English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69525600      線上人數 : 51
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/158716
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158716


    題名: 具局部相關結構之貝氏試題反應理論模型
    Bayesian Item Response Theory Model with Local Dependence
    作者: 劉孟展
    Liu, Meng-Chan
    貢獻者: 張育瑋
    Chang, Yu-wei
    劉孟展
    Liu, Meng-Chan
    關鍵詞: 貝氏統計推論
    Ising 模型
    試題反應理論模型
    擬概似函數
    Bayesian inference
    Ising model
    Item response theory model
    Pseudo likelihood
    日期: 2025
    上傳時間: 2025-08-04 15:11:58 (UTC+8)
    摘要: 傳統的試題反應理論(Item Response Theory; IRT)模型假設一位受試者在所有試題的反應是給定隨機效應參數下彼此獨立,稱為局部獨立,但是在現實應用上,這項假設很難滿足。文獻上已發展各式各樣更符合現實情況的IRT模型,以處理例如題組、多群體、限時測驗、受試者各異反應...等各種不滿足局部獨立假設時的局部相關。近年更新穎的做法是直接發展更一般化的局部相關之IRT模型,例如Chen et al. (2018) 提出的 FLaG-IRT 模型透過將Ising 模型引入試題反應理論模型中來描述一般化的局部相關。然而,該文獻提出使用proximal gradient-based方法求解最大概似估計量相當複雜,在模型進一步推廣時並不容易隨之推廣。本研究針對FLaG-IRT模型提出一套貝氏統計推論流程,讓模型中的許多參數能透過先驗分配彼此互相借用訊息,並且提供一個更簡潔的估計架構以利未來的模型推廣。然而,該模型具有無法直接處理的正規化函數(intractable normalizing functions) 之議題,本研究使用 variational Bayesian 方法 (Kim et al., 2024),並搭配適當的擬概似函數解決該議題。透過模擬研究呈現本研究所提出之統計推論方法在各種模擬條件下之估計優勢,最後將該方法應用於兩筆實際資料上。
    Traditional Item Response Theory (IRT) models assume that the responses to all items by one respondent are conditionally independent, conditional on random-effect parameters, and this is referred to as local independence. However, it is not easy that this assumption is fulfilled in practical applications. Various extensions of IRT models have been proposed in the literature to deal with local dependence (LD) structures arising from situations such as testlets, time limit tests, and different response strategies of individuals. In recent years, a more innovative approach involves directly developing general IRT models that account for local dependence. For example, Chen, Li, Liu, and Ying (2018) proposed the FLaG-IRT model, which incorporates the Ising model into IRT model to capture local dependence. However, their statistical inference relies on proximal gradient-based algorithm for maximum likelihood estimation, which is computationally complex and is difficult to be further generalized. The current study proposes a Bayesian inference for the FLaG-IRT model. The advantage of the Bayesian FLaG-IRT inference is to allow parameters to borrow information through prior distributions and to provide a more concise estimation structure that facilitates future model extensions. The main challenge of Bayesian FLaG-IRT inference is the intractable normalizing function issues, and we adopt variational Bayesian method (Kim, Bhattacharya & Maiti, 2024) with an appropriate pseudo likelihood to overcome this issue. Simulation studies are conducted to evaluate the performance of the proposed method under various conditions with two real data sets illustrating its practical utility.
    參考文獻: Andrieu, C., & Roberts, G.O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of Statistics, 37, 697–725.
    Atchade, Y. F., Lartillot, N., & Robert, C. P. (2008). Bayesian computation for statistical models with intractable normalizing constants. Brazilian Journal of Probability and Statistics, 22, 416–436.
    Barber, R.F., & Drton, M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electronic Journal of Statistics, 9, 567–607.
    Beaumont, M.A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics, 164, 1139–1160.
    Besag, J. (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society, Series B, 36, 192–236.
    Bhattacharya, B. B., & Mukherjee, S. (2018), Inference in Ising Models. Bernoulli, 24, 493–525.
    Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord and M. R. Novick, Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
    Bolt, D. M., Cohen, A. S., & Wollack, J.A. (2002). Item parameter estimation under conditions of test speededness: application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39, 331–348.
    Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.
    Chang, Y.-W., Tsai, R., & Hsu, N.-J. (2014). A speeded Item Response model: Leave the harder till later. Psychometrika, 79, 255–274.
    Chang, Y.-W., & Tu, J.-Y. (2022). Bayesian estimation for an item response tree model for nonresponse modeling. Metrika, 85, 1023–1047.
    Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759–771.
    Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.
    Chen, Y., Li, X., Liu, J., & Ying, Z. (2018). Robust measurement via a fused latent and graphical item response theory model. Psychometrika, 83, 538–562.
    Cho, S.-J., Cohen, A. S., & Kim, S.-H. (2013). Markov chain Monte Carlo estimation of a mixture item response theory model. Journal of Statistical Computation and Simulation, 83, 215–241.
    College Entrance Examination Center. (2010). Mathematics B Test, 2010 Advanced Subjects Test. https://www.ceec.edu.tw/xmfile?xsmsid=0J052427633128416650
    Eckes, T., & Baghaei, P. (2015). Using testlet response theory to examine local dependence in C-tests. Applied Measurement in Education, 28, 85–98.
    Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 604–612.
    Fox, J.-P. (2010). Bayesian item response modeling-Theory and applications. Springer.
    Frank, B.B., & Kim, S.-H. (2004). Item response theory: parameter estimation techniques, 2.
    Gelman, A., Carlin, J. B., Rubin, D. B., & Stern, H. S. (2004). Bayesian data analysis.
    Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.
    Goegebeur, Y., De Boeck, P., Wollack, J. A., & Cohen, A.S. (2008). A speeded item response model with gradual process change. Psychometrika, 73, 65–87.
    Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
    Hughes, J., Haran, M., & Caragea, P. (2011). Autologistic Models for Binary Data on a Lattice. Environmetrics, 22, 857–871.
    Hunter, D.R., & Handcock, M.S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15, 565–583.
    Hunter, D. R., & Handcock, M.S. (2012). Inference in Curved Exponential Family Models for Networks. Journal of Computational and Graphical Statistics, 15, 565–583.
    Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei, 31, 253–258.
    Jeon, M., Jin, I. H., Schweinberger, M., & Baugh, S. (2021). Mapping unobserved item-respondent interactions: A latent space item response model with interaction map. Psychometrika, 86, 378–403.
    Kim, M., Bhattacharya, S., & Maiti, T. (2024). Statistically valid variational Bayes algorithm for Ising model parameter estimation. Journal of Computational and Graphical Statistics, 33, 75–84. Lenz, W. (1920). Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern. Physikalische Zeitschrift, 21, 613–615.
    Liang, F. (2010). A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants. Journal of Statistical Computation and Simulation, 80, 1007–1022.
    Liang, F., Jin, I. H., Song, Q., & Liu, J. S. (2016). An adaptive exchange algorithm for sampling from distributions with intractable normalizing constants. Journal of the American Statistical Association, 111, 377–393.
    Macdonald, P., & Paunonen, S.V. (2002). A Monte Carlo comparison of item and person statistics based on item response theory versus classical test theory. Educational and Psychological Measurement, 62, 921–943.
    Møller, J., Pettitt, A. N., Reeves, R., & Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika, 93, 451–458. Murray, I., Ghahramani, Z., & MacKay, D. J. C. (2006). MCMC for doubly-intractable distributions. In R. Dechter & T. S. Richardson (Eds.), Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI-06) (pp. 359–366). AUAI Press.
    Parikh, N., & Boyd, S. (2013). Proximal algorithms. Foundations and Trends in Optimization, 1, 123–231.
    Park, J., & Haran, M. (2018). Bayesian inference in the presence of intractable normalizing functions. Journal of the American Statistical Association, 113, 1372–1390.
    Park, J., Jin, I. H., & Schweinberger, M. (2022). Bayesian model selection for high-dimensional Ising models, with applications to educational data. Computational Statistics and Data Analysis, 165, Article 107325.
    R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Nielsen and Lydiche, Copenhagen, Denmark.
    Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An Introduction to Exponential Random Graph (p*) Models for Social Networks. Social Networks, 29, 173–191.
    Royal, K. D. (2016). The impact of item sequence order on local item dependence: An item response theory perspective. Survey Practice, 9, 1–7.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B, 64, 583–616.
    Strauss, D.J. (1975). A model for clustering. Biometrika, 62, 467–475.
    Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51, 589–601.
    van der Linden, W. J. (Ed.). (2016). Handbook of item response theory. CRC Press.
    Yamamoto, K., & Everson, H. (1997). Modeling the effects of test length and test time on parameter estimation using the hybrid model. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 89–98).
    Yen, W.M. (1993). Scaling performance assessments: strategies for managing local item dependence. Journal of Educational Measurement, 30, 187–213.
    描述: 碩士
    國立政治大學
    統計學系
    112354025
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112354025
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    402501.pdf1384KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋