參考文獻: | Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32nd International Conference on Machine Learning, pages 1613–1622. PMLR. Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345. Chen, S. and Joachims, T. (2016a). Modeling intransitivity in matchup and comparison data. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 227–236. Chen, S. and Joachims, T. (2016b). Predicting matchups and preferences in context. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 775–784. Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings. Graves, A. (2011). Practical variational inference for neural networks. Advances in neural information processing systems, 24. Gu, Y., Liu, Q., Zhang, K., Huang, Z., Wu, R., and Tao, J. (2021). Neuralac: Learning cooperation and competition effects for match outcome prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4072–4080. Herbrich, R., Minka, T., and Graepel, T. (2006). Trueskill™: a bayesian skill rating system. Advances in neural information processing systems, 19. Li, M., Wu, J., Wang, X., Chen, C., Qin, J., Xiao, X., Wang, R., Zheng, M., and Pan, X. (2023). Aligndet: Aligning pre-training and fine-tuning in object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6866–6876. Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. Lowe, Z. (2017). Why the lebron-kyrie pick-and-roll is the deadliest weapon in the nba. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703. Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671. Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference. |