
Multiagent Coordination
 in Tightly Coupled Task Scheduling

Abstract
We consider an environment where agents' tasks are tightly
coupled and require real-time scheduling and execution. In
order to complete their tasks, agents need to coordinate
their actions both constantly and extensively. We present
an approach that consists of a standard operating procedure
and a look-ahead coordination. The standard operating
procedure regulates task coupling and minimizes
communication. The look-ahead coordination increases
agents' global visibility and provides indicative information
for decision adjustment. The goal of our approach is to
prune decision myopia while maintaining system
responsiveness in real-time, dynamic environments.
Experimental results in job shop scheduling problems show
that (1) the look-ahead coordination significantly enhances
the performance of the standard operating procedure in
solution quality, (2) the approach is capable of producing
solutions of very high quality in a real-time environment.

Introduction
Most research on multiagent systems has considered
loosely coupled agents (Huhns 1987) (Bond & Gasser
1988) (Gasser & Huhns 1989) that coordinate their actions
for mutual benefit. In most of these environments, agent
interaction occurs only when one agent has data, facts,
views, and solutions that are of interest to other agents
(Durfee & Lesser 1991), or when agents need to resolve
their conflicts (Sycara 1988) (Conry, Meyer, & Lesser
1988), etc. In other words, coordination activity, although
essential, does not constitute a substantial part of an
agent's effort to achieve its goal. In this paper, we consider
an environment where agents' tasks are tightly coupled in
the sense that (1) there are only enabling relationships
among subtasks and each task usually consists of more
than two subtasks, thus creating cascading effects; (2)
subtasks are distributed among agents and enabling
relationships among agents are of multi-directions, e.g.,
for task1, A → B → C → D ; for task2, B → D → C → A,
etc., where A, B, C, D are agents, and → represents an
enabling relationship, thus creating complex cause-effect
relationships among agents; (3) the objective function is
related to task completion time only and can not be broken
down into “quality” function of subtasks, in other words,
agents have no local utility function to guide their
decisions. Therefore, agents need to coordinate their
actions constantly and extensively in order to both

complete their tasks and improve system performance. The
multiagent system also needs to operate in real time that
involves both scheduling and task execution. The
characteristics of the environment require substantial
coordination among agents, but exclude time-consuming,
elaborate coordination activities.

We present an approach that consists of two parts, e.g.,
a standard operating procedure and a look-ahead
coordination. The standard operating procedure, adopted
from a generic work-flow model, is predefined according
to agents' relationships. It regulates task coupling,
minimizes communication, and ensures smooth real-time
task execution without violating technological constraints
of a task. We developed a look-ahead coordination that
operates on top of the standard operating procedure and
enhances its performance by increasing agents' visibility.
The approach has three features. First, it is prearranged.
Agents abide by an operating procedure and adopt
predetermined cues/hints for adjusting their actions. This
allows agents to disentangle their task coupling and
coordinate their actions in real time. Second, it is self-
contained. Agents consult information from others to
decide their actions. Information is exchanged by message
sending. Agents do not perform query. Third, it is
responsive. Agents have a “perceive-and-act” type of
coordination behavior. This enables the integration of task
scheduling and execution in real-time multiagent systems.

The task model we consider can be formulated as
distributed constraint optimization (DCOP). A constraint
satisfaction problem (CSP) (Mackworth 1987) involves a
set of variables Χ = {x1, x2,…, xm}, each having a
corresponding set of domain values V = {v1, v2,…, vm },
and a set of constraints C = {c1, c2, …, cn} specifying
which values of the variables are compatible with each
other. A solution to a CSP is an assignment of values (an
instantiation) to all variables, such that all constraints are
satisfied. Recent work in DAI has considered the
distributed CSPs (DCSPs) (Huhns & Bridgeland 1991)
(Sycara et al. 1991) (Yokoo et al. 1992) (Liu & Sycara
1995a) in which variables of a CSP are distributed among
agents. Each agent has a subset of variables and
coordinates with other agents in instantiating its variables
so that a global solution can be found. DCOP is an
extension of DCSP in which a subset of the constraints are

Jyi-Shane Liu

Department of Computer Science
National Cheng Chi University

Taipei, TAIWAN
E-mail: jsliu@cs.nccu.edu.tw

Katia P. Sycara

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.
E-mail: katia@cs.cmu.edu

relaxed to achieve optimization of a given objective
function (Liu & Sycara 1995b).

In our task model, each subtask is a variable that needs
to be instantiated with an execution start time. Variables
are distributed among a set of agents to be instantiated in
real time. The problem constraints include precedence
relations between subtasks and agents' processing capacity.
An objective function measures the quality of task
schedule produced by the agents. Since the problem is
solved in real time, the goal is not to find the optimal
solution but a solution as best as possible. (Yokoo et al.
1992) describes work on distributed constraint satisfaction
problems (DCSPs). The work focused on complete
algorithms for solving DCSPs and was not concerned with
solution optimization and time restriction. (Decker &
Lesser 1995) presented a family of coordination
algorithms for distributed real-time schedulers. They
considered a task environment where task
interrelationships can be explicitly and quantitatively
represented as functions that describe the effect of agents'
decisions on performance. In our task model, such a
function is impossible to either define beforehand or
estimate on-line with any precision.

Our work can also be viewed as addressing the problem
of distributed agenda ordering, e.g., at any given time, an
agent might have multiple tasks waiting to be processed;
how does the agent coordinate with other agents to decide
its local agenda, when its decision affects other agents and,
ultimately, the performance of the group of agents? This is
one of the most commonly encountered problem in DAI
research and has been widely studied in many application
domains, such as Distributed Vehicle Monitoring Testbed
(DVMT) (Lesser & Corkill 1983). The abstract solution,
perhaps a direct result from human experiences, has been
using sophisticated local control coupled with exchange of
meta-level information (as in the work of Partial Global
Planning (PGP) (Durfee & Lesser 1991)). In our approach,
agents are coordinated by local prioritizing strategies and
non-local look-ahead information. The unique
contributions of our work are in presenting a specific
coordination solution to a tightly coupled task model and
in providing a clear description of local decision making
and meta-level information that is applicable in a
significant class of scheduling problems.

In this paper, we present initial experimental results to
test the utility of the approach and investigate its
performance factors. The study was conducted in the
domain of real-time job shop schedule optimization.
Experimental results show that the approach is capable of
producing solutions of very high quality in a real-time
environment. The performance factors include (1)
accuracy of agents' forecasts, (2) complexity of agents'
interaction, and (3) availability of indicative information.

Job Shop Schedule Optimization

A job shop is a manufacturing production environment
where a set of m jobs (or tasks) J = {J1, ..., Jm} have to be
performed on a set of n machines (or resources) R= {R1, ...,
Rn}. Each job Ji is composed of a set of sequential
operations (or subtasks) oprij, i = 1, ..., m, j = 1, ..., m(i),
m(i) ≤ n, where i is the index of the job, and j is the index
of the step in the overall job. Each operation oprij has a
deterministic processing time pij and has been pre-assigned
a unique resource that may process the operation. Jobs can
have very different numbers of operations and sequences
of using resources. The job shop scheduling problem
involves synchronization of the completion of m jobs J on
n resources (machines) R and is one of the most difficult
NP-complete combinatorial optimization problems
(French 1982). The problem (hard) constraints of job shop
scheduling include (1) operation temporal precedence
constraints, i.e., an operation must be finished before the
next operation in the job can be started, (2) release date
constraints, i.e., the first operation of a job Ji can begin
only after the release date rdi of the job, and (3) resource
capacity constraints, i.e., resources have only unit
processing capacity. A solution of the job shop scheduling
problem is a feasible schedule, which assigns a start time
stij and an end time etij to each operation oprij that satisfies
all problem constraints.

Given a job shop scheduling problem, the umber of
feasible solutions can be enormous. For example, for a
problem with m jobs of n operations on n resources, each
resource has m! possible processing sequences, and the
total number of possible schedules is (m!)n since all
precedence constraints between operations can be satisfied
by right shifting operations toward the end of time.
Organizations are usually interested in optimizing a
schedule according to objective functions that reflect the
economic goals. In his paper, we consider a commonly
used objective function, called weighted tardiness, where
each job Ji is given a due date ddi and a weight wi that
represents the importance of the job. Weighted tardiness
(WT) of a schedule is defined by WT = ∑i =1

m wi × max
[0, (Ci − ddi)], where wi is the weight of individual job Ji

and Ci is the completion time of Ji. The goal is to produce
a schedule with minimized weighted tardiness.

On-line job shop scheduling is a typical multiagent task
in a tightly coupled, real-time environment. We assign
each resource to an agent that is responsible for making
decision and monitoring usage of the resource. Agents are
tightly coupled with each other because of the precedence
constraints between operations and the fact that they can
process only one operation at a time.

A Standard Operating Procedure

- Dispatch Scheduling
Since a job consists of a set of operations that has to be
performed in sequential order by different agents, it is

convenient to follow a work-flow model where a job
enters the shop, visits different agents to have its
corresponding operations performed, and then leaves the
shop. A job's routing is the sequential set of agents that the
job visits before its completion. The arrival time of a job
at an agent is the time at which the job leaves the previous
agent in its routing, and is equivalent to the ready time of
the operation to be performed by the agent.

Dispatch scheduling is a way of generating schedules by
either simulating or actualizing the process of jobs being
performed by the agents. Each agent has a buffer where
arriving jobs (or equivalently, the operations ready to be
processed) can wait until they are processed. Jobs are
released to the buffers of the first agents in their routings
after their release dates. After a job is being processed by
an agent, it travels to the buffer of the next agent in the
routing of the job. At any point in time, an agent is in one
of four states: (1) the agent is executing an operation, (2)
the agent has just finished executing an operation, and
there are operations ready for execution, (3) the agent is
not executing an operation, and there are operations that
have just become ready for execution, (4) the agent is not
executing an operation, and there is no operation ready for
execution. In both states (2) and (3), an agent selects an
operation from its buffer to execute.

For implementation, it is convenient to view that each
operation has been pre-allocated to the buffer of its
designated agents. The first operation of a job is only
eligible to be selected for processing after the release date
of the job. An operation that is not the first operation of a
job is eligible to be selected only after its immediate
preceding operation has finished its processing. We give
an algorithmic description of dispatch scheduling as
follows:

T = − 1 ;
For each agent Ai ;

Oi
u = the set of unprocessed operations ;

Oi
e = the set of eligible operations ;

while (∃Oi
u
 ≠ ∅) do

T = T + 1 ;
For each agent Ai ;
if Ai is not executing an operation

Oi
e = updated from Oi

u i;
if (Oi

e
 ≠ ∅)

opr = selected operation from Oi
e;

set start time of opr to T ;
remove opr from Oi

u and Oi
e;

fi;
fi;

od.
Dispatch scheduling is simple, robust, and has been

used for years as a standard operating procedure in human
organizations and production/service facilities. Mostly, an
agent selects an operation based on a priority rule that

assigns priority indices to operations waiting to be
processed. For due-date-based objectives (e.g., weighted
tardiness), priority rules calculate priority index of an
operation using due date of the job in various ways, e.g.,
earliest due date, minimum slack time, etc.

From the point of view of multiagent systems, dispatch
scheduling is a robust coordination mechanism at the
procedural level. It ensures technological constraints are
satisfied, e.g., each task is completed properly by agents'
sequential execution of its constituted operations. Agents
communicate by reading/writing information associated
with operations, e.g., operation status, job due dates, etc.
The system can operate in dynamic, real-time
environments. However, system performance in terms of
solution quality suffers from agents' myopic decisions
based on only local and current conditions (characteristics
of operations currently competing for execution). Our
research hypothesis was that agent coordination that
broadens agents' views of problem solving conditions can
obtain higher quality solutions without sacrificing
computational efficiency.

A Look-ahead Coordination
- Coordinated Forecasts

We developed a look-ahead coordination mechanism,
called coordinated forecasts (COFCAST), that operates on
top of dispatch scheduling to improve its performance.
COFCAST increases agents' visibility by incorporating
useful indicative information (cues) based on global and
future conditions. At each decision point, agents make a
decision as well as survey local situations by predicting
their future decisions. These forecasts are coordinated
among agents and predefined indicative information is
extracted. Agents then utilize the indicative information
that embeds downstream and global conditions to make
better decisions.

In tardiness related objectives, the subject of
coordination is the operation sequencing of agents so as to
reduce the tardiness cost of the final schedule. We observe
that a job's tardiness cost depends on the end time of its
last operation only. In other words, no matter whether a
job's upstream operations are processed earlier or just in
time for the last operation to end at the same time, they
would have the same tardiness cost. While a job is being
processed by an agent, other jobs waiting to be processed
by the same agent are delayed because of agents' unit
capacity. Therefore, a good schedule is a schedule in
which jobs are processed only when necessary to ensure
the prompt completion of their last operations. This means
that if we can reduce unnecessary earliness of upstream
operations, the resulting schedule will have reduced
tardiness.

Based on this observation, we developed the innovative
notion of relaxed urgency (RU), where jobs' due dates

used in priority rules are replaced by relaxed due dates
that are dynamically adjusted to take downstream and
global processing conditions into account. In particular, if
a job is predicted to be tardy in the downstream processing,
then the first unprocessed operation in the job is not
regarded as urgent as it was to meet the job's original due
date. Its urgency is relaxed accordingly by the tardiness of
the downstream operations. For example, in Figure 1, at
time t, the second operations of J1 and J2 are competing
for the same resource. Based on the prediction of both
jobs' downstream processing, J2 should have a higher
priority to use the resource than J1. Given the complex
interaction among agents' operation sequencing in a
general job shop, the approach hinges on the ability to
coordinate different forecasts from agents and extract
useful information for current decisions.

In COFCAST-RU, agents forecast their future
processing by assigning predicted start times and
predicted end times to a partial set of the unprocessed
operations. To coordinate agents' forecasts, we assign a
predicted ready time to each operation, which is
dynamically adjusted during the scheduling process.
Initially, an operation's predicted ready time is set to its
earliest start time estij = rdi + ∑k=1

j-1pik, where pik is the
processing time of an operation oprik. We consider two
actions of forecast coordination. First, an agent forecasts
future processing only on operations that are “in view”, i.e.,
its predicted ready time is less than or equal to the end
time of the selected operation. This reduces the likelihood
of making incorrect forecast by excluding operations that
are not ready for processing in near future. Second,
operations' predicted ready times are dynamically adjusted
according to the predicted start times of their upstream
operations. Specifically, if the predicted end time of an
operation oprij is later than the predicted start time of
opri(j+1), then the predicted ready time of opri(j+1) is set to
the predicted end time of oprij. This adjustment of
predicted ready times accounts for agents' processing
interaction and increases forecast credibility.

An agent's forecast is done after an operation has been
selected for processing. According to the priority rule, an
agent sequences the set of unprocessed operations that are
in view and assigns predicted start times and predicted end

times to the set of operations. Then, jobs' relaxed due
dates are adjusted by the agent according to the prediction
on the set of operations. For a job Ji with the first
unprocessed operation oprij, the relaxed due date ddi

r is
set by, ddi

r= max[ddi, maxq=j+1
m(i)

 (petiq + ∑r=q+1
m(i)

 pir)],
where petiq is the predicted end time of an operation opriq.
In other words, relaxed due date ddi

r of a job Ji is adjusted
by its downstream operation with the greatest predicted
tardiness. If none of the downstream operations is
predicted to be tardy, ddi

r is set by its original job due date
ddi. Note that the notion of relaxed urgency is realized by
dynamically adjusting jobs' relaxed due dates according to
downstream processing forecasts.

In summary, at each point of scheduling an operation,
an agent performs four actions: (1) select an operation
based on a priority rule using relaxed due dates, and assign
its start time and end time, (2) based on a priority rule,
assign predicted start times and predicted end times of a
partial set of unprocessed operations that are in view, (3)
adjust jobs' relaxed due dates based on the prediction, and
(4) coordinate future forecasts by adjusting operations'
predicted ready times. We describe the algorithmic
procedure as follows, where prtij is the predicted ready
time of an operation, pstij is the predicted start time, petij is
the predicted end time, and estij is the earliest start time.

(Initialization)
For i = 1, …, m, j = 1, …, mi;

prtij = estij;
while (an agent Ak becomes idle at time t);
(Schedule an operation)

Ok
e = the set of operations eligible for scheduling ;

oprij = selected operation from Ok
e, using relaxed

due dates ;
stij = t;
etij = t + pij;

(Forecast future processing)
Ok

u = the set of unprocessed operations ;
Ok

v = the set of operations in view (updated from
Ok

u);
(∀ oprpq ∈ Ok

v , prtpq ≤ etij)
Sk

v = sequence of Ok
v by priority rule;

assign pstpq and petpq for oprpq in Sk
v according to the

sequence beginning at etij;
(Update relaxed due date)

Js = the set of jobs of operations in Sk
v;

For each job Jp in Js;
ddp

r= max [ddp, maxq
m(p)

 (petpq + ∑g=q+1
m(p)

ppg)];
(Coordinate future forecast)

For each job Jp in Js ;
oprpq = the first operation remaining to be

processed ;
For g = q + 1 to m(p);

if (pstpg has not been set);

due date

due date

Figure 1: Example of Relaxed Urgency

Job 1

Job 2

t

competing prediction

continue on next job in Js ;
fi;
if (pstpg < petp(g-1));

pstpg = petp(g-1);
fi;

od.

An Example
We briefly illustrate the effect of coordinated forecasts
with a simple example schedule shown in Figure 2. The
problem has four jobs that need to be performed by three
agents. The schedule was generated by dispatch
scheduling with a simple due-date-based heuristic, e.g.,
minimum slack time sij = ddi − ∑k=j

m
i pij − t. Due dates of J1

(dd1), J2 (dd2), J3 (dd3), and J4 (dd4), are 21, 17, 16, and 20,
respectively. At t = 0, A1 selects opr41 because it has less
slack time (s41 = 20 − (5 + 8 + 4) − 0 = 3) than opr11 (s11 =
21 − (3 + 5 + 8) − 0 = 5). Both A2 and A3 schedule opr31

and opr21, respectively, because they are the only ready
operations. At t = 5, both opr11 and opr22 are ready for A1.
Since s11 = 21 − (3 + 5 + 8) − 5 = 0 and s22 = 17 − (4 + 7)
− 5 = 1, A2 selects opr11. The process continues until all
operations are performed by the agents. The total tardiness
cost of the schedule is (31 − 21) + (23 − 17) + (19 − 16) +
(23 − 20) = 22, from J1 , J2 , J3 , and J4 ,respectively.

Figure 3 shows a schedule generated by the COFCAST-
RU enhanced dispatch scheduling. We focus on the
forecast of A2 since it changes the schedule. After opr31 is
scheduled, opr42, opr23, and opr13 are all in A2 ‘s view, e.g.,
prt42 = est42 = 5, prt23 = est23 = 8, prt13 = est13 = 8, ≤ et31

= 8. A2 predicts its future processing sequence as (opr42,
opr23, opr13) based on minimum slack time. Therefore,
pst42 = 8, pet42 = 16, pst23 =16, pet23 = 23, pst13 = 23, and
pet13 = 31. With this forecast, A2 updates relaxed due dates
of J4, J2, and J1, e.g., dd4

r= max [20, 16 + 4] = 20, dd2
r=

max [17, 23] = 23, and dd1
r= max [21, 31] = 31. At t = 5,

A1 calculates slack times of opr11 and opr22 using relaxed
due dates dd1

r and dd2
r, and finds that s22 = 23 − (4 + 7) −

5 = 7 < s11 = 31 − (3 + 5 + 8) − 5 = 10. Therefore, opr22 is

selected, instead of opr11. Similarly, opr32 is scheduled
before opr11. The total tardiness cost of the schedule is (33
− 21) + (23 − 17) + (16 − 16) + (20 − 20) = 18, from J1 ,
J2 , J3 , and J4, respectively. The example shows that, with
the indicative information of relaxed due dates, A1 adjusts
its decisions to take A2's processing conditions into
account. This look-ahead coordination improves quality of
the generated schedule.

Evaluation of the Approach
We hypothesized that in a tightly coupled, real-time
environment, system performance can be improved by
increasing agents' visibility on global conditions and
extracting useful cues for agents' decision adjustment.
Agents' predictions of future decisions are used and
written on a shared memory so that agents can obtain a
broader view of problem solving conditions. We
developed relaxed due date as an useful indication of
global conditions that is incorporated in agents' decision
rules. Analytically, we can identify a number of factors of
this look-ahead coordination: (1) the accuracy of the
decision rule used in agents' decision forecasts, (2) the
credibility of the relaxed due date information indicating
global conditions, which is affected by the complexity of
agents' interaction, (3) the availability of indicative
information for decision adjustment.

In job shop scheduling, a more accurate priority rule
produces better schedules. The first factor is related to the
accuracy of the priority rule used in dispatching an
operation since agents use the same priority rule to predict
future decisions. The second and the third factors are
related to the shop conditions. Most of the agents'
interaction conditions can be measured by the number of
bottleneck resources in the shop. The complexity of
agents' interaction increases as the number of bottleneck
resources increases. The other shop condition of concern
is the due date tightness of jobs. Since jobs' due dates are
relaxed only when their downstream operations are
predicted to be tardy, this indicative information is less

Figure 2: Example of dispatch scheduling

Agent 1

Agent 2

Agent 3

0 5 8 12 16

opr11opr41 opr22 opr32

dd2 dd4 dd1dd3

8 16 23 31

8 13 16 23
Time Horizon

19

opr12opr21 opr33 opr43

Job 1 Job 4Job 2 Job 3

opr31 opr23 opr13opr42

4

available in shops with loose due dates than in shops with
tight due dates.

We conducted an empirical study to test our hypothesis
and analysis of the approach. Our goals are to: (1)
compare the performance of COFCAST-RU enhanced
dispatch scheduling and regular dispatch scheduling, (2)
examine the effect of each of the three factors we
identified on system performance. The experiments were
conducted on a set of problems created in (Narayan et al.
1994) that consists of a total of 270 problems. Each
problem has 50 jobs of 10 different routes and 5 resources.
The jobs arrive dynamically with a Poisson distribution.
Each job has one to five operations, and is assigned a due
date and a weight that represents its importance. The
objective function is the weighted tardiness of the schedule.
We consider a set of priority rules - WCOVERT,
S/RPT+SPT, CR+SPT, ATC, that are commonly used in
Operations Research, and their more aggressive versions -
X-WCOVERT, X-SRPT/SPT, X-CR+SPT, X-ATC, that
strategically insert resource idle times that can be utilized
to process more important jobs. For detail of these priority
rules, please refer to (Morton & Pentico 1993).

For the purpose of experimentation, we implemented
the coordination technique based on a blackboard model,
e.g., agents communicate by reading/writing information
on a shared memory space. This implementation short-cut
does not affect our study of the performance of the look-
ahead coordination. Our coordination technique is realistic
for the following reasons: (1) a standard operating
procedure is perhaps one of the most feasible approach in
such a tightly coupled, real-time environment; (2) agents
exchange very simple messages (e.g., operation start times,
jobs’ relaxed due dates, etc.) and need no response from
other agents; (3) the look-ahead coordination adds only
little overhead to the standard operating procedure.

Experimental Results
We report our experimental results in performance indices.
The performance index (PI) of a method x on a problem is
calculated by PIx = 100% × (Sx − SB) / (SS − SB), where Sx

is the score of method x, SB is the best score known, and SS

is the score of a ``strawman''. We used the naïve First
Come-First Serve (FCFS) rule as the ``strawman''. Because
job shop schedule optimization is NP-complete and
because for many of these problems there is no optimum
known, we consider as the optimal values the results from
an extensive search technique, e.g., Tabu Search, reported
in (Narayan et al. 1994). The performance index can be
interpreted as the percentage of error of each method from
the estimated optimal.

 rules dispatch w/ COFCAST imp.

 X-WCOVERT 5.46 6.08 −11.4%

 WCOVERT 6.69 6.85 −2.4%

 S/RPT+SPT 7.20 6.40 +11.1%

 X-S/RPT+SPT 6.02 5.04 +16.3%

 CR+SPT 5.65 4.65 +17.7%

 X-CR+SPT 4.20 3.23 +23.1%

 ATC 4.75 3.30 +30.5%

 X-ATC 3.38 1.82 +46.2%

Table 1: Performance of COFCAST-RU on dispatch
scheduling

Table 1 reports the average performance on the problem
set by regular dispatch scheduling and COFCAST-RU
enhanced dispatch scheduling with each priority rule we
considered. COFCAST-RU improves system performance
with six out of eight priority rules. With X-ATC rule,
COFCAST-RU improved the scheduling quality of
dispatch scheduling by 46.2%, and obtained a
performance index of 1.82, e.g., 1.82% from the estimated
optimal. The results show that COFCAST-RU is able to
improve the performance of dispatch scheduling and is
quite effective with both ATC and X-ATC rules.

Figure 3: Example of dispatch scheduling enhanced by look-ahead coordination

Agent 1

Agent 2

Agent 3

0 5 9 13 16

opr41 opr22 opr32

dd2 dd1

8 16 23 33

4 13 16 25
Time Horizon

20

opr12opr21 opr33 opr43

Job 1 Job 4Job 2 Job 3

opr31 opr23 opr13opr42

opr11

dd3 dd4

Computationally, dispatch scheduling is very fast. For
example, for a problem of 10 jobs and 5 machines, e.g., 50
operations, it took only 0.1 CPU seconds to generate a
schedule. The look-ahead coordination is computationally
efficient. It requires only 1.6 times the computational cost
of regular dispatch scheduling in our experiment.

The results also reveal the effect of the accuracy of a
priority rule. In general, COFCAST-RU improves dispatch
scheduling better when the priority rule becomes more
accurate, e.g., from SRPT/SPT to CR+SPT, to ATC.
COFCAST-RU does not work well when COVERT rule is
used because its priority index function does not
differentiate jobs with large slack times, e.g., they are all
assigned an index of zero. This is problematic for making
forecast as it may lead to erroneous information and bad
decision adjustment. In addition, for the same priority rule,
the effect of COFCAST-RU was magnified by the
aggressive version (X-) of the rule. Overall, the results
show that the success of the look-ahead coordination is
proportional to the accuracy of agents' decision rules.

COFCAST-RU ImprovementPriority

Rules Bot.=1 Bot.=2 Bot.=5

S/RPT+SPT 17.1% 13.5% 3.4%

X-SRPT+SPT 27.0% 17.0% 6.7%

CR+SPT 27.9% 19.8% 6.9%

X-CR+SPT 37.9% 23.6% 10.5%

ATC 37.6% 32.1% 20.8%

X-ATC 55.6% 45.8% 36.2%

Table 2: Performance improvement of COFCAST-RU by
numbers of bottleneck resources

Table 2 reports the performance of COFCAST-RU in
terms of improvement percentage over regular dispatch
scheduling in problems with different number of
bottleneck resources. COFCAST-RU's improvement
percentage monotonically drops as the number of
bottleneck resources increases. The reason is that when
there are more than one bottleneck resource, interaction
among resources becomes more complex.

While agents extract indicative information (relaxed due
dates) from different forecasts by selecting the one
predicting the most tardiness, the credibility of this
information is reduced as the number of bottleneck
resources increases. Overall, the results show that the
look-ahead coordination is affected by the complexity of
agents' interaction. However, the effects are less
substantial when more accurate decision rules are used.

Table 3 reports the performance of COFCAST-RU in
terms of improvement percentage over regular dispatch

scheduling at different levels of due date tightness. In
problems with loose due dates, e.g., tardy=0.5,
COFCAST-RU performed less well than regular dispatch
scheduling with less accurate rules. However, COFCAST-
RU's improvement percentage sharply increases when due
dates become tighter. This is related to the fact that the
availability of indicative information depends on due date
tightness. In COFCAST-RU, indicative information (e.g.,
relaxed due date) is available only when jobs are predicted
to be tardy. Therefore, in problems with tighter due dates,
COFCAST-RU performs considerably well in improving
dispatch scheduling by using more indicative information.
In problems with loose due dates, occasional indicative
information seems to mislead agents' decisions when the
decision rule is less accurate. Overall, the results show that
the availability of indicative information has the most
significant effect on the look-ahead coordination.

COFCAST-RU ImprovementPriority

Rules Tardy=0.5 Tardy=0.7 Tardy=0.9

S/RPT+SPT -14.8% 12.6% 21.9%

X-SRPT+SPT -10.5% 18.3% 30.6%

CR+SPT -18.8% 17.8% 32.8%

X-CR+SPT -20.2% 20.6% 48.7%

ATC 1.3% 27.2% 38.1%

X-ATC 11.4% 37.4% 61.2%

Table 3: Performance improvement of COFCAST-RU by
due date tightness

Conclusions
We have presented an approach for multiagent
coordination in tightly coupled, real-time environments.
The approach consists of a standard operating procedure
and a look-ahead coordination. The main contribution of
the paper is the development of a computationally efficient
coordination technique that can easily be integrated with a
standard operating procedure (e.g., dispatch scheduling) to
improve system performance in tightly coupled, real-time
environments. We have applied the approach to job shop
scheduling, one of the most difficult NP-complete
combinatorial optimization problems. Experimental results
show that the approach effectively enhances the
performance of dispatch scheduling for optimizing
objective of weighted tardiness. We have also obtained
similar results for other objective functions, e.g.,
makespan. Our future work includes extension to agents in
charge of multiple resources and jobs with substitutable
resources.

The approach is also potentially useful for extending the

contract net protocol (CNP) (Davis & Smith 1983). While
CNP has been extended to deal with a competitive setting
(Fischer et al. 1995) and varying levels of commitment by
bounded rational self-interested agents (Sandholm &
Lesser 1995), temporal planning (e.g., deadlines,
makespan) is very important in many real world problems
(e.g., project management). The approach provides a
coordinated temporal look-ahead capability that is
potentially useful for extending CNP in problems that
involve temporal objectives. In the envisioned CNP
extension, a manager agent provides additional
information, e.g., task deadlines and interdependency. A
contractor agent uses this information and an extension of
our coordination procedure to estimate its local schedule
and see whether it can perform the task within the
specified deadlines. This would be helpful for the
contractor agent in deciding whether to bid for the task.
This capability is particular useful when (1) tasks have
deadlines and interdependency, and (2) when a contractor
agent receives penalties for not performing a task by its
deadline. We are currently investigating this CNP
extension.

References
Bond, A. H., and Gasser, L. eds. 1988. Readings in
Distributed Artificial Intelligence. San Mateo, Calif.:
Morgan Kaufmann.
Conry, S. E.; Meyer, R. A.; and Lesser, V. R. 1988.
Multistage Negotiation in Distributed Planning. In
Readings in Distributed Artificial Intelligence, 367-384.
San Mateo, Calif.: Morgan Kaufmann.
Davis, R., and Smith, R. G. 1983. Negotiation as a
Metaphor for Distributed Problem Solving. Artificial
Intelligence 20:63-109.
Decker, K. S., and Lesser, V. R. 1995. Designing a Family
of Coordination Algorithms. In Proceedings of the First
International Conference on Multi-Agent Systems, 73-80.
San Francisco, Calif.
Durfee, E. H. , and Lesser, V. R. 1991. Partial Global
Planning: A Coordination Framework for Distributed
Hypothesis Formation. IEEE Transactions on Systems,
Man, and Cybernetics 21(5): 1167-1183.
Fischer, K.; Muller, J. P.; Pischel, M.; and Schier, D. 1995.
A Model for Cooperative Transportation Scheduling. In
Proceedings of the First International Conference on
Multiagent Systems, 109-116. San Francisco, Calif.
French, S. 1982. Sequencing and Scheduling: An
Introduction to the Mathematics of the Job Shop. Wiley.
Gasser, L., and Huhns, M. N. eds. 1989. Distributed
Artificial Intelligence. Vol. 2. Los Altos, CA.: Morgan
Kaufmann Publishers.
Huhns, M. ed. 1987 Distributed Artificial Intelligence.
Altos, Calif.: Morgan Kaufmann Publishers.

Huhns, M., and Bridgeland, D. 1991. Multiagent Truth
Maintenance. IEEE Transactions on Systems, Man, and
Cybernetics 21(6): 1437-1445.
Lesser, V., and Corkill, D. 1983. The Distributed Vehicle
Monitoring Testbed: A Tool for Investigating Distributed
Problem Solving Networks. AI Magazine 4(3): 15-33.
Liu, J., and Sycara, K. P. 1995a. Emergent Constraint
Satisfaction through Multiagent Coordinated Interaction.
In From Reaction to Cognition: 107-121. Castelfranshi, C.,
and Muller, J. P. eds. Vol. 957 of Lecture Notes in
Artificial Intelligence.
Liu, J., and Sycara, K. P. 1995b. Exploiting Problem
Structure for Distributed Constraint Optimization. In
Proceedings of the First International Conference on
Multi-Agent Systems, 246-253. San Francisco, Calif.
Mackworth, A. K. 1987. Constraint Satisfaction. In
Encyclopedia in Artificial Intelligence, 205-211. Shapiro,
S. C. ed. New York: Wiley.
Morton, T. E., and Pentico, D. W. 1993. Heuristic
Scheduling Systems: With Applications to Production
Systems and Project Management. New York: Wiley.
Narayan, V.; Morton, T. E.; and Ramnath, P. 1994. X-
Dispatch Methods for Weighted Tardiness Job Shops,
Technical Report, #1994-14, Graduate School of
Industrial Administration, Carnegie Mellon Univ.
Sanholm, T., and Lesser, V. 1995. Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework. In Proceedings of the First
International Conference on Multi-Agent Systems, 328-
335. San Francisco, Calif.
Sycara, K. P. 1988. Resolving Goal Conflicts via
Negotiation. In Proceedings of AAAI-88, 245-250.
Sycara, K. P.; Roth, S.; Sadeh, N.; and Fox, M. 1991.
Distributed Constraint Heuristic Search. IEEE
Transactions on Systems, Man, and Cybernetics 21(6):
1446-1461.
Yokoo, M.; Durfee, E.; Tshida, T.; and Kuwabara, K.
1992. Distributed Constraint Satisfaction for Formalizing
Distributed Problem Solving. In Proceedings of the 12th

IEEE International Conference on Distributed Computing
Systems, 614-621.

