English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118940/150005 (79%)
造訪人次 : 83594761      線上人數 : 999
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/159094
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/159094


    題名: MLOps的視覺化負責任人工智慧 – Price Prediction as a Service的應用
    Implementing Responsible AI in Price Prediction as a Service through Visualization Arrangements in MLOps
    作者: 江應翎
    Chiang, Ying-Ling
    貢獻者: 蔡瑞煌
    洪智鐸

    Tsaih, Rua-Huan
    Hong, Chih-Duo

    江應翎
    Chiang, Ying-Ling
    關鍵詞: MLOps
    負責任人工智慧
    視覺化
    MLOps
    Responsible artificial intelligence(RAI)
    visualization
    日期: 2025
    上傳時間: 2025-09-01 15:04:54 (UTC+8)
    摘要: 本論文探討如何透過視覺化在MLOps中實施負責任人工智慧(RAI)原則,以提升金融AI部署的公平性、解釋性、問責性和可靠性。本研究針對台灣金融業現況制定四項視覺化指導原則—資訊追溯性、邏輯解釋性、決策參與性和風險預警性。以四項視覺化指導原則為基礎,實作示範MLOps各階段提出五項RAI視覺化工具:用於稽核軌跡的追溯儀表板、數據準備階段偏差檢測的資料品質指標、模型驗證階段提升可解釋性的特徵重要性和模型解釋工具,以及部署決策的模型比較介面。這些工具在股價預測服務(PPaaS)系統中實作並應用於股價預測。研究採用標準與增加了RAI視覺化工具的使用者介面的比較評估。來自銀行、證券和保險業的金融專業人士參與研究,針對各工具支援特定RAI原則的程度提供李克特量表(Likert scale)評分和質性回饋。結果顯示量化評分有顯著改善。質性回饋證實RAI增強介面解決了標準平台在資訊追溯性、邏輯解釋性、決策參與性和風險預警性方面的關鍵缺口。本研究驗證了針對性視覺化介入能成功將抽象RAI原則操作化為實用工具,提升非AI專業使用者對AI驅動金融應用的理解、信任和決策品質,為透過視覺化設計實施負責任AI提供系統性指導原則。
    This thesis explores how to implement Responsible Artificial Intelligence (RAI) principles in MLOps through visualization to enhance fairness, explainability, accountability, and reliability of financial AI applications, further assisting financial professionals without AI-related knowledge to comply with responsible AI principles when using MLOps. This study develops four visualization design guidelines tailored to Taiwan's financial industry context—Information Traceability, Logical Explainability, Decision Participation, and Risk Anticipation. Based on these four visualization guidelines, five RAI visualization tools are implemented across various MLOps modules: Traceability Dashboard, Data Quality Indicator, Feature Importance and Model Explanation, and Model Comparison. These tools are implemented and applied to stock price prediction in the Price Prediction as a Service (PPaaS) system. The research employs a comparative evaluation between standard user interfaces and those enhanced with RAI visualization tools. Financial professionals from banking, securities, and insurance industries participated in the study, providing Likert scale ratings and qualitative feedback on the degree to which each tool supports specific RAI principles. Results show significant improvements in quantitative scores. Qualitative feedback confirms that RAI-enhanced interfaces address critical gaps in the standard platform regarding information traceability, logical explainability, decision participation, and risk anticipation. This study validates that targeted visualization interventions can successfully operationalize abstract RAI principles into practical tools, enhancing non-technical users' understanding, trust, and decision-making quality in AI-driven financial applications, providing systematic guidelines for implementing responsible AI through visualization design.
    參考文獻: [1] Alicioglu, G., & Sun, B. (2022). A survey of visual analytics for explainable artificial intelligence methods. Computers & Graphics, 102, 502-520.
    [2] Besinger, P., Vejnoska, D., & Ansari, F. (2024). Responsible AI (RAI) in manufacturing: A qualitative framework. Procedia Computer Science, 232, 813-822.
    [3] Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5.
    [4] Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Cham: Springer.
    [5] Financial Supervisory Commission R.O.C. (Taiwan). (2024). Guidelines on the use of artificial intelligence in the financial industry.
    [6] F⊘ lstad, A. (2007). Work-domain experts as evaluators: usability inspection of domain-specific work-support systems. International Journal of Human-Computer Interaction, 22(3), 217-245.
    [7] Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., ... & Munigala, V. (2020, August). Overview and importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3561-3562).
    [8] Matsui, B. M., & Goya, D. H. (2022, May). MLOps: A Guide to its Adoption in the Context of Responsible AI. In Proceedings of the 1st Workshop on Software Engineering for Responsible AI (pp. 45-49).
    [9] Molnar, C., Freiesleben, T., König, G., Herbinger, J., Reisinger, T., Casalicchio, G., ... & Bischl, B. (2023, July). Relating the partial dependence plot and permutation feature importance to the data generating process. In World Conference on Explainable Artificial Intelligence (pp. 456-479). Cham: Springer Nature Switzerland.
    [10] Mujkanovic, F., Doskoč, V., Schirneck, M., Schäfer, P., & Friedrich, T. (2020). timeXplain--A Framework for Explaining the Predictions of Time Series Classifiers. arXiv preprint arXiv:2007.07606.
    [11] Pathak, S. (2022). Explainable AI for ML Ops. In World of Business with Data and Analytics (pp. 187-201). Singapore: Springer Nature Singapore.
    [12] Salama, K., Kazmierczak, J., & Schut, D. (2021, May). Practitioners Guide to MLOps: A framework for continuous delivery and automation of machine learning. Google Cloud.
    [13] Schlegel, U., & Keim, D. A. (2021, October). Time series model attribution visualizations as explanations. In 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX) (pp. 27-31). IEEE.
    [14] Testi, M., Ballabio, M., Frontoni, E., Iannello, G., Moccia, S., Soda, P., & Vessio, G. (2022). MLOps: A taxonomy and a methodology. IEEE Access, 10, 61725–61747.
    [15] Yuan, J., Chen, C., Yang, W., Liu, M., Xia, J., & Liu, S. (2021). A survey of visual analytics techniques for machine learning. Computational Visual Media, 7(1), 3-36.
    描述: 碩士
    國立政治大學
    資訊管理學系
    112356030
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112356030
    資料類型: thesis
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    603001.pdf5544KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋