Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/159090
|
| Title: | 整合混合實境與人工智慧於博物館之應用:內向型與外向型AI NPC及使用者體驗之研究 Integrating Mixed Reality and Artificial Intelligence in Museums: A Study on Introverted and Extroverted AI NPCs and Visitor Experiences |
| Authors: | 余采嬙 Yu, Tsai-Chiang |
| Contributors: | 簡士鎰 Chien, Shih-Yi 余采嬙 Yu, Tsai-Chiang |
| Keywords: | 混合實境 人工智慧 博物館 個性特徵 人機互動 Mixed Reality Artificial Intelligence Museum Personality traits HCI |
| Date: | 2025 |
| Issue Date: | 2025-09-01 15:03:59 (UTC+8) |
| Abstract: | 博物館正逐漸採用混合實境 (Mixed Reality, MR) 與人工智慧 (Artificial Intelligence, AI)來改變訪客的觀展體驗。這些技術的引入不僅提升展覽互動性,還讓訪客能透過全新的數位方式與展覽內容進行學習。例如,透過 MR技術,訪客能沉浸式地觀賞重建的歷史場景或體驗藝術作品的創作過程,另一方面,AI增強了個性化互動,讓訪客享有即時且客製化的解說。然而,儘管這些創新技術在博物館的應用漸增,AI 和 MR 在博物館中結合應用的相關研究與文獻卻仍然有限,尤其是這些技術整合後的實際效益及其對訪客體驗的長期影響方面,仍有許多未知之處。因此,本研究希望能填補現有文獻中的空白,進一步揭示 AIMR 技術在博物館使用情境中如何創造更加豐富且有意義的文化體驗。MR 和AI的結合不僅是對技術上的創新發展,更可能對博物館觀展者的行為模式產生深遠影響。MR環境裡創建虛擬角色 (Non-Player Character, NPC) 作為展覽主題的延伸,不僅能提升使用者與展覽的互動性,亦能促進導覽系統的有趣性。本研究旨在探討,透過不同個性特質的 AI NPCs 來回答訪客觀展時提出之問題,是否會改變社會臨場感、視覺注意力與未來行為意圖。基於基於自然語言處理 (Natural Language Processing, NLP)、語音合成與深度學習的成熟發展,加上過往諸多機器人個性研究,本文透過大型語言模型 (Large Language Model, LLM) 和文本轉語音 (Text-to-Speech, TTS),設計了內向與外向型 AI NPCs,內向型AI提供對話風格較正式、語氣嚴肅之展品解說,而外向型 NPC則更加熱情、活躍,且以較積極和正面情緒回覆問題。結果發現,外向 AI 提升了受測者的社會臨場感和使用意圖,且吸引力法則對外向受測者較為強烈; 內向 AI 則讓受測者每次注視停留時間增長、更多注意於展品上。未來博物館更可為不同性格的訪客提供多元化的導覽服務。透過這些問題探討,本研究為未來文化教育機構的 AIMR 技術應用提供實證依據和設計指南參考。技術的快速進步固然帶來了無限可能,如何透過更具彈性的客製化或人性化設計將這些科技創新有效融入博物館訪客體驗,仍然是一項需要持續研究與實踐的課題。 With the advancement of immersive technologies and AI, museums increasingly adopt Mixed Reality (MR) and AI to enhance exhibit interactivity and enable novel cultural engagement. MR immerses visitors in reconstructed historical scenes, while AI offers personalized, real-time explanations. However, research on their combined application in museums remains limited. This study explores how AIMR can enrich cultural experiences. Creating virtual characters (Non-Player Characters, NPCs) within MR environments as extensions of exhibition themes can enhance interactivity and make guided experiences more engaging. This study explores whether AI-driven NPCs with distinct personality traits, used to respond to visitors’ questions during exhibitions, can influence perceptions of social presence, visual attention, and behavioral intentions. Building upon the maturity of Natural Language Processing (NLP), speech synthesis, and deep learning technologies—as well as insights from prior research on robotic personalities—this study employs Large Language Models (LLMs) and Text-to-Speech (TTS) systems to design introverted and extroverted AI NPCs. The introverted AI provides formal, concise, and serious-toned explanations, while the extroverted counterpart responds with enthusiasm, liveliness, and positive emotional expressions. Experimental results indicate that extroverted AI enhance users’ sense of social presence and intention to use, with the attraction effect being stronger for extroverted participants. Conversely, introverted AI led to longer gaze durations per instance and increased visual attention toward exhibits. These findings suggest that future museums may offer diverse guidance experiences tailored to visitors’ individual personalities or needs. By delving into these questions, this study provides empirical evidence and design guidelines for the implementation of AIMR technologies in future museum strategies. While rapid technological progress presents vast opportunities, integrating these innovations into meaningful and human-centered visitor experiences remains an ongoing challenge requiring continuous research and thoughtful design. |
| Reference: | Ahmad, R., Siemon, D., Gnewuch, U., & Robra-Bissantz, S. (2022). A framework of personality cues for conversational agents. Ahmad, R., Siemon, D., & Robra-Bissantz, S. (2021). Communicating with machines: Conversational agents with personality and the role of extraversion. Proceedings of the Hawaii International Conference on System Sciences (HICSS). Barta, S., Gurrea, R., & Flavián, C. (2023). Using augmented reality to reduce cognitive dissonance and increase purchase intention. Computers in Human Behavior, 140, 107564. Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., & Gain, J. (2018). A survey of augmented, virtual, and mixed reality for cultural heritage. Journal on Computing and Cultural Heritage (JOCCH), 11(2), 1–36. Biocca, F., Harms, C., & Burgoon, J. K. (2003). Toward a more robust theory and measure of social presence: Review and suggested criteria. Presence: Teleoperators & Virtual Environments, 12(5), 456–480. Byrne, D. (1971). The attraction paradigm. Academic Press. Chang, M.-C. L., Huang, Y.-H., Lin, W.-C., & Sun, S.-W. (2021). Digital fabrication: Machine learning-based immersive experiencing for the virtual space in a future museum. 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 1–5. Chen, C. A., & Lai, H. I. (2021). Application of augmented reality in museums–factors influencing the learning motivation and effectiveness. Science Progress, 104(3suppl), 00368504211059045. Chin, K. Y., Chang, H. L., & Wang, C. S. (2023). Applying a wearable MR-based mobile learning system on museum learning activities for university students. Interactive Learning Environments, 1–22. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Frisch, I., & Giulianelli, M. (2024). Llm agents in interaction: Measuring personality consistency and linguistic alignment in interacting populations of large language models. arXiv preprint arXiv:2402.02896. Gefen, D., & Straub, D. W. (2004). Consumer trust in b2c e-commerce and the importance of social presence: Experiments in e-products and e-services. Omega, 32(6), 407– 424. Gill, A. J., & Oberlander, J. (2002). Taking care of the linguistic features of extraversion. In W. D. Gray & C. D. Schunn (Eds.), Proceedings of the 24th annual conference of the cognitive science society (pp. 363–368). Hammady, R., Ma, M., Al-Kalha, Z., & Strathearn, C. (2021). A framework for constructing and evaluating the role of mr as a holographic virtual guide in museums. Virtual Reality, 25(4), 895–918. Hassanein, K., & Head, M. (2007). Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. International Journal of Human-Computer Studies, 65(8), 689–708. He, Z., Wu, L., & Li, X. R. (2018). When art meets tech: The role of augmented reality in enhancing museum experiences and purchase intentions. Tourism Management, 68, 127–139. Hsieh, S. H., & Lee, C. T. (2024). The ai humanness: How perceived personality builds trust and continuous usage intention. Journal of Product & Brand Management, 33(5), 618–632. Huang, H., Zhang, Y., Weiss, T., Perry, R. W., & Yu, L. F. (2020). Interactive design of gallery walls via mixed reality. 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 17–26. Huang, H. (1999). The persuasion, memory and social presence effects of believable agents in human-agent communication. Jiang, H., Zhang, X., Cao, X., Breazeal, C., Roy, D., & Kabbara, J. (2023). Personallm: Investigating the ability of large language models to express personality traits. arXiv preprint arXiv:2305.02547. Jin, E., & Eastin, M. S. (2023). Birds of a feather flock together: Matched personality effects of product recommendation chatbots and users. Journal of Research in Interactive Marketing, 17(3), 416–433. John, O. P. (1991). The big five inventory—versions 4a and 54. Ke, S., Xiang, F., Zhang, Z., & Zuo, Y. (2019). A enhanced interaction framework based on VR, AR and MR in digital twin. Procedia CIRP, 83, 753–758. Kim, D., & Choi, Y. (2021). Applications of smart glasses in applied sciences: A systematic review. Applied Sciences, 11(11), 4956. Lee, K. M., Peng, W., Jin, S.-A., & Yan, C. (2006). Can robots manifest personality? an empirical test of personality recognition, social responses, and social presence in human–robot interaction. Journal of Communication, 56(4), 754–772. Li, M., & Wang, R. (2023). Chatbots in e-commerce: The effect of chatbot language style on customers’ continuance usage intention and attitude toward brand. Journal of Retailing and Consumer Services, 71, 103209. Liang, H., Hwang, G., Hsu, T., &Yeh, J. (2024). Effect of an ai based chatbot on students’ learning performance in alternate reality game based museum learning. British Journal of Educational Technology. Luo, J., Aumeboonsuke, V., & He, Z. (2024). Artificial intelligence and digital museum VR environment design based on embedded image processing. Applied Mathematics and Nonlinear Sciences, 9(1), 1–22. Martí-Testón,A., Muñoz,A., Solanes,J.E., Gracia,L., & Tornero,J.(2021). Amethodology to produce augmented-reality guided tours in museums for mixed-reality headsets. Electronics, 10(23), 2956. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329. Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282–292. Mokatren, M., Kuflik, T., & Shimshoni, I. (2016, June). Exploring the potential contribution of mobile eye-tracking technology in enhancing the museum visit experience. In Avi* ch (pp. 23–31). Neff, M., Wang, Y., Abbott, R., & Walker, M. (2010). Evaluating the effect of gesture and language on personality perception in conversational agents. Oh, C. S., Bailenson, J. N., & Welch, G. F. (2018). A systematic review of social presence: Definition, antecedents, and implications. Frontiers in Robotics and AI, 5, 114. Palmer, M. (1995). Interpersonal communication and virtual reality: Mediating interpersonal relationships. In F. Biocca & M. R. Levy (Eds.), Communication in the age of virtual reality (pp. 277–299). Lawrence Erlbaum Associates. Pierdicca, R., Paolanti, M., Naspetti, S., Mandolesi, S., Zanoli, R., & Frontoni, E. (2018). User-centered predictive model for improving cultural heritage augmented reality applications: An hmm-based approach for eye-tracking data. In Journal of imaging (p. 101, Vol. 4). Sargsyan, N., & Seals, C. (2022). Using AR headset camera to track museum visitor attention: Initial development phase. In J. Chen & G. Fragomeni (Eds.), Virtual, augmented and mixed reality: Applications in education, aviation and industry (Vol. 13318). Springer. Serapio-García, G., Safdari, M., Crepy, C., Sun, L., Fitz, S., Abdulhai, M., & Matarić, M. (2023). Personality traits in large language models. arXivpreprintarXiv:2305.14682. Soto, C. J., & John, O. P. (2017). The next big five inventory (bfi-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social Psychology, 113, 117–143. Speicher, M., Hall, B. D., & Nebeling, M. (2019). What is mixed reality? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–15. Strahilevitz, M., & Myers, J. G. (1998). Donations to charity as purchase incentives: How well they work may depend on what you are trying to sell. Journal of Consumer Research, 24(4), 434–446. Trichopoulos, G. (2023). Large language models for cultural heritage. Proceedings of the 2nd International Conference of the ACM Greek SIGCHI, 1–5. Trunfio, M., Jung, T., & Campana, S. (2022). Mixed reality experiences in museums: Exploring the impact of functional elements of the devices on visitors’ immersive experiences and post-experience behaviors. Information & Management,59(8),103698. Völkel, S. T., Schoedel, R., Kaya, L., & Mayer, S. (2022). User perceptions of extraversion in chatbots after repeated use. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–18. Wang, C., & Zhu, Y. (2022). A survey of museum applied research based on mobile augmented reality. Computational Intelligence and Neuroscience. Winter, M., Sweeney, L., Mason, K., & Blume, P. (2022). Low-power machine learning for visitor engagement in museums. Proceedings of the 6th International Conference on Computer-Human Interaction Research and Applications, 1–8. Zedda, E., Manca, M., Paternò, F., & Santoro, C. (2023). Older adults’ user experience with introvert and extravert humanoid robot personalities. Universal Access in the Information Society, 1–17 |
| Description: | 碩士 國立政治大學 資訊管理學系 112356012 |
| Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112356012 |
| Data Type: | thesis |
| Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
| File |
Description |
Size | Format | |
| 601201.pdf | | 10443Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|