visual Languages,336–343.
    https://doi: 10.1109/VL.1996.545307.
    Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17-48. https://doi.org/10.3322/caac.21763
    Smith,L.C.(1981).Citation analysis.Library Trends,30,94-97.
    Sorapure, M. (2019).Text, Image, Data, Interaction: Understanding Information Visualization. Computers and Composition, 54, 102519.
    https://doi.org/10.1016/j.compcom.2019.102519
    Van Eck, N. J. V., & Waltman, L. (2007). VOS: A new method for visualizing similarities between objects. In Advances in data analysis (pp. 299-306). Springer, Berlin, Heidelberg.
    Wang, K., Zhang, H., Li, X., Ding, Y., Li, J., Wang, Z., Liu, X., Sun, S., & Sun, D. (2022). Bibliometric analysis of global research trends on small-cell lung cancer (2012-2021). Frontiers in oncology, 12, 955259. https://doi.org/10.3389/fonc.2022.955259
    World Health Organization. (2024, February). Global cancer statistics 2022. https://gco.iarc.who.int/today/en/dataviz
    Xu, L., Wang, P., Zhang, Y., Wang, M., Li, Y., & Dang, W. (2022). Study on Chronic Obstructive Pulmonary Disease and Lung Cancer: Web of Science-Based Bibliometric and Visual Analysis. International journal of general medicine, 15, 7523–7534. https://doi.org/10.2147/IJGM.S370781
    Xu, Z., Gao, X., Ren, B., Zhang, S., & Xu, L. (2021). A bibliometric analysis of segmentectomy versus lobectomy for non-small cell lung cancer research (1992-2019). Medicine, 100(13), e25055. https://doi.org/10.1097/MD.0000000000025055
    Yang, Q., Zhai, X., & Lv, Y. (2022). A Bibliometric Analysis of Triptolide and the Recent Advances in Treating Non-Small Cell Lung Cancer. Frontiers in pharmacology,13, 878726. https://doi.org/10.3389/fphar.2022.878726
    Yavuz, H., Tekneci, A. K., Ozdil, A., & Cagirici, U. (2023). Bibliometric analysis of 40 most cited articles comparing video-assisted thoracic surgery and robotic-assisted thoracic surgery in lung cancer (1997-2021). Heliyon, 9(10), e20765. https://doi.org/10.1016/j.heliyon.2023.e20765
    Zare, A., Izanloo, S., Khaledi, S., Maratovich, M. N., Kaliyev, A. A., Abenova, N. A., Rahmanifar, F., Mahdipour, M., Bakhshalizadeh, S., Shirazi, R., Tanideh, N., & Tamadon, A. (2023). A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Marine drugs, 21(5), 283. https://doi.org/10.3390/md21050283
    Zhang, J., Zhao, T., Xu, C., Huang, J., & Yu, H. (2017). Genetic susceptibility of lung cancer in Chinese population: An overview of systematic reviews and meta-analyses. Journal of evidence-based medicine, 10(3), 207–211. https://doi.org/10.1111/jebm.12269
    Zhong, W., Zhao, X., Zhang, X., Xu, Y., Liu, M., Yang, X., Jiang, Y., & Shen, X. (2024). Advancements and trends in exosome research in lung cancer from a bibliometric analysis (2004-2023). Frontiers in oncology, 14, 1358101. https://doi.org/10.3389/fonc.2024.1358101
    Zhou, H., Mao, Y., & Zhou, Z. (2024). Charting the course of ferroptosis research in lung cancer: Insights from a bibliometric analysis. Heliyon, 10(2), e24810. https://doi.org/10.1016/j.heliyon.2024.e24810

    二、中文
    王石番(1989)。傳播內容分析法。臺北市:幼獅。
    江信昱(2021)。觀察數據世界的二種視角:探索性vs視覺化。國立成功大學圖書館館刊,30,39-61。
    何光國(1994)。文獻計量學導論。臺北市:三民。
    余忠仁等(2023)。完全解析肺癌診治照全書。臺北市:原水文化。
    李廣建、江信昱(2018)。論計算型情報分析 。中國圖書館學報,44(2),4-16。
    姜超、高晨暉(2016)。視覺化產品設計概要在設計構思中的效用研究。設計學研究,19(2),27-48。
    健康世界編輯部(2024)。補助肺癌篩檢救了900多個家庭。健康世界,565,17-18。
    國家發展委員會人力發展處(2020)。中華民國人口推估(2020至2070年)。臺灣經濟論衡,18(3),56-61。
    陳晉興、梁惠雯(2022)。肺癌的預防與治療:全面贏戰臺灣新國病。臺北市:天下文化。
    陳漎銨、鄭博仁、張曉婷、陳育群、林明慧(2023)。肺癌篩檢的新進展。台北市醫師公會會刊,67(1),36-43。
    陳聰富、蔡甫昌(2017)。大數據應用於醫學研究之法律議題。臺灣醫學,21(1),34-42。
    黃慕萱(2014)。大數據分析下的資訊計量學:以世界大學排名系統為例。 臺大校友雙月刊,97,18-20。
    蔡明月(1998)。布萊德福定律=Bradford's Law。資訊傳播與圖書館學,5(2),25-49。
    蔡明月(1999)。學術傳播與書目計量學。教育資料與圖書館學,35(1),38-57。
    蔡明月(2001)。引用文獻分析與引用動機研究。教育資料與圖書館學,38(4), 385-406。
    蔡明月(2003)。資訊計量學與文獻特性。臺北市:國立編譯館。
    蔡明月、邱琦茹(2014)。臺灣人文學文獻引用類型分析研究。教育資料與圖書館學,51(3),337-364。https://doi.org/10.6120/JoEMLS.2014.513/0594.RS.AM
    衛生福利部國民健康署 (2024年2月29日)。肺癌早期偵測計畫。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=46190
    衛生福利部統計處(2025年6月17日)。113年國人死因統計結果。https://www.mohw.gov.tw/cp-16-82775-1.html
    鄭高珍(2018)。肺癌診斷與治療之新進展-導論。內科學誌,29(3),136。https://doi.org/10.6314/JIMT.201806_29(3).02
    蕭聖諺(2024)。早期肺癌篩檢不怕癌症來煩。奇美醫訊,145,29-30。
    謝傳崇、徐晨皓(2022)。VOSviewer的發展及其在教育研究上之應用。學校行政,141,149-166。https://doi.org/10.6423/HHHC.202209_(141).0007
    羅思嘉(2001)。引用文獻分析與學術傳播研究。中國圖書館學會會報,66,73-85。
    蘇有、劉仁筑(2019)。網路資料視覺化研究。中華印刷科技年報,108(6),215-234。
    Description: 碩士
    國立政治大學
    圖書資訊學數位碩士在職專班
    112913004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112913004
    Data Type: thesis
    Appears in Collections:[圖書資訊學數位碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    300401.pdf3211KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback