
科技部補助專題研究計畫成果報告

期末報告

利用靜態功能性磁振造影探討大腦活動造成之腦部區域代謝變
化(第2年)

計 畫 類 別 ： 個別型計畫

計 畫 編 號 ： NSC 103-2420-H-004-003-MY2

執 行 期 間 ： 104年01月01日至104年12月31日

執 行 單 位 ： 國立政治大學應用物理研究所

計畫主持人： 蔡尚岳

計畫參與人員： 碩士級-專任助理人員：蘇芬雅
碩士班研究生-兼任助理人員：黃笠哲

報 告 附 件 ： 出席國際會議研究心得報告及發表論文

處 理 方 式 ：

1.公開資訊：本計畫可公開查詢

2.「本研究」是否已有嚴重損及公共利益之發現：否

3.「本報告」是否建議提供政府單位施政參考：否

中　華　民　國　105　年　02　月　05　日



中 文 摘 要 ： 靜態功能性影像可以用來觀察大腦處於靜態時不同區域間的功能性
連結，其中大腦預設網路，是被找到的所有網路中最穩定也最常探
討的，目前已經應用於許多認知功能障礙的疾病研究。基於對靜態
功能性影像的興趣，已有非常多的研究致力於探討大腦預設網路的
基本生理機制，其中針對大腦預設網路中，神經傳導物質系統的調
變，就是一個非常重要的議題。然而要探討大腦預設網路以及大腦
生化代謝機制間的關係，目前限於傳統磁振頻譜影像技術的空間解
析度及掃描時間，相當稀少，而我們目前發展的快速頻譜影像方法
，面回訊磁共振造影技術，則可以克服傳統技術的限制，非常適合
用在這個目的上。本計畫旨在系統性的探討大腦於靜態時的基礎代
謝情形跟大腦預設網路區域間，以及預設網路區域內腦部活動的關
係，主要探討的代謝物有，腦內主要的神經傳導物質，Glutamate及
Glutamine，合稱Glx，以及大腦神經密度的指標，NAA。目前我們已
利用獨立成分分析法，得到大腦預設網路，比較個別受試者分開處
理和所有受試者一起處理的兩種流程，發現利用獨立成分分析法均
能得到類似的大腦預設網路，我們利用得到的預設網路圖譜，將腦
部區域區分並分析跟代謝物濃度之間的相關性，發現在受試者個別
的分析上，預設網路區的Glx以及NAA較非預設網路區域還要高，另
外透過受試者間的比較也發現大腦的左側前扣帶迴(Anterior
Cingulate cortex, ACC)的Glx濃度與的預設網路活動強度有正相關
，我們的研究證實了靜態大腦網路除了有功能上的區分外，也會造
成生理代謝上的變化，在靜態網路的大腦區域內會有較高的神經傳
導物質濃度。

中文關鍵詞： 回訊頻譜影像技術、靜態功能性影像、磁共振頻譜影像、大腦預設
網路

英 文 摘 要 ：

英文關鍵詞：
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一、前言 

Resting state functional MRI (rsfMRI) reveals information about the functional connectivity among 

various areas of brain (1). Spontaneous low-frequency signal from blood oxygenation level-dependent 

(BOLD) contrast show spatial distributions across many brain areas. These areas concordant with known 

functional areas form specific functional connectivity patterns known as resting state network (RSN) (2-6). 

The correlation between BOLD signal may reflect fluctuation in ongoing neuronal activity rather than noise. 

Therefore, seed based connectivity or independent component analysis (ICA) is suggested to extract these 

spontaneous modulation of BOLD signal while participants are at “rest” (1). Regardless of the technique, 

There are consistent RSNs found in the brain. These RSNs are commonly modulated during active behavior 

task (5,7,8). For example, Salience network (SN) is proposed to integrate highly processed sensory data with 

visceral, autonomic, and hedonic “markers,” so that the organism can decide what to do (or not to do) next. 

Because the nervous system is continuously bombarded by internal and extrapersonal stimuli, a leading 

priority is to identify the most homeostatically relevant among these myriad inputs. SN anchored by dorsal 

anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and 

limbic structures (9). One of the most robustly identified and widely investigated RSN is default mode 

network (DMN), which shows increased activity during rest state than cognitive task (3,6,10). RSNs have 

been shown to predict the task-response properties of brain regions (11) and help understand neuro-anatomic 

models established from fMRI studies based on task-activation basis (7). In addition, previous report also 

showed that RSNs can be found in animal brain (12) and cerebellum (13). Because the success of rsfMRI, it 

is possible to probe the brain’s functional architecture in normal subjects. RSNs have been widely used to 

study various neurological and psychiatric conditions (14-16). Abnormalities in RSNs have been reported in 

many neuropsychiatric disorders and brain disease (17,18) such as social anxiety disorder (5), Alzheimer’s 

disease (18), Attention Deficit/Hyperactivity Disorder (19), schizophrenia (20), temporal lobe epilepsy (21).  

In summary, the theoretical and practical motivations for using rsfMRI for clinical applications can be 

attributed to following points; cerebral energetics, signal to noise, multi-puspose data sets, expanded patient 

populations, circumventing task-related confound as addressed by previous paper (16). Among all these 

issues, cerebral energetics plays the most important role. Human brain represents 2% of total boy rate but 

consumes 20% of body energy during resting state, which is mostly used to support ongoing neuronal 

signaling (22,23). Task related increased BOLD signal is usually small (<5%) when compared to energy 

consumption in resting state. This suggests that difference in signal change between normal and pathological 
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condition will be small if task related change is used. RSNs accessed by ongoing spontaneous BOLD signal 

may prove a richer source disease related change.  

The finding of DMN is of highly interest to neuroscience field to understand the function of brain. As 

human brain accounts for only about 2% of the body weight, it consumes nearly 20% of the oxygen we 

extract from the air we breathe which means 20% of body total energy is consumed (23,24). Depending on 

the approach used, it is estimated that it takes 60% to 80 % of the energy of the brain to support the 

communication among neurons and their supporting cells (22). This cost-based analysis implies that intrinsic 

activity, rsfMRI, may be far more significant than evoked activity, fMRI, in terms of overall brain function. 

DMN as the most consistent and robust RSNs found in the brain may imply higher resting state activity in 

the DMN than other RSNs. Therefore, it is very important to understand the relation between resting state 

activity in DMN and biochemical mechanisms, physiological mechanism (25,26) as well as psychological 

correlate (27,28). One particularly key issue is that neurotransmitter system, as the main excitatory 

neurotransmitter in the cortex, is likely to play an essential role in DMN regions. As such, Glutamate (Glu), 

Glutamine (Gln) and γ-aminobutyric acid (GABA) measured using magnetic resonance spectroscopy 

(MRS) are expected to be modulated between DMN regions and other brain regions. In the past, using 

combined fMRI and MRS study, the relationship between the resting state level of glutamate or GABA and 

resting state- and stimulus-related signal changes on healthy subjects have been investigated (26,29,30). In 

these studies, only specific region such as perigenual anterior cingulate cortex (pgACC), forms part of the 

DMN or suprageual cingulate cortex (sgACC), the task-positive region of interest are investigated because 

the limitation of single voxel spectroscopy (SVS) MRS. Therefore, the investigation of resting biochemical 

levels through most of DMN regions is desired. Magnetic resonance spectroscopic imaging (MRSI) can be 

used for this purpose if conventional MRSI technique can be further improved for the spatial coverage and 

acquisition time. However CSI is very time-consuming. If midline of brain that covering most of DMN is of 

concern, one acquisition for 32x32 matrix MRSI takes at least 30 minutes, which make CSI technique not 

impractical. The established PEPSI protocol is actually proposed to measure the Glu level for medial wall 

which contains key anatomical structures of the limbic system and regions involved in top-down modulatory 

processes. These regions play a particularly important role in a wide range of pathological conditions 

including psychiatric disorders and chronic pain. Therefore, the established sagittal PEPSI protocol can be 

directly and properly used to acquire metabolic information along the medial wall of the brain to access the 

metabolic information from DMN regions. 

 

二、研究目的 

Due to the increasing interest on the rsfMRI, there are a lots of researches focused on the 

biophysiological mechanism of DMN. However, the biochemical mechanism of DMN has not been 

thoroughly studied. The major reason is the limitation of spatial and temporal properties on commercial 

MRSI technique. On the other hand, PEPSI, as a state-of-art MRSI technique, is very suitable for this 

purpose. Therefore, this project is aimed to systemically investigate the resting metabolic levels in the DMN 

regions and their relationship to the resting state activity in DMN across subjects. Three metabolites, 

Glutamate, Glutamine and N-acetyl aspartate (NAA) will be main interest because Glu and Gln are 

important neuron transmitters in the brain. NAA is located primarily in the central and peripheral nervous 

system and believed to provide a marker of neuronal density and reflect neuronal dysfunction. Therefore, we 
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expect the resting level of these three metabolites may vary in DMN region and non-DMN region of the 

brain. Further the resting level of these metabolites may predict the resting state activity in DMN regions. 

Although we will focus on three metabolites are of interest, up to six metabolites can be quantified from the 

PEPSI data and will be investigated together in the project.  

In the 1st year of this project, we will set up the analyzing procedures for rsfMRI. ICA will be adopted 

to extract the DMN from the brain according to the methodologies developed in the previous studies (5,17). 

DMN acquired from all subjects will be group together and compare the spatial consistency to results 

reported in the previous studies. For MRSI, sagittal PEPSI will be used to acquire metabolic information 

along the medial wall. High resolution anatomic images acquired by Magnetization Prepared RApid 

Gradient Echo (MPRAGE) sequence will be acquired for tissue segmentation and image registration using 

SPM. MPRAGE is a 3D high resolution MRI protocol designed with optimized GM and WM contrast which 

is very good in GM and WM segmentation. Image registration between PEPSI slice and MPRAGE 

segmented tissue probability map for partial volume and relaxation correction have already been developed 

in the ongoing project. Same procedures can be thus used to map DMN regions from rsfMRI data to 

metabolic maps from PEPSI data. We will be able to separate DMN region and rest of brain region 

(non-DMN regions) on the concentrations maps of metabolites. 

In the 2nd year of this project, we will start to collect more subjects. The sagittal PEPSI will be collected 

medial wall of left and right hemispheres. Based on the processing procedures developed in the first year, 

resting metabolic levels in DMN regions and non DMN regions can be quantified for each metabolite. 

Two-way ANOVA will be adopted to test the significance of difference in metabolic level between DMN 

and non-DMN regions and between left and right hemisphere. In order to investigate the relationship of 

metabolic level and the resting activity in the DMN regions, within group template need to be generated to 

normalize metabolic maps onto it. Because metabolic maps are acquired in single 2-diemensional slice and 

are specifically located along the medial wall for each subject, we will develop a 2-diemsnional warping 

algorithm to generate template for our subject group and normalize metabolic maps onto it. In this way, 

resting state activity within DMN regions can be correlated with resting metabolic level in voxel based 

across subject. 

 

三、文獻探討 

 RSNs have been widely used to study various neurological and psychiatric conditions (14-16). 

Abnormalities in RSNs have been reported in many neuropsychiatric disorders and brain disease (17,18) 

such as social anxiety disorder (5), Alzheimer’s disease (18), Attention Deficit/Hyperactivity Disorder (19), 

schizophrenia (20), temporal lobe epilepsy (21), In summary, the theoretical and practical motivations for 

using rsfMRI for clinical applications can be attributed to following points; cerebral energetics, signal to 

noise, multi-puspose data sets, expanded patient populations, circumventing task-related confound as 

addressed by previous paper (16). 

The concept of the DMN was sued to describe a set of brain regions that show greater BOLD signal 

during rest than during any one of a broad range of experimental tasks have received attention. These areas 

show active during rest and suspended deactivated when specific goal-directed behavior is needed. Interest 

in this ‘‘deactivation,’’ phenomenon has been sparked by the finding that particular brain regions, including 

two midline regions, the posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), 
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consistently demonstrate such task-related decreases in activity across a broad range of cognitive tasks (31). 

The hypothesis for DMN is that this set of brain regions constitutes an organized network, whose activity is 

ongoing during rest and suspended during performance of externally cued tasks, that supports a ‘‘default 

mode of brain function’’ (3).  

 DMN is known to involve PCC, precuneus, bilateral inferior parietal gyrus, angular gyrus, middle 

temporal gyrus, superior frontal gyrus and medial frontal gyrus. These refions has been found to be 

negatively or anti-correlated with regions that tend to increase their activity during attention demanding 

tasks. While strong positive correlations between regions indicate that those regions are typically 

comodulated during task performance, anti-correlations between networks indicate that the networks are 

temporally modulated in opposite directions (7,32). Anti-correlations may therefore reveal key aspects of 

functional organization of the brain, as they are thought to represent the dichotomy between increased brain 

activity in regions supporting execution of a task and decreased brain activity in regions involved in 

unrelated processes (6,32). Anterior regions such as medial prefrontal cortex have been associated with 

self-referential processing (33). Posterior regions of the DMN, particularly the posterior cingulate, are linked 

to episodic memory (18) and memory consolidation (34). Differences in activity of the DMN have been 

linked to cognitive deficits in a number of clinical populations. To date, decreased correlation in the DMN 

have been demonstrated in individuals with Alzheimer’s disease (19), amyotrophic lateral sclerosis (35), 

autism spectrum disorders (36), A, schizophrenia (20), and ADHD (37). The finding of DMN is of highly 

interest to neuroscience field to understand the function of brain. As human brain accounts for only about 

2% of the body weight, it consumes nearly 20% of the oxygen we extract from the air we breathe which 

means 20% of body total energy is consumed (23,24). Depending on the approach used, it is estimated that it 

takes 60% to 80 % of the energy of the brain to support the communication among neurons and their 

supporting cells (22). This cost-based analysis implies that intrinsic activity, rsfMRI, may be far more 

significant than evoked activity, fMRI, in terms of overall brain function. DMN as the most consistent and 

robust RSNs found in the brain may imply higher resting state activity in the DMN than other RSNs. 

Therefore, it is very important to understand the relation between resting state activity in DMN and 

biochemical mechanisms, physiological mechanism (25,26) as well as psychological correlate (27,28). One 

particularly key issue is that neurotransmitter system, as the main excitatory neurotransmitter in the cortex, 

is likely to play an essential role in DMN regions. As such, Glutamate (Glu), Glutamine (Gln) and γ

-aminobutyric acid (GABA) measured using magnetic resonance spectroscopy (MRS) are expected to be 

modulated between DMN regions and other brain regions. In the past, using combined fMRI and MRS study, 

the relationship between the resting state level of glutamate or GABA and resting state- and stimulus-related 

signal changes on healthy subjects have been investigated (26,29,30). In these studies, only specific region 

such as perigenual anterior cingulate cortex (pgACC), forms part of the DMN or suprageual cingulate cortex 

(sgACC), the task-positive region of interest are investigated because the limitation of single voxel 

spectroscopy (SVS) MRS. 

 To improve the spatial resolution and acquisition of MRSI, Proton Echo Planar Spectroscopic Imaging 

(PEPSI) is a fast MRSI technique, first proposed by Mansfield (38) and then realized by Posse (39). PEPSI 

use the spatial encoding gradient during signal acquisition based on EPI sequence. The advantage of this 

method in acquisition time originates from the fact that an entire K-space plane is sampled within a single 

excitation. One phase encoding step can be removed and thus the duration of a 3D spatial/spectral space can 
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be reduced to that of a conventional 2D space. As the example above, scan time of 30 minutes can be 

reduced to around one minute. The total scan time for MRSI protocol can be ranged from one minute to 10 

minutes according to the SNR, which enable the possibility to acquire metabolic information form whole 

midline of the brain. These high-speed MRSI techniques offer greater than order-of-magnitude acceleration 

with high spectral resolution, adequate spectral width, feasibility of short echo time and excellent sensitivity 

per unit time and unit volume. The PEPSI technique has been developed for clinical MR scanners to 

measure 2D and 3D metabolite distributions in several minutes (40,41) and with high spatial resolution (42). 

We have been working on PEPSI sequence in clinical system for several year (43) and have successfully 

integrated it with parallel imaging to further accelerate encoding speed (40,44). In the past, we have already 

built up a MRSI method to access the six major metabolite concentrations of brain including Glu and Gln. 

The MRSI protocol based on PEPSI method have following properties; 1) less than 10 minutes acquisition 

time; 2) whole slice coverage using 2-dimensional MRSI ; 3) at least 32x32 spatial resolution; 4) feasibility 

for multiple slice orientation; 5) information for inter session and inter subject comparison (45). 

四、研究方法 

 Data acquisitions of rsfMRI and MRSI experiments  

Normal volunteers are enrolled in this study. 20 normal subjects at age around 20~25 year old were 

enrolled for the project of the 1st and 2nd year and a total of 50 subjects are for the aim of 3rd year of this 

project. All experiments were performed on a 3T MR system (Skyra, SIEMENS Medical Solutions, 

Erlangen, Germany) with a 32-channel coil array that covers the whole brain circumferentially with eight 

surface receive-only coils. We use the body coil for RF excitation. For each subject, high resolution T1 

MPRAGE (slice thickness=1 mm; TR=8.9 msec.; TE=2.27 msec.; Flip Angle= 7°; TI=1100 msec.; MAT 

=256*256; FOV =256*256 mm2; acceleration=GRAPPAx2) will be collected in the first, which takes 6 

minutes. Then, rsfMRI experiments will be conducted with gradient echo echo-planar imaging sequence 

(slice thickness=4 mm; TR=2 sec.; TE=30 msec.; Flip Angle= 90°; MAT =64*64; FOV=256*256 mm2; 

acceleration=GRAPPAx2). 35 transverse slices tilted to cover whole brain area were acquired. A total of 

204 measurements will be conducted, yielding a total scan time around 7 minutes. During the rsfMRI 

experiments, subjects will be instructed to rest with their eyes closed, not to think about anything, and not to 

fall asleep.  

MRSI experiments were conducted subsequently. Self developed PEPSI sequence modified from 

Siemens CSI pulse sequence were used (45). Two-dimensional MRSI data were acquired with an in-plane 

resolution of 8 x 8 mm2 with a 256 x 256 mm2 FOV. A 14-mm thick sagittal plane was selected to cover the 

medial wall. Up to eight slices of outer-volume lipid suppression were applied along the perimeter of the 

brain to suppress the lipid signal. To reduce the partial volume effect from cerebrospinal fluid, the MRSI 

plane was placed slightly away from the central line. Experimental parameters were TR = 1.5 sec., TE = 35 

msec., and number of excitations (NEX) = 8. A non-water suppressed (NWS) MRSI scan without 

pre-saturation of the water signal was acquired using a single average for automatic phase correction and 

calibration of metabolite concentrations. Routine shimming and adjustment for water suppression will be 

carried out automatically by the MR system. The scan time for two MRSI scans located in left and right 

hemisphere, respectively will be less than 20 minutes. After the PEPSI scans, multi-slice sagittal 

T1-weighted images were collected using a gradient echo sequence (TR/TE/FA: 250ms/2.61ms/ 70 degrees; 

FOV: 256 x256 mm2; MAT: 128 x 128; slice thickness: 2mm). Seven slices, yielding a 14 mm volume, are 
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located at the same spatial location as the PEPSI slice, which cover the same spatial volume as PEPSI scan. 

These T1 images will be used as anatomical reference for registration MPRAGE and rsfMRI images to the 

PEPSI slice. Referenced T1 take around 2 minutes. All imaging protocols can be finished in 40 minutes. 

 

ICA and identification of DMN in rsfMRI (1st year) 

Preprocess of rsfMRI data was carried out using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm). 

The first four measurements will be discarded to ensure steady-state magnetization in longitudinal axis. The 

remaining 200 functional image volumes will be first corrected for within-scan time differences between 

slices using bilinear interpolation and realigned to the first volume to correct for head movement using least 

square minimization. Subjects will be excluded if the estimated head motion exceeds 1.5 mm or rotation 

exceeds 1.5 degree. To transform realigned functional images to standard space, following steps will be 

performed: 1) the realigned functional images are all coregistered to structure T1 images; 2) the structural 

images are segmented into gray mater, white matter, and cerebrospinal fluid using a unified segmentation 

algorithm. Forward and inverse transformation parameters between standard space and subject space can be 

estimated; 3) the realigned corrected functional volumes are spatially normalized to Montreal Neurological 

Institute (MNI) space using the normalized parameters estimated during segmentation, and functional 

images are then re-sampled into a voxel size of 2-mm3. Then, spatially smoothed will be performed by 

convolution with an isotropic Gaussian kernel of 4 mm full width half maximum to decrease the spatial 

noise. 

For each subject, the smoothed, normalized fMRI images were concatenated across time to form a 

single four-dimensional image. ICA and identification of RSNs spatial ICA will be conducted using the 

GIFT software (http://icatb.sourceforge.net/, version 1.3e) (17,46). The ICA is a statistical technique that 

separates a set of signals into independent—uncorrelated and non-Gaussian spatiotemporal components. 

Most recently, ICA has been used to identify low-frequency neural networks during resting-state or 

cognitively undemanding fMRI scans (18). There is no consensus, as yet, on how to choose the optimal 

number of independent components (IC), though methods to do so are in development (46). It is possible to 

determine the number of ICs using minimum description length (MDL) criterion. This is usually adopted 

when there are many time points in the time course, which is usually encountered in group ICA (5,13). Here, 

we analysis the ICA in individual space, so we will choose to have the analysis output 20 components. 

Temporal band-pass filtering (0.01–0.08 Hz) will be performed on the time series of each voxel to reduce 

the effects of low-frequency drift and high-frequency noise Then, ICs (with time-courses and spatial maps) 

can be estimated sing the FastICA algorithm from functional images from each subject. For each IC, the 

time-course corresponds to the waveform of a specific pattern of coherent brain activity, and the intensity of 

this pattern of brain activity across the voxels is expressed in the associated spatial map (5). The automated 

process will be then employed to select the component in each subject that most closely matched the 

default-mode network template (figure 1). To do this, spatial correlation coefficients of ICs to template of 

specific RSNs template will be calculated. Instead of selecting the IC with largest correlation coefficients as 

implemented in the previous studies (5,13), we will select ICs with correlation coefficients over a threshold. 

If two or three ICs have large enough correlation coefficients, these ICs should have similar spatial pattern 

to the specific RSNs. It is more intuitive to assign these ICs to the RSNs. The threshold will be decided from 

the subjects collected in the first year. According to spatial correlation coefficients reported the previous 
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studies, 0.3 will be a good candidate in the first place. In this project, we will focus on two specific RSNs, 

DMN. For each subject, spatial intensity maps for DMN will be generated by averaging selected ICs. Then, 

mask of DMN will be generated according to the spatial intensity maps. Voxel’s intensity larger than spatial 

averaged value will be assigned to DMN region.  

 To display the DMN for whole subject group, the intensity values in each spatial map can be converted 

to Z values, removing the average value and dividing by the standard deviation of the intensity distribution 

across the subjects(8,46). As ICA can intrinsically extract spatial and temporal coherent patterns of neuronal 

activity on fMRI data, it is commonly accepted that Z values can indirectly provide a measure of functional 

connectivity within the network (47). Group results can be then used to verify the networks generated in thin 

project to those reported in the previous studies. 

 

Quantification of metabolites (1st year) 

PEPSI data from the different coils and measurements were saved and processed individually. Standard 

post processing strategies including spatial and temporal filtering, phase correction and even-odd echo 

editing were performed for the PEPSI data as described previously. The reconstructed spectral width of the 

PEPSI data after even/odd echo editing was 1086 Hz with 512 complex points yielding a spectral resolution 

of 2.1 Hz. MRSI data from the different coils were combined after phase correction to avoid possible 

artifacts caused by partial phase cancelation (40). Frequency adjustment was applied to the different 

measurements. Finally, data from the eight measurements will be averaged separately. Al the post processing 

programs are written in MATLAB (Mathworks, Naptick, MA, USA) 

LCModel will be used to quantify the metabolites. Six metabolites commonly seen in the brain 

including NAA, total Creatine (tCr) including creatine and phosphocreatine, Choline (Cho), myo-Inositol 

(mI), Glu, Gln. Due the overlapping of Glu and Gln on the 1H MR spectra, Glu and Gln are usually 

considered not differentiable in low field strength such as 3T. Therefore, the combination of Glu and Gln 

(Glx) will be quantified. At first, metabolites maps are generated using water scaling. Subsequently, 

tprobability maps of GM, WM and CSF can be generated from MPRAGE images using tissue segmentation 

tool in SPM8. Then, image coregistration tool provided by SPM8 is used to estimate the transformation 

parameters between the referenced T1 images to the MPRAGE images. These registration parameters can be 

applied to the probability maps of GM, WM and CSF to generate corresponding tissue probability maps for 

PEPSI, which is also carried out in SPM8 by reslice tool. Finally, metabolites concentrations maps can be 

corrected for partial volume and relaxation effect according to the known tissue fraction in each voxel.  

To ensure the spectral quality of PEPSI data, we can check the overall spectral quality by the full-width 

at half maximum (FWHM in parts per million) and the SNR provided by LCModel. If there is significant 

drop in SNR or increase in FWHM, we will exclude the subject for following analysis. To ensure the 

reliability of quantified metabolites, the CRLB, as provided by LCModel, was used as the error metric for 

metabolite quantification. For the calculation of concentrations in region of interest, we use the following 

thresholds to reject voxels with unsatisfactory LCModel fit: CRLB > 20% for NAA, tCr and Cho, and 

CRLB > 50% for mI, Glu, Gln and Glx. Therefore, the mean and standard deviation of metabolite 

concentrations for specific mask can be calculated. Because the tissue fraction maps are known, we can 

further exclude voxels based on the GM fraction (GM ratio/ (WM ratio + GM ratio + CSF ratio)). Because 

DMN and SN should reside mostly in GM, voxels with too much WM or CSF should be excluded.  
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Integration of rsfMRI and MRSI results (2nd year) 

To compare DMN and metabolic information, we need to integrate rsfMRI results and MRSI results. We 

did this by extracting the partition of DMN along the medal wall that match the PEPSI slice. Because the 

DMN maps extracted from ICA are in standard space, we firstly transform DMN maps back to subject space 

by the inverse transformation parameters. These parameters are already estimated during rsfMRI preprocess. 

We can use normalize tool in SPM8. Then, as we used reslice tool in SPM to extract tissue probability maps 

from MPRAGE images that match PEPSI slice, we can use the same way to transform DMN maps from 

subject space to PEPSI space. In this way, single slice DMN map and DMN mask that align with PEPSI 

slice can be extracted from whole brain DMN maps. The work flow is shown in the following figure.  

For the voxel based analysis of MRSI results and rsfMRI results, we used a 2-D warping algorithm, which 

model the transformation between 2D images as locally affine but globally smooth variations in image 

intensities. The algorithm is built upon a differential multi-scale framework. It can produce the warped 

image and the transformed matrix. We used the middle slice of reference T1 images to do the group 

normalization for subjects.  For the first 2D warping iteration, we let the first subject’s reference T1 image 

as target. After 1st warping, we average the warped reference T1 images from all subjects as the final group 

template. In 2D warping, all T1 images were warped to this group template and the transformed matrixes 

were generated. Because the reference T1 has the same position with metabolite maps as so as DMN maps, 

we then used this transformed matrix to normalize metabolite maps and DMN maps into a group template. 

With this algorithm, it is possible to do voxel based analysis in the subjects group for 2D images. The work 

flow is shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To observe the resting level of metabolites concentrations belong to DMN region and non-DMN region 

of the brain, DMN mask and non-DMN masks are defined. DMN mask can be directly generated according 

to procedures described above. Non-DMN mask is defined as rest of brain region not included in DMN 

mask. Voxel with GM less than 50% will be also excluded from the masks to ensure metabolite 

concentrations are evaluated from GM. Mean and standard deviation of metabolites concentrations will be 

evaluated in DMN mask and DMN region from each hemisphere. Difference of resting metabolic levels for 



10 

each metabolite in each hemisphere can be tested for significance in DMN and non-DMN regions by Pair 

t-test. Then, two-way ANOVA will be used to examine the difference in metabolic levels between DMN and 

non-DMN region and between left and right hemisphere.  

To observe the correlation between resting level of metabolites and resting state activity in DMN regions, 

we need to transform metabolite maps and DMN maps to a within group standard space. We can assume that 

single slice metabolite map and DMN map are located along with the medial wall in each subject if we have 

carefully located the PEPSI slice during acquisition of MRSI data. Then 2-diemnsional warping algorithm 

can be applied in following steps; 1) generate a within group template for medial by warping referenced T1 

images or tissue probability maps from all subjects; 2) warping metabolite map and DMN map from each 

subject to this within group template. In this way, resting state activity from DMN maps and metabolite 

concentrations can be directly compared in voxel base. Here linear regression was be used to evaluate the 

correlation between resting state activity and resting metabolic level for voxels in the DMN region across 

subjects. We focus on the Glx, which is the important neurotransmitter of brain. In this project, we used two 

different methods to represent the DMN intensity of subject. In Method 1, we used the z-score of DMN 

maps as DMN intensity. In this way, each voxel has its own metabolic level and DMN intensity; In Method 

2, we repeated the method reported by D. Kapogiannis et al in 2013 (48). Generalized linear model analysis 

(GLM) was used to generate the DMN intensity by modeling the resting scan as a single block and time 

course of DMN component from ICA was used. The design matrix was generated by convolving a canonical 

hemo-dynamic response function (HRF). Then the beta value was generated from regression between the 

DMN time course and design matrix as the value of DMN intensity (49). In this way, there is only one DMN 

intensity that presents the overall DMN activity for a subject. The regression was performed between 

metabolic level in each voxel and the same DMN intensity.  

   

五、結果與討論 

(1st year) Extracting DMN from ICA: comparison between gICA and iICA 

For iICA, ICA was performed in each subject. We used one sample t-test to generate the spatial maps for 

group result. For gICA, data from all subjects were concatenated together and were analyzed after data 

reduction using principle component analysis. Components for each subject were then be reconstructed by 

using group components. After ICA process, a mask was generated to exclude pixels outside of the brain for 

each subject. Correlation coefficient was calculated between spatial maps of twenty independent 

components and the template of DMN, and was used for choosing components best fit to DMN template. 

Component showing highest correlation coefficient was chosen as the best DMN component for each 

subject. For gICA, we chose the highest correlation coefficient component in group level and then 

reconstruct the corresponding component for each subject in individual level. Every DMN maps were be 

warped to a group template generated from T1 images and resized to match the spatial resolution of 

metabolite maps.  

For all subjects, the correlation coefficients of DMN maps from iICA and gICA were shown in following 

Table. The correlation coefficients range from 0.2 to 0.5. Highest correlation coefficient was found in group 

level of iICA result. Lowest correlation coefficient was found in subject level in iICA. Comparing between 

these iICA and gICA, DMN maps shows higher correlation coefficients in iICA than in gICA in 18 subjects. 

However, both maps shows typical DMN pattern and there is no noticeable difference between DMN maps 
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from iICA and gICA by visual inspection. There are more DMN regions clustered together on DMN maps 

from iICA than that from gICA. DMN maps from iICA were then used for following analysis. The following 

figure showed (Top) the DMN template, (middle) the chosen DMN component for subject #7 using iICA, 

(Lower) the chosen DMN component for using gICA. The correlation coefficients are 0.48 and 0.32 

respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject No. iICA gICA Subject No. iICA gICA 

1 0.22 0.30 11 0.41 0.26 

2 0.42 0.28 12 0.32 0.24 

3 0.40 0.31 13 0.39 0.30 

4 0.37 0.33 14 0.49 0.30 

5 0.15 0.28 15 0.48 0.29 

6 0.35 0.32 16 0.36 0.27 

7 0.48 0.32 17 0.45 0.31 

8 0.32 0.26 18 0.36 0.22 

9 0.45 0.29 19 0.27 0.21 

10 0.37 0.32 20 0.47 0.16 

Group 0.59 0.39    
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Sagittal metabolite maps and group normalization (1st and 2nd year) 

(Left) Here we showed the sagittal metabolite maps along medial wall for five metabolites. The results were 

the average of metabolite maps normalized to group template for 20 subjects. (Right) With the warping 

algorithm, we can test the age related metabolic change and hemisphere asymmetric distribution of 

metabolites. PEPSI can be used to provide important complementary neurochemical information and 

variations in the distribution related directly to the brain anatomy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration of DMN and metabolite maps to group template for voxel based analysis (1st and 2nd year) 

(Left) The process of 2D warping algorithm was demonstrated for three subjects, where each row represents 

a subject. 1st column is the original middle slice of reference T1. The 2nd column showed the T1 images after 

first 2D warping and 3rd column showed T1 images after second 2D warping. We can find that the 2D 

warping algorithm can successfully applied to align the 2D slice from different subjects into a group 

template. (Right) Demonstration of how DMM and metabolite maps were transformed to group template, 

where each row represents a subject. The column images from left to right are T1, metabolite maps (Glx) 

and DMN maps. After this process, we can perform statistical test for metabolic level and DMN strength for 

inter-subject correlation and for within subject comparison. 

 

 

 

 



13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2nd year) Variation of metabolic level associated with DMN strength: within subject comparison and 

inter subject correlation 

For within subject comparison, the concentrations of five metabolites defined in DMN and non-DMN 

regions were shown in the table. The differences in concentrations were found in NAA, Glx for right 

hemisphere and were found in NAA, tCr for left hemisphere. When both hemispheres were considered, the 

NAA and Glx have higher concentrations in DMN region than in non-DMN region. The possible 

explanation is that the DMN depicts the brain regions having high neuro activity in resting state, which 

directly lead to more neurotransmitters, Glx, in these areas. Further high NAA concentrations may imply 

that these regions can have more neuron accumulation because NAA is known to be a neuronal marker in 

the brain. The tCr showed reverse tendency but there is no explanation to this finding. Due to consistency of 

physiological state of brain, we don’t expect to find large metabolic variation in the brain regions. We will 

seek to collect more subjects to confirm the finding. The percentage change of metabolic level can be 

reported in a better confidence level.  

 

Right hemi. Left hemi Left and Right 

DMN non-MDN DMN non-MDN DMN non-MDN 

NAA 8.67±0.92* 8.02±0.7* 9.39±0.97* 8.68±0.84* 8.96±0.95* 8.38±0.84* 

tCr 2.35±0.32 2.44±0.31 2.35±0.34* 2.7±0.39* 2.38±0.37* 2.55±0.36* 

mI 4.64±0.6 4.56±0.56 4.59±0.56 4.54±0.67 4.59±0.56 4.56±0.61 

Cho 2.8±0.46 2.71±0.47 2.79±0.5 2.73±0.52 2.74±0.54 2.73±0.48 

Glx 11.09±0.99* 10.46±1.06* 11.44±0.85 11.00±1.27 11.15±1.03* 10.77±1.16* 

(*: P<0.05) 

 

 

A 

B 

C 
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For inter subject correlation, the regression was performed on the metabolic level and DMN intensity for all 

subjects. In method 1, voxel wise DMN intensity was used. This is to investigate if the local DMN intensity 

is correlated to Glx level. In method 2, overall DMN intensity represent the resting state activity of a subject 

was used. This is to investigate if there is any region having Glx level associated with system resting activity. 

The regression results for method 1 and 2 were shown in the figures. Beta values with P<0.05 were shown. 

For method 1, there are two clusters: one in posterior regions of left hemisphere and one in the frontal area 

of right hemisphere. For method 2, a cluster at frontal area was found in the left hemisphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To verify the results, we performed ROI analysis for these three clusters. We defined the region found in 

method 1 left hemisphere as region A, the region in method 1 right hemisphere as region B, and the region in 

method 2 left hemisphere as region C as shown in the figure (LEFT). The regression was performed between 

DMN intensities defined by method1or 2 and averaged Glx level in ROI. For region A, the R2 is 0.3549 with 

p<0.05. For region B, the R2 is 0.6989 with p<<0.01. For region C, the R2 is 0.3549 with p<<0.01. 

According to Automated Anatomical Labeling (AAL), the region A involved in precuneus (No.36 

Cingulum_Post_L), the region B and C are a part of anterior cingulate cortex (ACC) (No.31&32 

Cingulum_Ant_L/R). Our finding is in accordance to the DMN theory where ACC is usually sued as seed 

point in the analysis of DMN, which plays a key role in the theory of DMN. Our finding further showed that 

individual DMN activity can be highly related to the resting Glx level. However, it is not fully understand 

why only voxel wise DMN intensity and overall DMN intensity were found to correlated Glx level at 

different hemisphere. This need further investigation.  

  

Left Hemi. 

Right Hemi. 

Method 1:
voxel wise DMN intensity 

Method 2:
Overall DMN intensity 

Left Hemi.

Right Hemi. 
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七、計畫成果自評 

Overall, we have finished data collection and data analysis including spectral preprocess and LCModel 

fitting for aim of the 1st year. In the following month, we will integrate quantitative results including ROI 

analysis for concentrations in whole brain, WM and GM for further statistic analysis, which includes fitting 

reliability by CRLB and reproducibility by COV. Comparison between TEavg protocol using 8 and 16 steps 

as well as between TEavg and TEcon protocols on the performance of Glu fitting associate with all other 

metabolites can be concluded. Our finding should be helpful in establishing optimized MRSI protocol to 

access Glu in the brain. We schedule to submit these results f to international journal at end of this year.  
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一、參加會議經過 

 

 大腦拓譜組織年會(OHBM)是專注在大腦功能研究的重要會議，許多先進的研究都會先在會議

中發表，後續也會有完整的期刊論文，發表於領域中高水準的期刊，每年參加人數均數千人。今

年會議在美國夏威夷檀香山會議中心進行，本人共有三篇文章發表。 

 

會議於美國檀香山市的 Convention Center 舉行，議程共分五天進行，開始第一天主要是 educational 

courses，也有一個許多腦功能研究者交換意見和經驗的場合。後續四天內的 Scientific Meetings 總共

涵蓋不同主題的 oral presentations session。每天自早上八點開始一個小時的「Morning workshop」，針

對各領域邀請傑出研究專家學者演講與進行座談，探討各種不同的腦功能研究領域和方法，每天都已

不同主題同時進行，雖然涵蓋很基礎的部分但是也會有很深入的探討。晨間的 session 結束後接下來會

議當中安排了幾場特別的演講，上午下午各一場的(Keynote Lectures，請到領域中相當資深的研究人員

主講，內容涵蓋現今較先進之研究現況，今年有談到大腦連結性與精神疾病的研究，利用高磁場觀察

皮質在構造上及功能上的結構。中間則是安排了 Oral sessions 和 post sessions，內容涵蓋各種腦功能主

題。。 

 

二、與會心得 

本人今年主要關注，resting state fMRI 的技術和應用研究，以及 psychiatric disorder 方面的研究

進展，以及跟本人研究有較大相關性的振頻譜以及相關量化分析等議題(MRS of normal and 

fundamental physiology)。由於世界各地優秀研究人員均會參加，參與此會議最大的收益在於，於

休息時間，可以跟其他國家研究人員交換意見與討論的機會，尤其是有許多相關研究的研究者，

可以在同樣的領域內，討論如何繼續推動研究 

 

三、發表論文全文或摘要 

共計發表論文兩篇 僅附上論文摘要。 

 

四、建議 

無 

 

五、攜回資料名稱及內容 

在環保考量下，大會所有資料均電子化，可於該網站上下載查詢 。 

 

六、其他 

無 
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Introduction 
 Lipid contamination originating from Gibbs ringing of strong 

subcutaneous lipid signal may complicate the quantification of 

metabolites in Magnetic Resonance Spectroscopic Image (MRSI). 

Suppression of lipid signal can be done during data acquisition either by 

placing outer volume saturation bands surrounding the brain or by lipid 

nulling with inversion recovery pulses at the cost of increased SAR. 

Alternatively, lipid suppression can be implemented by post-processing 

methods, such as extrapolating lipid signal to high k-space region to 

reduce Fourier construction artifacts using Papoulis-Gerchberg (PG) 

algorithm [1], and applying a spatial-spectral filtering technique based on 

Signal Space Projection (SSP) method on the assumption that the spatial 

patterns of noise (lipid) are uncorrelated with the spatial patterns of signal 



(metabolites) [2]. Compared with lipid suppression during data 

acquisition, the post processing methods are convenient and practical for 

3d MRSI or at high field. In this study, we investigated the potential to 

suppress lipid signal using only post-processing methods. The 

performance of lipid suppression based on SSP, PG and combined SSP 

and PG are examined using in vivo MRSI experiment at 3T. 

Methods 
 MRSI data was acquired on a 3T Siemens MR system with a 

32-channel head coil using Proton Echo Planar Spectroscopic Imaging 

(PEPSI) sequence [3]. PEPSI data were acquired using following 

parameters: matrix size = 32x32, FOV = 220mm, slice thickness= 15 mm, 

TE=35 ms, TR=2000 ms, NEX =8). Two PEPSI data sets were acquired 

with OVS and without OVS (NOVS), respectively. Standard post 

processing strategies were performed for PEPSI as described in previous 

works [3]. For lipid suppression by PG method, original MRSI K-space 

resized to 128x128 using zero-filling. Lipid signal can be selected on the 

spatial domain. Then we update the outer K-space using lipid signal 

without changing inner 32x32 k-space. The procedures were iterated until 

the difference of each iteration is less than 3x10-3 or iteration reach 100 

times. For SSP, the MRSI data was expressed as a 2-dimentional 

spatial-spectral matrix Dori with dimension of [Nx*Ny, Nf], where Nx * 

Ny is the spatial matrix size, and Nf is the spectral vector size. A lipid 



data matrix Dori-lipid with the dimension of [Nx*Ny Nlipid] can be 

extracted. Singular Value Decomposition of Dori-lipid yields 

spatio-spectral characterizations: Dori-lipid= U x S x V. The majority of 

the lipid signal can be extracted by the first n-components of U, Un. Lipid 

suppressed data (Dsup) can be obtained by multiplying Signal Space 

Projection matrix ( I- Un x Un ) and Dori. Here the we used n=3. Lipid 

suppressed MRSI data by PG, SSP and combined PG and SSP, were 

quantified using LCModel [4]. The quality of spectra is evaluated by 

Cramer-Rao Lower Bound (CRLB), which is the lowest bound of the 

standard deviation of estimated metabolite concentration expressed in %. 

Results and Conclusions 

 Our results indicate that post processing methods PG and SSP can 

effectively lessen lipid comtamination (Figure 1). Both PG and SSP can 

suppress the ringing of lipid signal inside the brain region and combined 

PG and SSP can minimize lipid contaimation (Figure 1f). Quantification 

of three major metabolites in brain shows that concentraions and fitting 

relabiloty (CRLB) from NOVS with PG+SSP are close to those from 

OVS (Table 1). Sucessful lipid suppresion can be also observed from 

decreased quantiifed lipid concentrations and worse fitting (Table 1). In 

summary, a combined of PG and SSP method can achieve similiar lipid 
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supression perforamnce as OVS method. In conclusion we have 

deonstrated that the post procesing methods can be applied to suppress 

lipid signal and the perforemance can be comparable to routinely used 

OVS mehtods, whcih is usually applied during data acquisition. The 

proposed lipid sppresion methods can be suitable to be applied in 3D 

MRSI or MRSI at high field. 

 

Concentration 

(I.U.) 
OVS NOVS 

NOVS 

+PG+SSP3 

NOVS 

+SSP3 

NAA 12.67 15.41 12.42 12.57 

tCre 9.33 9.97 10.11 10.27 

tCho 2.32 2.81 2.49 2.56 

Lip13 0.9 5.22 0.33 0.77 

Lip09+13+20 1.09 7.43 0.46 1.12 

CRLB (%) OVS NOVS 
NOVS 

+PG+SSP3 

NOVS 

+SSP3 

NAA 5.35 10.32 4.99 7.80 

tCre 4.90 9.83 4.54 6.94 

tCho 6.48 12.33 5.80 9.40 

Lip13 33.01 14.66 28.66 23.54 

Lip09+13+20 33.23 15.64 27.51 21.43 

Table1. LCModel quantified concentrations and CRLB of 
N-acetyl-l-aspartate (NAA), total creatine (tCre), total Choline (tCho) and 

lipid from 1.3 ppm (Lip13) and from 0.9, 1.3, 2.0 ppm (lip09+13+20). 

Results are from OVS data, NOVS data and NOVS data with PG and SSP 

method.  

 
Fig. 1 Projection images of MRSI data of (a)NOVS (b) NOVS with PG (c) NOVS 

with PG+SSP3 (d) NOVS with SSP3) (e) OVS. (f) Signal profile of each projection 

image along x-axis (red line) 
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Introduction 

 Resting state functional magnetic resonance imaging (rsfMRI) has 

been vigorously used to access resting state network. Among them, 

default mode network (DMN) is most common network found in brain
1
. 

To extract the resting state network of interest, independent component 

analysis (ICA) method has been used in many researches. Extraction of 

the component corresponding to the network of interest by template 

matching plays an important role in ICA. Previously, Greicius et al. 

proposed “Goodness-of-fit” method based on calculation of intra subject 

z-score
2
. A potential limitation of this method is that z-score is not 

comparable between subjects as pointed out in the report. In this study, 



we propose to do template matching using spatial correlation. In this way, 

both intra subject comparison and inter subject comparison can be 

feasible. Even it has been assumed that ICA performed in group level or 

individual level may provide similar result, we apply proposed spatial 

correlation method to examine if individual and group ICA could get 

consistent results to those from goodness-of-fit score method. 

Methods 

   Ten healthy subjects were scanned using a 3T Siemens MR system 

with a 32-channel head coil. rsfMRI Data was collected using EPI 

sequence with parameters: TR/TE= 2000/30 ms, slice thickness= 4 mm, 

slice number= 31 and time points= 200. Regular pre-processing 

procedures used by SPM8. We used GIFT Group ICA v2.0e software to 

analyze the rsfMRI data
3
. Signal was divided to 20 components, and each 

component has its own time course and spatial map. For individual ICA 

(iICA), ICA was performed in each subject. We used one sample t-test to 

generate the spatial maps for group result. For group ICA (gICA), data 

from all subjects were concatenated together and were analyzed after data 

reduction using principle component analysis. Components for each 

subject were then reconstructed using group components. Correlation 



coefficient was calculated between spatial maps of twenty independent 

components and the template of DMN. Component showing highest 

correlation coefficient was chosen as default mode network.  

Results and Discussion 

For all subjects, we found that component chosen by correlation 

method is the same as the component chosen by goodness-of-fit score 

method. The correlation coefficients of DMN maps from iICA and gICA 

were shown in Table 1. Overall, highest correlation coefficient was found 

in group level gICA result. Lowest correlation coefficient was found in 

subject level in for iICA. Comparing between these iICA and gICA, 

DMN maps shows higher correlation coefficients in gICA than in iICA in 

8 subjects. The spatial DMN maps of subject #1 from gICA and iICA 

were shown in Figure 1a.The DMN maps in group level from iICA and 

gICA were shown in Figure 1b. The DMN regions extracted by gICA are 

more clustered than that extracted by iICA. 

Conclusions 

Our results indicate that correlation method can successfully extract 

the component representing DMN and results are in agreement with 

goodness-of-fit score method. Overall gICA provides higher correlation 
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than iICA. This is reasonable because gICA merge all the data together 

the analysis based on larger data samples can be more stable. Further, the 

lower correlation coefficient in iICA may be attributed to the split of 

DMN into two components. A possible solution is to combine 

components with correlation coefficient over a threshold, such as 0.2. In 

this way, iICA could have similar results as gICA. Even DMN maps 

extracted in iICA can still have typical DMN pattern with correlation 

coefficient as low as 0.279 (figure 1a), group level DMN maps from 

gICA seems to be more clustered, which can be considered reliable 

(figure 1b). In conclusion, correlation method is a suitable method to 

select component from ICA. Compared with iICA, gICA could extract 

component close to DMN template and is suggested for future 

applications. 

 

 

 

Figure1 (a) The best component for one subject 

using individual ICA (upper) and group ICA 

(lower). The correlation coefficients are 0.279 

and 0.412 respectively.(b) The group result for 

all subjects using individual ICA (above) and 

group ICA (below).  
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