English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117581/148612 (79%)
Visitors : 69524892      Online Users : 184
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/158715
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158715


    Title: 模型具內生性之工具變數選擇:ETF持有比率對股票波動性與流動性的影響
    Instrumental Variable Selection under Endogeneity: The Impact of ETF Ownership on Stock Volatility and Liquidity
    Authors: 林慈恩
    Lin, Tzu-En
    Contributors: 鄭宗記
    Cheng, Tsung-Chi
    林慈恩
    Lin, Tzu-En
    Keywords: 指數股票型基金
    波動性
    流動性
    內生性
    工具變數選取
    二階段最小平方法
    ETF
    Stock Volatility
    Market Liquidity
    Instrumental Variable Selection
    Endogeneity
    Two-Stage Least Squares
    Date: 2025
    Issue Date: 2025-08-04 15:11:46 (UTC+8)
    Abstract: 本研究利用2014年至2024年臺灣上市公司之季度縱向數據,探討ETF持有比率對個股波動性與流動性的因果影響,並聚焦於內生性問題下有效工具變數的選取方法。為解決潛在內生性問題,本文採用二階段最小平方法,並輔以F檢定、Sargan過度識別檢定,以及Windmeijer等人(2021)所提出的信賴區間法,以評估並篩選最具效力的工具變數組合。實證結果顯示,ETF持有顯著影響部分波動性指標,並顯著降低個股的流動性與交易活躍度。本文不僅提供ETF持有對市場微觀結構的影響,也提出一套系統性的工具變數選擇架構,對處理內生性問題的實證研究具參考價值。
    This study investigates the causal effects of exchange-traded fund (ETF) ownership on stock-level volatility and liquidity using quarterly panel data from Taiwan’s stock market between 2014 and 2024. To address potential endogeneity concerns, the analysis employs the two-stage least squares (2SLS) method, supplemented by the first-stage F-test, the Sargan overidentification test, and the confidence interval method proposed by Windmeijer et al. (2021) to evaluate and select valid instrumental variable sets. Empirical results show that ETF ownership significantly affects certain measures of volatility and is associated with a notable decline in individual stock liquidity and trading activity. This study not only provides new empirical evidence on the microstructural impacts of ETF ownership but also introduces a systematic framework for instrumental variable selection, offering methodological contributions for future research dealing with endogeneity.
    Reference: Abad, D., Nieto, B., Pascual, R., & Rubio, G. (2023). Market-wide illiquidity and the distribution of non-parametric stochastic discount factors. International Review of Financial Analysis, 87, 102650.
    Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of financial Economics, 77(2), 375-410.
    Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of financial markets, 5(1), 31-56.
    Amihud, Y., Hameed, A., Kang, W., & Zhang, H. (2015). The illiquidity premium: International evidence. Journal of financial economics, 117(2), 350-368.
    Andrews, I., Stock, J. H., & Sun, L. (2019). Weak instruments in instrumental variables regression: Theory and practice. Annual Review of Economics, 11(1), 727-753.
    Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton university press.
    Apfel, N., & Windmeijer, F. (2022). The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction. arXiv preprint arXiv:2212.04814.
    Armstrong, T. B., & Kolesár, M. (2021). Supplement to ‘Sensitivity analysis using approximate moment condition models’. Quantitative Economics Supplemental Material, 12.
    Bae, K., & Kim, D. (2020). Liquidity risk and exchange-traded fund returns, variances, and tracking errors. Journal of Financial Economics, 138(1), 222-253.
    Barndorff-Nielsen, O. E., & Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2), 253-280.
    Ben‐David, I., Franzoni, F., & Moussawi, R. (2018). Do ETFs increase volatility?. The Journal of Finance, 73(6), 2471-2535.
    Berger, A. N., & Di Patti, E. B. (2006). Capital structure and firm performance: A new approach to testing agency theory and an application to the banking industry. Journal of Banking & Finance, 30(4), 1065-1102.
    Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates?. The Quarterly journal of economics, 119(1), 249-275.
    Bollerslev, T., Patton, A. J., & Quaedvlieg, R. (2020). Multivariate leverage effects and realized semicovariance GARCH models. Journal of Econometrics, 217(2), 411-430.
    Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American statistical association, 90(430), 443-450.
    Callaway, B., & Sant’Anna, P. H. (2021). Difference-in-differences with multiple time periods. Journal of econometrics, 225(2), 200-230.
    Campello, M. (2003). Capital structure and product markets interactions: evidence from business cycles. Journal of financial economics, 68(3), 353-378.
    Chen, J., & Xu, L. (2023). Do exchange-traded fund activities destabilize the stock market? Evidence from the China securities index 300 stocks. Economic Modelling, 127, 106450.
    Chen, N. F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of business, 59(3), 383-403.
    Chordia, T., Roll, R., & Subrahmanyam, A. (2001). Market liquidity and trading activity. The journal of finance, 56(2), 501-530.
    Conley, T. G., Hansen, C. B., & Rossi, P. E. (2012). Plausibly exogenous. Review of Economics and Statistics, 94(1), 260-272.
    Cont, R. (2007). Volatility clustering in financial markets: empirical facts and agent-based models. In Long memory in economics (pp. 289-309). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Da, Z., & Shive, S. (2018). Exchange traded funds and asset return correlations. European Financial Management, 24(1), 136-168.
    Datar, V. T., Naik, N. Y., & Radcliffe, R. (1998). Liquidity and stock returns: An alternative test. Journal of financial markets, 1(2), 203-219.
    Demsetz, H. (1968). The cost of transacting. The Quarterly Journal of Economics, 82(1), 33-53.
    Durbin, J. (1954). Errors in variables. Revue de l'institut International de Statistique, 22(1/3), 23-32.
    El Kalak, I., Hudson, R., & Tosun, O. K. (2024). Engaged ETFs and firm performance. European Financial Management, 30(3), 1708-1756.
    Fama, E. F., & French, K. R. (2002). Testing trade-off and pecking order predictions about dividends and debt. Review of financial studies, 15(1), 1-33.
    Florackis, C., Gregoriou, A., & Kostakis, A. (2011). Trading frequency and asset pricing on the London Stock Exchange: Evidence from a new price impact ratio. Journal of Banking & Finance, 35(12), 3335-3350.
    Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. Journal of Business,53(1), 67-78.
    Glosten, L., Nallareddy, S., & Zou, Y. (2021). ETF activity and informational efficiency of underlying securities. Management Science, 67(1), 22-47.
    Gompers, P., Ishii, J., & Metrick, A. (2003). Corporate governance and equity prices. The quarterly journal of economics, 118(1), 107-156.
    Hamm, S. J. (2010). The effect of ETFs on stock liquidity (Doctoral dissertation, University of Pennsylvania).
    Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the econometric society, 50(4), 1029-1054.
    Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the econometric society, 46(6), 1251-1271.
    Humpe, A., & Macmillan, P. (2009). Can macroeconomic variables explain long-term stock market movements? A comparison of the US and Japan. Applied financial economics, 19(2), 111-119.
    Israeli, D., Lee, C. M., & Sridharan, S. A. (2017). Is there a dark side to exchange traded funds? An information perspective. Review of Accounting Studies, 22, 1048-1083.
    Krause, T., Ehsani, S., & Lien, D. (2014). Exchange-traded funds, liquidity and volatility. Applied Financial Economics, 24(24), 1617-1630.
    Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, 53(6), 1315-1335.
    Lettau, M., & Ludvigson, S. (2001). Consumption, aggregate wealth, and expected stock returns. the Journal of Finance, 56(3), 815-849.
    Liang, X. (2022). Methods for Selecting Valid Instrumental Variables (Doctoral dissertation, University of Bristol).
    Madhavan, A., & Sobczyk, A. (2016). Price dynamics and liquidity of exchange-traded funds. Journal of Investment Management, 14(2), 1-17.
    Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 53(1), 61-65.
    Rakowski, D., & Yamani, E. (2021). Endogeneity in the mutual fund flow–performance relationship: An instrumental variables solution. Journal of Empirical Finance, 64, 247-271.
    Rogers, L. C. G., & Satchell, S. E. (1991). Estimating variance from high, low and closing prices. The Annals of Applied Probability, 1(4), 504-512.
    Rogers, L. C., Satchell, S. E., & Yoon, Y. (1994). Estimating the volatility of stock prices: a comparison of methods that use high and low prices. Applied Financial Economics, 4(3), 241-247.
    Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica: Journal of the econometric society, 26(3), 393-415.
    Schwert, G. W. (1989). Why does stock market volatility change over time?. The journal of finance, 44(5), 1115-1153.
    Staiger, D., & Stock, J. (1997). to Econometrica. Econometrica, 65(3), 557-586.
    Wang, N., & Ma, Z. (2024). ETF ownership and stock liquidity: evidence from China. Asia-Pacific Journal of Accounting & Economics, 1-18.
    Windmeijer, F., Liang, X., Hartwig, F. P., & Bowden, J. (2021). The confidence interval method for selecting valid instrumental variables. Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(4), 752-776.
    Wu, D. M. (1973). Alternative tests of independence between stochastic regressors and disturbances. Econometrica: journal of the Econometric Society, 41(4), 733-750.
    Description: 碩士
    國立政治大學
    統計學系
    112354024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112354024
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402401.pdf2911KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback