English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69763857      線上人數 : 106
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/158711
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158711


    題名: 利用結構樹狀幾何進行基於衛星影像時間序列的作物分類
    Classification via structural tree-geometry upon crop-classes of satellite image time series
    作者: 林兆鵬
    Lin, Jhao-Peng
    貢獻者: 周珮婷
    謝復興

    林兆鵬
    Lin, Jhao-Peng
    關鍵詞: 時間序列分類
    樹狀幾何結構
    階層式分群
    多尺度分類
    衛星影像
    相互資訊
    Time-series classification
    Tree geometry
    Hierarchical clustering
    Multiscale classification
    Satellite imagery
    Mutual information
    日期: 2025
    上傳時間: 2025-08-04 15:10:57 (UTC+8)
    摘要: 對眾多時間序列片段進行分類是一項在計算上與概念上都極具挑戰性的任務。類別間未知的相似程度會降低分類準確率,而對時間序列本質的認知不足,則使得我們無從判斷關鍵時間區段。由福爾摩沙二號衛星影像衍生出的「作物時間序列資料集」,包含 24 類衛星影像產生的時間序列,每條序列在時間軸上共有 46 個觀測點,同時呈現了上述兩個分類上的挑戰。為了解決這些問題,我們針對這 24 個作物類別構建一種樹狀幾何結構,以利於利用不同分支(或稱「屬」)間在訊號與雜訊比上的差異性,並將同一屬內的分類簡化為較小的子任務。本研究提出並實作了一種多尺度的屬間分類方法。該方法首先根據時間軸上,一階與二階差分的連續關聯性所選出的特徵片段定義距離,並據此對時間序列進行階層式分群,以捕捉時間序列的功能性模式。分類流是依據階層式分群樹的內部節點進行分支,當通過其可靠性檢驗時便進一步細分。對於每一次屬間分類,皆建立一張熱圖以呈現分類效果,同時也會展示一組不涉入該分類的屬所對應的熱圖,以揭示潛在的離群資訊。透過此方式即構建出一個多尺度的分類流程。
    It is a computational and conceptual challenge when making classifications among many classes of time-series segments. Unknown degrees of similarity among classes drive the classification accuracy low, while lacking knowledge underlying time series causes not knowing where important temporal regions are and where they are not. The Crop time series data set derived from Formosa-2 satellite images with 24 classes of satellite-image-induced time series on an axis of 46 temporal-points simultaneously presents these two challenging aspects onto the classification task. To resolve this task, a tree-geometry is computed upon the 24 crop-classes to facilitate exploitation of differential signal-to-noise (S-N) ratios across all between-branch (or genus) classifications and reduce all within-genus classifications into minor tasks. A multiscale between-genus classification methodology is proposed and implemented by first constructing a Hierarchical clustering (HC) tree on time series with a distance defined by motifs selected according to serial 1st- and 2nd-order difference-based associations along the temporal axis to capture the time series' functional patterns. The classification proceeds by splitting branches at internal nodes of HC-tree whenever passing its reliability check. Via a heatmap built for each between-genus classification, its classification efficiency is manifested and simultaneously a collection of non-involving genus-based heatmaps is shown to shed light on outlier information. As such a multiscale classification protocol is built.
    參考文獻: Anderson, P. W. (1972). More is different: Broken symmetry and the nature of the hierarchical structure of science. Science, 177(4047), 393–396.
    Antonijević, O., Jelić, S., Bajat, B., & Kilibarda, M. (2023). Transfer learning approach based on satellite image time series for the crop classification problem. Journal of Big Data, 10(1), 54.
    Avcı, M. (2000). A hierarchical classification of landsat tm imagery for land cover mapping (Unpublished master’s thesis). Middle East Technical University.
    Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object based time-weighted dynamic time warping analysis. Remote sensing of environment, 204, 509–523.
    Buza, K.,&Schmidt-Thieme, L. (2010). Motif-basedclassification of time series with bayesian networks and svms. In Advances in data analysis, data handling and business intelligence: Proceedings of the 32nd annual conference of the gesellschaft für klassifikation ev, joint conference with the british classification society (bcs) and the dutch/flemish classification society (voc), helmut-schmidt-university, hamburg, july 16-18, 2008 (pp. 105–114).
    Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
    Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., … Hexagon-ML (2018, October). The ucr time series classification archive. (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/)
    Del Moral, P., Nowaczyk, S., Sant’Anna, A., & Pashami, S. (2023). Pitfalls of assessing extracted hierarchies for multi-class classification. Pattern Recognition, 136, 109225.
    Fushing, H., Chou, E. P., & Chen, T.-L. (2023). Multiscale major factor selections for complex system data with structural dependency and heterogeneity. Physica A: Statistical Mechanics and its Applications, 630, 129227.
    Fushing, H., Kao, H.-W., & Chou, E. P. (2024). Topological risk-landscape in metric-free categorical database. IEEE Access.
    Gell-Mann, M. (2002). What is complexity? In A. Q. Curzio & M. Fortis (Eds.), Complexity and industrial clusters (pp. 13–24). Heidelberg: Physica-Verlag HD.
    Largouët, C., & Cordier, M.-O. (2001). Improving the landcover classification using domain knowledge. AI Communications, 14(1), 35–43.
    Nidamanuri, R. R., & Zbell, B. (2012). Existence of characteristic spectral signatures for agri
    cultural crops–potential for automated crop mapping by hyperspectral imaging. Geocarto International, 27(2), 103–118.
    Pal, M. (2005). Randomforestclassifier for remotesensing classification. International journal of remote sensing, 26(1), 217–222.
    Pelletier, C., Webb, G. I., & Petitjean, F. (2019). Temporal convolutional neural network for the classification of satellite image time series. Remote Sensing, 11(5), 523.
    Petitjean, F., Inglada, J., & Gançarski, P. (2012). Satellite image time series analysis under time warping. IEEE transactions on geoscience and remote sensing, 50(8), 3081–3095.
    Radoi, A. (2022). Multimodal satellite image time series analysis using gan-based domain translation and matrix profile. Remote Sensing, 14(15), 3734.
    Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat, F. (2019). Deep learning and process understanding for data-driven earth system science. Nature, 566(7743), 195–204.
    Rußwurm, M., & Körner, M. (2018). Multi-temporal land cover classification with sequential recurrent encoders. ISPRS International Journal of Geo-Information, 7(4), 129.
    Shiu, S.-Y., Chin, Y.-S., Lin, S.-H., & Chen, T.-L. (2024). Randomized self-updating process for clustering large-scale data. Statistics and Computing, 34(1), 47.
    Sneath, P. H. (2005). Numerical taxonomy. In Bergey’s manual® of systematic bacteriology (pp. 39–42). Springer.
    Tan, C. W., Webb, G. I., & Petitjean, F. (2017). Indexing and classifying gigabytes of time series under time warping. In Proceedings of the 2017 siam international conference on data mining (pp. 282–290).
    Tumer, K., & Wolpert, D. H. (2004). Collectives and the design of complex systems. Springer Science & Business Media.
    Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., … others (2023). Challenges and opportunities in remote sensing-based crop monitoring: A review. National Science Review, 10(4), nwac290.
    Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., … Dickinson, R. (2013). The role of satellite remote sensing in climate change studies. Nature climate change, 3(10), 875–883.
    Zhang, T., Cheng, C., & Wu, X. (2023). Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Scientific Data, 10(1), 748.
    Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An overview of the applications of earth observation satellite data: impacts and future trends. Remote Sensing, 14(8), 1863.
    Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE geo-science and remote sensing magazine, 5(4), 8–36.
    描述: 碩士
    國立政治大學
    統計學系
    112354001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112354001
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    400101.pdf30436KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋