English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118405/149442 (79%)
Visitors : 78458026      Online Users : 334
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159177


    Title: 應用生成式人工智慧於銀行財富管理業務之研究-以H銀行為例
    Application of generative artificial intelligence in banking wealth management-A case study of H bank
    Authors: 游仁政
    Yu, Jen-Cheng
    Contributors: 韓傳祥
    Han, Chuan-Hsiang
    游仁政
    Yu, Jen-Cheng
    Keywords: 生成式人工智慧
    財富管理
    Generative AI
    Wealth management
    Date: 2025
    Issue Date: 2025-09-01 15:30:15 (UTC+8)
    Abstract: 生成式人工智慧(Generative AI,簡稱 GenAI)正加速金融業數位轉型,財富管理為其優先應用領域之一。本研究以尚未於財富管理業務導入 GenAI 的 H 銀行為例,透過問卷調查該行理財人員與主管(153 份樣本),並訪談兩位具相關實務經驗的金融科技專家,從操作實務與技術規劃面向,探討 GenAI 的應用潛力與導入挑戰。研究結果顯示,客戶資料彙整與需求萃取、基金保險商品與稅務法令/作業規範查詢,以及話術模擬訓練等情境,最獲受訪者認同。受訪者普遍持審慎樂觀態度,認為 GenAI 在涉及交易建議時仍須保留人工審閱機制,並強調可解釋性與教育訓練對提升應用效率的關鍵角色。導入挑戰則集中於資料整合與技術部署,信任建立亦為重要前提,建議採分階段導入,並同步完善配套措施。
    Generative Artificial Intelligence is accelerating the digital transformation of the financial industry, with wealth management identified as one of its key application domains. This study focuses on H Bank, which has not yet implemented GenAI in its wealth management operations. Through a survey of 153 financial advisors and supervisors, complemented by in-depth interviews with two fintech experts with relevant implementation experience, this research explores the application potential and implementation challenges of GenAI from both operational and technical perspectives. The findings indicate that use cases such as customer data consolidation and demand extraction, product and regulatory information retrieval(e.g., funds, insurance, tax laws), and sales script simulation are widely recognized by respondents. While participants expressed cautious optimism, they emphasized the need for human review in transaction-related scenarios and highlighted explainability and training as critical to enhancing usage effectiveness. Key implementation challenges include data integration and technical deployment, while trust-building remains a fundamental prerequisite. The study recommends a phased approach to adoption, accompanied by supporting measures to ensure successful implementation.
    Reference: 中文參考文獻
    工商時報(2025年2月3日)。4公股銀行 強攻AI運用。https://www.ctee.com.tw/news/20250203700118-439901
    數位時代(2024年11月1日)。2024台北金融科技展登場!金控猛攻AI財管商機,FinTech有何三大亮點趨勢?https://www.bnext.com.tw/article/81112/fintech-taipei-2024?utm_source=chatgpt.com
    遠見雜誌(2024年5月28日)。生成式AI如何影響金融業?麥肯錫:銀行業利潤將因此增長600億。https://www.gvm.com.tw/article/113080
    金融監督管理委員會(2024年6月20日)。金融業運用人工智慧(AI)指引。https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202406200001&dtable=News
    金融監督管理委員會(2025年5月27日)。亞洲資產管理中心政策之推動成果。https://www.fsc.gov.tw/ch/home.jsp?dataserno=202505270001&dtable=News&id=96&mcustomize=news_view.jsp&parentpath=0,2

    英文參考文獻
    Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922
    Christiano, P., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. arXiv. https://arxiv.org/abs/1706.03741
    Davenport, T., & Alavi, M. (2023, July 6). How to train generative AI using your company’s data. Harvard Business Review. https://hbr.org/2023/07/how-to-train-generative-ai-using-your-companys-data
    Evident. (2024, October). Evident AI Index: Benchmarking the AI capabilities of major banks. https://evidentinsights.com/ai-index/
    European Commission. (2019). Ethics Guidelines for Trustworthy AI. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
    European Commission. (2020). Assessment List for Trustworthy Artificial Intelligence (ALTAI) for self-assessment. https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
    European Commission.(2024). Regulatory framework proposal on Artificial Intelligence. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
    Hadji Misheva, B., Osterrieder, J., Hirsa, A., Kulkarni, O., & Lin, S. F. (2021). Explainable AI in credit risk management. arXiv. https://arxiv.org/abs/2103.00949
    International Monetary Fund. (2024, October). Global financial stability report: Steadying the course. https://www.imf.org/en/Publications/GFSR/Issues/2024/10/22/global-financial-stability-report-october-2024
    J.P. Morgan. (2024, July 22). Quest IndexGPT: Harnessing generative AI for investable indices. https://www.jpmorgan.com/insights/markets/indices/indexgpt
    Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., & Fung, P. (2023). Survey of hallucination in natural language generation. arXiv. https://arxiv.org/abs/2202.03629
    Kang, H., Hu, S., Wang, C., & Wu, Y. (2023). Hallucination in financial large language models: An empirical analysis and mitigation strategies. arXiv. https://arxiv.org/abs/2311.15548
    Kaneko, M., & Baldwin, T. (2024). A Little Leak Will Sink a Great Ship: Survey of Transparency for Large Language Models from Start to Finish. arXiv. https://arxiv.org/abs/2403.16139
    Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Riedel, S. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems. https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
    Li, L., Chang, T.-Y., & Wang, H. (2024). Multimodal Gen-AI for fundamental investment research. arXiv. https://arxiv.org/abs/2401.06164
    Lo, A. W., & Ross, J. (2024). Can ChatGPT plan your retirement?: How large language models can evolve to provide trusted financial advice. SSRN. https://dx.doi.org/10.2139/ssrn.4722780
    Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
    Market Research.biz. (2024, March). Generative AI in Wealth Management Market. https://marketresearch.biz/report/generative-ai-in-wealth-management-market/?utm_source=chatgpt.com
    McKinsey & Company. (2023, June 14). The economic potential of generative AI: The next productivity frontier. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#key-insights
    Morgan Stanley. (2024, October 23). Morgan Stanley Research announces AskResearchGPT. https://www.morganstanley.com/press-releases/morgan-stanley-research-announces-askresearchgpt
    Morgan Stanley. (2024, June 26). AI at Morgan Stanley: Debrief Launch. https://www.morganstanley.com/press-releases/ai-at-morgan-stanley-debrief-launch
    OpenAI. (2022, November 30). Introducing ChatGPT. https://openai.com/index/chatgpt/
    OpenAI. (2023). GPT-4 technical report. arXiv. https://arxiv.org/abs/2303.08774
    O’Neil, C. (2016). Weapons of math destruction. Crown Publishing.
    Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778
    Romanko, O., Narayan, A., & Kwon, R. H. (2023). ChatGPT-based investment portfolio selection. arXiv. https://arxiv.org/abs/2308.06260
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. arXiv. https://arxiv.org/abs/1706.03762
    Description: 碩士
    國立政治大學
    國際金融碩士學位學程
    112ZB1044
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112ZB1044
    Data Type: thesis
    Appears in Collections:[國際金融碩士學位學程] 學位論文

    Files in This Item:

    File SizeFormat
    104401.pdf1135KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback