English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69763546      線上人數 : 104
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/158712
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158712


    題名: 基於貝氏技能更新與深度神經交互模型的體育分析
    Sports Analytics with Bayesian Skill Updates and Deep Neural Interaction Models
    作者: 李永濬
    Li, Yong-Jun
    貢獻者: 翁久幸
    Weng, Chiu-Hsing
    李永濬
    Li, Yong-Jun
    關鍵詞: 深度學習
    貝式定理
    神經網路
    非遞移性
    對決預測
    Deep learning
    Bayes' theorem
    Neural network models
    Intransitivity
    Matchup prediction
    日期: 2025
    上傳時間: 2025-08-04 15:11:09 (UTC+8)
    摘要: 本研究提出一套專為體育對決預測任務設計的深度學習架構,結合貝式技能更新機制、特徵交互建模與時序特徵處理,有效強化模型對選手能力動態變化與非遞移性效應的表徵能力。核心方法包括貝氏後驗更新以追蹤選手能力浮動與不確定性,特徵交互網路結合指數移動平均(EMA)特徵,以捕捉非遞移性效應並強化模型對當下賽局的判斷能力。
    為進一步提高模型的穩健性與泛化能力(generalization ability),本研究採用預訓練凍結骨幹網路(frozen backbone)策略,以獲取穩定表徵後進行整合層微調,降低對特定模組的依賴。實驗結果顯示,所提方法在多項體育競技對決資料集上顯著優於傳統對決模型,展現了貝式推論與深度神經網路在體育對決預測上的整合潛力。
    This study proposes a deep learning framework specifically designed for sports matchup prediction tasks. The framework integrates Bayesian skill updating, feature interaction modeling, and temporal feature processing to improve the model’s capacity to capture dynamic variations in athlete performance and intransitivity effects. Methods include Bayesian posterior updates to capture fluctuations and uncertainty in player states, and a feature interaction network augmented with exponential moving average (EMA) features to capture intransitivity effects while enhancing the model’s judgment in current matchups.
    To further improve model robustness and generalization ability, we adopt a frozen backbone training strategy. This allows stable representation learning before fine-tuning the integration layers, thereby reducing dependency on specific components. Experimental results demonstrate that the proposed method significantly outperforms traditional matchup models across multiple sports datasets, highlighting the integration potential of Bayesian inference and deep neural networks in sports prediction tasks.
    參考文獻: Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32nd International Conference on Machine Learning, pages 1613–1622. PMLR.
    Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345.
    Chen, S. and Joachims, T. (2016a). Modeling intransitivity in matchup and comparison data. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 227–236.
    Chen, S. and Joachims, T. (2016b). Predicting matchups and preferences in context. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 775–784.
    Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings.
    Graves, A. (2011). Practical variational inference for neural networks. Advances in neural information processing systems, 24.
    Gu, Y., Liu, Q., Zhang, K., Huang, Z., Wu, R., and Tao, J. (2021). Neuralac: Learning cooperation and competition effects for match outcome prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4072–4080.
    Herbrich, R., Minka, T., and Graepel, T. (2006). Trueskill™: a bayesian skill rating system. Advances in neural information processing systems, 19.
    Li, M., Wu, J., Wang, X., Chen, C., Qin, J., Xiao, X., Wang, R., Zheng, M., and Pan, X. (2023). Aligndet: Aligning pre-training and fine-tuning in object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6866–6876.
    Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv
    preprint arXiv:1711.05101.
    Lowe, Z. (2017). Why the lebron-kyrie pick-and-roll is the deadliest weapon in the nba.
    Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703.
    Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.
    Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference.
    描述: 碩士
    國立政治大學
    統計學系
    112354018
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112354018
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    401801.pdf2023KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋