English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 82490922      Online Users : 708
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/159041
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159041


    Title: 基於模型平均與樣條近似之羅吉斯迴歸機率估計
    Probability estimation in logistic regression based on model average and spline approximation
    Authors: 吳榮軒
    Wu, Rong-Syuan
    Contributors: 黃子銘
    Huang, Tzee-Ming
    吳榮軒
    Wu, Rong-Syuan
    Keywords: 羅吉斯迴歸
    樣條函數
    模型平均
    貝氏模型平均
    頻率主義模型平均
    Gradient boosting
    Bagging
    非線性數據分析
    Logistic regression
    Spline
    Model averaging
    Bayesian model averaging
    Frequentist model averaging
    Gradient boosting
    Bagging
    Nonlinear data analysis
    Date: 2025
    Issue Date: 2025-09-01 14:50:01 (UTC+8)
    Abstract: 羅吉斯迴歸是廣泛應用於二元事件機率估計的統計方法,但當資料呈現複雜非線性特徵時, 單一模型的估計能力常受限。本研究提出以樣條函數為基礎,結合模型平均與整合技術,提 升機率估計的準確性與穩健性。樣條函數用於捕捉解釋變數與響應變數間的非線性關係,結 合頻率主義模型平均(FMA)、貝氏模型平均(BMA)、Gradient Boosting 和 Bagging 四種 策略,通過整合多個基於樣條函數的羅吉斯迴歸模型降低過擬合風險並增強泛化能力。模擬 實驗生成包含週期性、局部峰值及交互作用的非線性資料,比較單一模型與整合方法的估計 性能。結果顯示,樣條函數結合 FMA 在積分加權平方誤差(IWSE)上全面優於其他方法, 在平均絕對誤差(MAE)上對 BMA 表現相當,對 Bagging 和 Gradient Boosting 則在多數 場景展現優勢,且計算效率最高。這些方法在非線性資料處理上顯著優於傳統羅吉斯迴歸。 本研究驗證了樣條與模型整合的理論優勢,為醫學診斷和金融風險評估提供高效且穩健的機率估計方法。
    Logistic regression is a widely used statistical method for estimating the probability of binary events, but its performance is often limited when data exhibit complex nonlinear characteristics. This study proposes a framework that integrates splines with model averaging and ensemble techniques to enhance the accuracy and robustness of probability estimation. Splines are employed to capture nonlinear relationships between explanatory and response variables, combined with four strategies: Frequentist Model Averaging (FMA), Bayesian Model Averaging (BMA), Gradient Boosting, and Bagging. These methods integrate multiple spline models to reduce overfitting and improve generalization. Simulation experiments with nonlinear data featuring periodicity, local peaks, and interactions were conducted to compare the predictive performance of single models and ensemble approaches. Results show that spline-based FMA outperforms other methods in Integrated Weighted Squared Error (IWSE), performs comparably to BMA in Mean Absolute Error (MAE), and surpasses Bagging and Gradient Boosting in most scenarios, while also achieving the highest computational efficiency. These methods significantly outperform traditional logistic regression in handling nonlinear data. This study validates the theoretical advantages of combining splines with model ensemble techniques, providing an effective and robust probability estimation method for applications in medical diagnosis and financial risk assessment.
    Reference: [1]Sawyer, A. G. (1981). Repetition, cognitive response, and persuasion. In R. E. Petty, T. M. Ostrom, & T. C. Brock (Eds.), Cognitive responses in persuasion (pp. 237–261). Hillsdale, NJ: Erlbaum.

    [2] Tellis, G. J. (1988). Advertising exposure, loyalty, and brand purchase: A two-stage model of choice. Journal of Marketing Research, 25(2), 134–144.

    [3] Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidistant data by analytic functions. Quarterly of Applied Mathematics, 4, 45–99.

    [4] de Boor, C. (1978). A Practical Guide to splines. Springer-Verlag, New York.

    [5] Leamer, E. E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental Data. New York: Wiley.

    [6] Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4), 382–401.

    [7] Gideon Schwarz. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461 - 464.

    [8] Wasserman, L. (2000). Bayesian Model Selection and Model Averaging. Journal of Mathematical Psychology, 44, 92–107.

    [9] Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98(464), 879–899.

    [10] Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer.

    [11] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

    [12] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
    Description: 碩士
    國立政治大學
    統計學系
    112354022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112354022
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402201.pdf2650KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback