English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 82490894      Online Users : 695
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/159688
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159688


    Title: 縱向因素分析與中介效應模型:資源錯置與能源對區域所得影響
    Longitudinal Factor Analysis and Mediation Models: The Impact of Resource Misallocation and Energy Use on Regional Income
    Authors: 胡芷瑄
    Hu, Chih-Hsuan
    Contributors: 鄭宗記
    Cheng, Tsung-Chi
    胡芷瑄
    Hu, Chih-Hsuan
    Keywords: 資源錯置
    收益生產力
    線性混合效應模型
    縱向因素分析
    縱向因素分析混合模型
    區域所得差異
    Date: 2025
    Issue Date: 2025-10-02 10:57:33 (UTC+8)
    Abstract: 本研究運用多個政府行政資料,探討台灣地區發展失衡的問題,並納入鄉鎮市區層級的企業績效指標進行分析。地區發展失衡係以總要素收益生產力(Total Factor Revenue Productivity, TFPR)的變異程度作為衡量指標,該指標反映各鄉鎮內企業資源錯置與產出扭曲的程度,並作為區域扭曲程度的反向指標。研究進一步探討影響區域扭曲的潛在因素,特別是人口結構等社會經濟特徵與之間的關聯。為掌握區域異質性與潛在結構特徵,研究採用縱向混合效應因素分析模型,從多項社經變數中提取潛在結構因素。接著,構建兩個時間滯後中介模型,將企業固定資產淨額與薪資成本納入模型中作為中介變項,以評估 TFPR 與工業售電度數對各鄉鎮所得中位數的間接影響。實證結果說明了 TFPR 如何透過資本與勞動成本的傳導路徑影響地區所得表現,並突顯生產結構調整對地方經濟發展的重要性,最終提供對區域政策設計之理論洞見與實證依據。
    Reference: Adler, G., Duval, R. A., Furceri, D., Çelik, S. K., Koloskova, K., & Poplawski-Ribeiro, M.(2017). Gone with the headwinds: Global productivity. International Monetary Fund.
    Allison, P. D. (2009). Fixed Effects Regression Models. SAGE Publications.
    Alviarez, V., Cravino, J., & Ramondo, N. (2023). Firm-embedded productivity and cross-country income differences. Journal of Political Economy, 131(9), 2289-2327.
    An, X., Yang, Q., & Bentler, P. M. (2013). A latent factor linear mixed model for high-dimensional longitudinal data analysis. Statistics in Medicine, 32(24), 4229-4239.
    Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press.
    Banerjee, A. V., & Duflo, E. (2005). Growth theory through the lens of development economics.
    Handbook of Economic Growth, 1, 473-552.
    Banerjee, A. V., & Moll, B. (2010). Why does misallocation persist?. American Economic Journal: Macroeconomics, 2(1), 189-206.
    Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6),1173-1182.
    Barro, R. J., & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100(2), 223-251.
    Barro, R. J., Sala-i-Martin, X. (2004). Economic Growth (2nd ed.). MIT Press.
    Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: new procedures and recommendations. Psychological Methods, 11(2), 142– 163. https://doi.org/10.1037/1082-989X.11.2.142
    Bates, D., Mächler, M., Bolker, B., & Walker, S.(2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1),1-48.
    Bils, M., Klenow, P. J., & Ruane, C. (2021). Misallocation or mismeasurement? Journal of Monetary Economics, 124, S39-S56.
    Blood, E. A., & Cheng, D. M. (2011). The use of mixed models for the analysis of mediated data with time-dependent predictors. Journal of Environmental and Public Health,Article 2011.https://doi.org/10.1155/2011/435078。
    Bollen, K. A., Harden, J. J., Ray, S., & Zavisca, J. (2014). BIC and alternative Bayesian information criteria in the selection of structural equation models. Structural Equation Modeling, 21(1), 1-19. https://doi.org/10.1080/10705511.2014.856691
    Buera, F. J., Kaboski, J. P., & Shin, Y. (2011). Finance and development: A tale of two sectors. American Economic Review, 101(5), 1964-2002.
    Buera, F. J., & Shin, Y. (2013). Financial frictions and the persistence of history: A quantitative exploration. Journal of Political Economy, 121(2), 221–272. https://doi.org/10.1086/670271
    Busso, M., Madrigal, L., & Pagés, C. (2012). Productivity and resource misallocation in latin america. The BE Journal of Macroeconomics, 13(1), 903-932.
    Cashin, A. G., & Lee, H. (2021). An introduction to mediation analyses of randomized controlled trials. Journal of Clinical Epidemiology, 131,161-164.
    Cheung, M. W.-L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 14(2),227– 246.
    Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558-577.
    International Monetary Fund. (2015). Causes and consequences of income inequality: A global perspective. IMF Staff Discussion Note, SDN/15/13. https://www.imf.org/external/pubs/ft/sdn/2015/sdn1513.pdf
    Delattre, M., Lavielle, M., & Poursat, M. A. (2014). A note on BIC in mixed-effects models. Electronic Journal of Statistics, 8(1), 456-475.
    Demirer, M. (2020). Production function estimation with factor-augmenting technology: An application to markups. Job Market Paper.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-38.
    Diggle, P. J., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data(2nd ed.). Oxford University Press.
    Eberly, J. C., Rebelo, S., & Vincent, N. (2012). What explains the lagged investment effect? Journal of Monetary Economics, 59(4), 370– 380. https://doi.org/10.1016/j.jmoneco.2012.04.006
    Fan, S., & Zhang, X. (2004). Infrastructure and regional economic development in rural China. China Economic Review, 15(2), 203-214.
    Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied Longitudinal Analysis (2nd ed.). Wiley.
    Gennaioli, N., La Porta, R., Lopez-de-Silanes, F., Shleifer, A. (2014). Growth in regions. Journal of Economic Growth, 19(3), 259– 309.
    Gandhi, A., Navarro, S., & Rivers, D. A. (2020). On the identification of gross output production functions. Journal of Political Economy, 12(8), 2973-3016.
    Gelman, A., Carlin, J. B., Stern, H. S.,Dunson, D. B., Vehtari, A., & Rubin, D. B.(2013). Bayesian Data Analysis(3rd ed.). Chapman and Hall/CRC.
    Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
    Goldstein, H. (2011) Multilevel Statistical Models.Multilevel Statistical Models. New Jersey: John Wiley & Sons.
    Hall, R. E., & Jones, C. I. (1999). Why do some countries produce so much more output per worker than others? The Quarterly Journal of Economics, 114(1), 83-116.
    Hedeker, D., & Gibbons, R. D. (2006). Longitudinal Data Analysis. New Jersey: John Wiley & Sons
    Hirschfeld, G., & Brachel, R. (2014). Multiple-Group confirmatory factor analysis in R – A tutorial in measurement invariance with continuous and ordinal indicators. Practical Assessment, Research & Evaluation, 19, 1-12. https://doi.org/10.7275/qazy-2946
    Hox, J. J.(2010). Multilevel Analysis:Techniques and Applications(2nd ed.). Routledge.
    Hsieh, C.-T., & Klenow, P. (2009). Misallocation and manufacturing tfp in China and India. Quarterly Journal of Economics, 124(4), 1403-1448.
    Hsieh, C.-T., & Moretti, E. (2019). Housing constraints and spatial misallocation. American Economic Journal: Macroeconomics, 11(2), 1-39.
    Jones, C. I. (2013). Misallocation, input-output economics, and economic growth. In Advances in Economics and Econometrics: Tenth World Congress (Vol. 2, pp. 419-458). Cambridge University Press.
    Jose, P. E. (2016). Doing Statistical Mediation and Moderation. New York, NY: Guilford Press.
    Jovanovic, B. (2014). Misallocation and growth. American Economic Review, 104(4), 1149-1171.
    Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with many groups: a comparison of five approaches. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 524-544. https://doi.org/10.1080/10705511.2017.1304822
    Klenow, P. J., & Rodriguez-Clare, A. (1997). The neoclassical revival in growth economics: Has it gone too far? NBER Macroeconomics Annual, 12, 73-103.
    Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963– 974.
    Li, S., E, H., Wang, L., & Xue, H. (2023). Factor misallocation and optimization in China’s manufacturing industry. Sustainability, 15(5), 4279.
    Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.
    Biometrika, 73(1), 13– 22.
    Maas, C. J. M., & Hox, J. J.(2005). Sufficient sample sizes for multilevel modeling. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 1(3),86-92.
    MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. Lawrence Erlbaum Associates.
    MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593– 614.
    MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: distribution of the product and resampling methods.Multivariate Behavioral Research, 39(1), 99-128.
    Markovits, R. S. (1975). The causes and policy significance of pareto resource misallocation: a checklist for micro-economic policy analysis. Stanford Law Review, 28(1), 1-46.
    McLachlan, G., Peel, D., & Bean, R. (2003). Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics & Data Analysis, 41(3), 379-388. https://doi.org/10.1016/S0167-9473(02)00183-4
    Meredith, W., & Horn, J. L. (2001). The role of measurement invariance in understanding group differences in multivariate data. Multivariate Behavioral Research, 36(3), 527–552.
    Midrigan, V., & Xu, D. Y. (2014). Finance and misallocation: Evidence from plant-level data. American Economic Review, 104(2), 422-458.
    Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. Routledge.
    Moll, B. (2014). Productivity losses from financial frictions:can self-financing undo capital misallocation? American Economic Review, 104(10), 3186-3221.
    Ounajim, A., Slaoui, Y., Louis, P.-Y., Billot, M., Frasca, D., & Rigoard, P. (2023). Mixture of longitudinal factor analyzers and their application to the assessment of chronic pain. Statistics in Medicine, 42(18), 3259– 3282. https://doi.org/10.1002/sim.9804
    Parente, S. L., & Prescott, E. C. (1994). Barriers to technology adoption and development. Journal of Political Economy, 102(2), 298-321.
    Parente, S. L., & Prescott, E. C. (1999). Monopoly rights: A barrier to riches. American Economic Review, 89(5), 1216-1233.
    Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press.
    Pinheiro, J. C., & Bates, D. M.(2000). Mixed-Effects Models in S and S-PLUS. New York:Springer.
    Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 34(1),437– 448.
    Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4),717-731.
    Proust, C., Jacqmin-Gadda, H., Taylor, J. M. G., Ganiayre, J., & Commenges, D. (2006). A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data. Biometrics, 62(4), 1014-1024. https://doi.org/10.1111/j.1541-0420.2006.00573.x
    Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods(2nd ed.). Thousand Oaks, CA: Sage Publications.
    Restuccia, D., & Rogerson, R. (2008). Policy distortions and aggregate productivity with heterogeneous establishments. Review of Economic Dynamics, 11(4), 707-720.
    Restuccia, D., & Rogerson, R. (2017). The causes and costs of misallocation. Journal of Economic Perspectives, 31(3), 151-174.
    Rijnhart, J. J. M., Twisk, J. W. R., Valente, M. J., & Heymans, M. W. (2022). Time lags and time interactions in mixed effects models impacted longitudinal mediation effect estimates.
    Journal of Clinical Epidemiology, 151, 143-150. https://doi.org/10.1016/j.jclinepi.2022.07.004
    Rodrigue, J., Shi, Q., & Tan, Y. (2024). Trade policy uncertainty & resource misallocation. European Economic Review, 164, 104720.
    Rodríguez-Pose, A. (2018). The revenge of the places that don’t matter (and what to do about it). Cambridge Journal of Regions, Economy and Society, 11(1), 189-209.
    Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27– 42.
    Rotemberg, M., & White, T. K. (2021). Plant‐to‐Table(s and Figures): Processed Manufacturing Data and Measured Misallocation. Mimeo.
    Roy, J., & Lin, X. (2000). Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics, 56(4),1047-1054.
    Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461– 464.
    Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press.
    Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd ed.). Sage.
    Spearman, C. (1904). ”General intelligence,” objectively determined and measured. American Journal of Psychology, 15(2),201-292.
    Twisk, J. W. R. (2013). Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cambridge, United Kingdom: Cambridge University Press.
    Uras, B. R. (2014). Journal of Banking & Finance, 39, 177-191. Corporate financial structure, misallocation and total factor productivity.
    West, B. T., Welch, K. B., & Galecki, A. T.(2014). Linear Mixed Models:A Practical Guide Using Statistical Software. Chapman and Hall/CRC.
    Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). The MIT Press.
    Description: 碩士
    國立政治大學
    統計學系
    112354027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112354027
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402701.pdf1845KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback