English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118940/150005 (79%)
Visitors : 83980403      Online Users : 1461
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/158712
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158712


    Title: 基於貝氏技能更新與深度神經交互模型的體育分析
    Sports Analytics with Bayesian Skill Updates and Deep Neural Interaction Models
    Authors: 李永濬
    Li, Yong-Jun
    Contributors: 翁久幸
    Weng, Chiu-Hsing
    李永濬
    Li, Yong-Jun
    Keywords: 深度學習
    貝式定理
    神經網路
    非遞移性
    對決預測
    Deep learning
    Bayes' theorem
    Neural network models
    Intransitivity
    Matchup prediction
    Date: 2025
    Issue Date: 2025-08-04 15:11:09 (UTC+8)
    Abstract: 本研究提出一套專為體育對決預測任務設計的深度學習架構,結合貝式技能更新機制、特徵交互建模與時序特徵處理,有效強化模型對選手能力動態變化與非遞移性效應的表徵能力。核心方法包括貝氏後驗更新以追蹤選手能力浮動與不確定性,特徵交互網路結合指數移動平均(EMA)特徵,以捕捉非遞移性效應並強化模型對當下賽局的判斷能力。
    為進一步提高模型的穩健性與泛化能力(generalization ability),本研究採用預訓練凍結骨幹網路(frozen backbone)策略,以獲取穩定表徵後進行整合層微調,降低對特定模組的依賴。實驗結果顯示,所提方法在多項體育競技對決資料集上顯著優於傳統對決模型,展現了貝式推論與深度神經網路在體育對決預測上的整合潛力。
    This study proposes a deep learning framework specifically designed for sports matchup prediction tasks. The framework integrates Bayesian skill updating, feature interaction modeling, and temporal feature processing to improve the model’s capacity to capture dynamic variations in athlete performance and intransitivity effects. Methods include Bayesian posterior updates to capture fluctuations and uncertainty in player states, and a feature interaction network augmented with exponential moving average (EMA) features to capture intransitivity effects while enhancing the model’s judgment in current matchups.
    To further improve model robustness and generalization ability, we adopt a frozen backbone training strategy. This allows stable representation learning before fine-tuning the integration layers, thereby reducing dependency on specific components. Experimental results demonstrate that the proposed method significantly outperforms traditional matchup models across multiple sports datasets, highlighting the integration potential of Bayesian inference and deep neural networks in sports prediction tasks.
    Reference: Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32nd International Conference on Machine Learning, pages 1613–1622. PMLR.
    Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345.
    Chen, S. and Joachims, T. (2016a). Modeling intransitivity in matchup and comparison data. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 227–236.
    Chen, S. and Joachims, T. (2016b). Predicting matchups and preferences in context. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 775–784.
    Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings.
    Graves, A. (2011). Practical variational inference for neural networks. Advances in neural information processing systems, 24.
    Gu, Y., Liu, Q., Zhang, K., Huang, Z., Wu, R., and Tao, J. (2021). Neuralac: Learning cooperation and competition effects for match outcome prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4072–4080.
    Herbrich, R., Minka, T., and Graepel, T. (2006). Trueskill™: a bayesian skill rating system. Advances in neural information processing systems, 19.
    Li, M., Wu, J., Wang, X., Chen, C., Qin, J., Xiao, X., Wang, R., Zheng, M., and Pan, X. (2023). Aligndet: Aligning pre-training and fine-tuning in object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6866–6876.
    Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv
    preprint arXiv:1711.05101.
    Lowe, Z. (2017). Why the lebron-kyrie pick-and-roll is the deadliest weapon in the nba.
    Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703.
    Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.
    Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference.
    Description: 碩士
    國立政治大學
    統計學系
    112354018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112354018
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401801.pdf2023KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback