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Abstract 

Purpose: An automatic tumor mapping algorithm was proposed to find the same 

regions in different passes of automated breast ultrasound (ABUS). 

Methods: A total of 53 abnormal passes with 41 biopsy-proven tumors (25 benign 

and 16 malignant tumors) and 13 normal passes were collected as the ABUS image 45 

database. After computer-aided tumor detection, a mapping pair is composed of a 

detected region in a pass and another region in another pass. Location criteria 

including clock, relative distance, and distance to nipple were used to extract mapping 

pairs with close regions. Quantitative intensity, morphology, texture, and location 

features were then combined in a classifier to distinguish between the same and 50 

different regions in each pair. 

Results：After location criteria, 92% of the original mapping pairs with different 

regions were reduced. The performance of the following classification achieved a 

mapping rate of 80.39% (41/51) with an error rate of 5.97% (4/67). The trade-offs 

between mapping rate and error rate were evaluated using the area under receiver 55 

operating characteristic (ROC) curve and resulted in an Az=0.9094. 

Conclusions：The proposed tumor mapping algorithm can automatically provide 

location correspondence information between passes for 80% tumors which would be 

helpful for the efficiency of the ABUS examinations. 



 

 

Keywords: Breast cancer, automated breast ultrasound, computer-aided detection, 60 

tumor mapping



 

1 

 

Introduction 

Breast cancer has become the second leading cause of mortality for women in 

2013 1. On clinical examination, ultrasound (US) is a popular imaging tool in the 

detection and diagnosis of breast tumors2, 3. US can also be adjunct to mammography 65 

in detecting tumors in dense breasts4-8. However, conventional US examination is 

performed by hand-held and is poorly reproducible. Automated breast ultrasound 

(ABUS) system is developed to automatically scan the whole breast and reduce 

operator dependence4. The reproducibility of the ABUS system would be useful for 

follow-up studies and used in screening4. In the scanning of the ABUS system, three 70 

passes of different orientations including anterior to posterior (AP), lateral (LAT), and 

medial (MED) pass are performed to completely cover a whole breast. Each pass 

generates a three-dimensional (3-D) image volume composed of more than 300 

continuous two-dimensional (2-D) slices. The review of these image volumes is a 

time-consuming task for radiologists. Recently, computer-aided detection (CADe) 75 

systems were developed to automatically discover suspicious abnormalities to 

accelerate the review procedure9, 10. The CADe systems combined various 

quantitative intensity and shape features in a classifier to estimate the likelihoods 

being tumors for regions or voxels in ABUS images. The tumor detection 
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performances achieved the sensitivities from 64% to 100% with false positives (FPs) 80 

of 1 and 9.44 per pass, respectively. Whether the performance is good enough for 

clinical application is not yet known. Nevertheless, the tumor detection algorithms 

were all performed on an ABUS image volume generated in a pass of scanning. An 

image volume only covers a part of the whole breast therefore a tumor may exist in 

more than one image volume and is detected more than once in the detection 85 

algorithms. The review of the same area is redundant and more time has to be spent 

for radiologists to determine the tumor numbers and locations. 

In this study, a tumor mapping algorithm was proposed to find the same regions 

locating in different passes. Based on the previous CADe system10, the detected 

regions in different passes of a breast scanning were analyzed. Location criteria were 90 

first used to extract regions with similar locations relative to nipple. In the following 

classification, quantitative intensity, morphology, texture and location features were 

combined to distinguish between the same and different regions distributed in 

different passes. With the mapping of the same regions, more diagnostic information 

can be obtained after tumor detection to reduce the review time of ABUS images in 95 

clinical use. 

 

Materials and Methods 
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Patients and ABUS acquisition 

This retrospective study obtained patients’ informed consent and approval from 100 

our institution review board. The 66 ABUS image volumes used in the experiment 

was acquired from the Breast Center of National Taiwan University Hospital between 

July and December 2012. A total of 18 women (age range: 35-70 years, mean 

49.35±9.06 years) underwent ABUS examination with an ACUSON S2000 

Automated Breast Volume Scanner (Siemens Medical Solutions, Mountain View, CA, 105 

USA) equipped with a 5 to 15 MHz linear array transducer (14L5BV). In the 

examination, three passes of different orientation of breast area including AP, MED, 

and LAT were performed in the scanning to completely cover the whole breast. The 

patients underwent ABUS examinations were in the supine position on the examining 

table. Each orientation scanning was performed from the lower to upper side of a 110 

breast. In the scanning of MED or LAT orientation, the medial or lateral part of a 

breast was turned to the front with compression, respectively. Fig. 1 shows the 

illustration of three passes of different orientation of a breast. 

 

 115 
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Fig. 1. Three passes of different orientation of a breast include AP, MED, and LAT in 

the ABUS scanning for a left breast. The orientation description of MED and 

LAT are exchanged for a right breast. 120 

 

A pass of an orientation generated a 3-D image volume composed of 318 2-D 

slices with thickness 0.5 mm. The spacing of width, height and slice was 0.0212, 

0.007, and 0.052 cm/pixel, respectively. Fig. 2(a) shows a series of continuous 2-D 

slices in an ABUS volume and (b) shows a tumor exhibited in the axial, sagittal and 125 

coronal views.  

 

 

 

(a) 130 
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(b) 

Fig. 2. An ABUS image volume obtained from a 35-year-old woman with a 

fibroadenoma. (a) A series of 2-D slices in axial view (b) The tumor is shown 

in axial, sagittal, and coronal views. The circles indicate the tumor position. 135 

 

In the collected ABUS images, 53 abnormal passes with at least one tumor and 

13 normal passes were included. The 53 abnormal passes had 41 biopsy-proven 

lesions (size range: 0.3-7.2 cm, mean: 1.5±1.3 cm) including 25 benign and 16 

malignant tumors. The 25 benign tumors were 11 fibrocystic changes, 9 fibroadenoma, 140 

and 5 papilloma. The 16 malignant tumors were 13 invasive ductal carcinoma (IDC) 

and 3 invasive lobular carcinoma (ILC). 
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Tumor Mapping 

The tumor mapping algorithm proposed in this study intended to find the same 145 

regions locating in different passes to reduce the review time of ABUS images. The 

regions were detected true positives (TPs) or false positives (FPs) in the CADe 

system10. For the image database used in this study, the FPs/pass achieved 7.57 at the 

sensitivity of 100%. That is, a total of 164 TP (tumor regions) and 347 FP (non-tumor 

regions) were detected. 150 

According to the scanning procedure, the AP passes covered most breast area and 

had fewer deformations than the other two passes. Therefore, regions in MED and 

LAT passes were mapped to those of AP passes in the experiment. The mappings were 

many-to-many mappings. Each one-to-one mapping from a MED or a LAT pass to the 

corresponding AP pass of a breast is a pair. If there are ten regions in a MED and ten 155 

regions in an AP pass, respectively, the mapping from the MED to AP pass is a 

ten-to-ten mapping i.e. one hundred mapping pairs. Upon the CADe result, the 

number of original mapping pairs was 1506. The proposed mapping algorithm aimed 

at predicting whether the two regions in each mapping pair were the same according 

to the positive and negative mapping pairs in the ground truth assessed by the 160 

radiologist. Positive mapping pairs were mapping pairs composed of the same regions. 
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Negative mapping pairs were recognized as different regions. 

In the tumor mapping, location criteria such as clock, relative distance, and 

distance to nipple of two regions in a mapping pair was first used to extract regions 

with similar locations relative to nipple. After that, quantitative intensity, morphology, 165 

texture and location features were combined in a classifier to distinguish between the 

same and different regions in each pair. 

The features extracted from two regions in a mapping pair were compared by the 

value difference. Fdiff was the difference metric expressing the absolute value 

difference. 170 

BAdiff FFF −=  (1) 

where A is the region in the AP pass and B is the region in the MED or LAT pass. FA 

and FB are the feature of region A and region B, respectively. If the feature value is 

too large or too small, the absolute value of difference may not reflect the difference 

magnitude. Another difference metric defined below is Fdiff_ratio which takes the 

relative difference into consideration. 175 

A

BA
ratiodiff F

FF
F

−
=_  (2) 

where the absolute value of feature different is divided by the feature of region A in 

the AP pass. 
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Location Criteria 

Many mapping pairs were generated in finding the same regions between 180 

different passes. The widely used location information on clinical examination was 

calculated to describe where a region is and to reduce the number of mapping pairs. 

Using the absolute coordinate was not practical in location description because the 

coordinates in different passes were different. Instead, relative location information 

was used in this study. That is, the o’clock and distance of a region relative to nipple 185 

were used to describe the region location as a vector shown in Fig. 3. The derived 

location criteria were clock, relative distance, and distance to nipple as the 

descriptions in the following. 

 

Fig. 3. The blue arrow indicates a vector expressing the location of a region bounded 190 

by a red circle relative to the nipple (yellow point). 
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Clock information of a region can be obtained by calculating the relative 

position to nipple in coronal view. Taking the nipple as the origin point, the angle 

between the vector of a region A and the horizon was calculated to obtain the region’s 195 

clock (Fig. 4). The clock difference of two regions was then calculated to be Clockdiff. 

 

 

Fig. 4. The coordination on row and slice plane (C view). The blue arrow indicates a 

vector from the nipple (yellow point) to the region (red circle). The origin 200 

point is nipple. The tumor region in the figure is on 10 o’clock. 

 

The other two location criteria of two regions in a mapping pair were relative 

distance (RDistancediff) and distance to nipple (Distancediff). As shown in Fig. 5(a), the 

correlation between the vectors of two regions, A and B, can be simulated by taking 205 

the nipple as the reference point. Relative distance (Fig. 5(b) left) of A and B is the 

Euclidean distance of their vectors. Distance to nipple (Fig. 5(b) right) is the length 

 

 

10 o’clock 

A 

θ 
 



 

10 

 

difference of the two vectors relative to nipple. 

 

(a) 210 

 

(b) 
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Fig. 5. The location criteria are the correlations between the vectors of two regions, A 

and B. (a) The simulation of vector locations by using the nipple as the 

reference point. (b) Relative distance of A and B is the Euclidean distance of 215 

their vectors (left) and Distance to nipple is the length difference of the two 

vectors relative to nipple (right). 

 

The threshold values of the location criteria including Clockdiff, RDistancediff, and 

Distancediff were determined according to the observation of the mapping pairs with 220 

the same regions assessed by the radiologist. Note that the transformation and 

displacement of breast tissues were unavoided during the scanning. The threshold 

values of the location criteria couldn’t be zero. In the experiment, Clockdiff=2, 

RDistancediff=3 cm, and Distancediff=2 cm were used. 

 225 

Quantitative Features 

After location criteria, quantitative features including intensity, morphology, 

texture and location features were extracted from the remaining mapping pairs and 

combined in a classifier to distinguish between the same and different regions in each 

pair. Table 1 lists a total of 20 quantitative features according to different categories. 230 

Detailed descriptions were stated in the following paragraphs. 

Intensity features were I_STDdiff, I_Rankdiff, and I_NRdiff used to express the 

difference of tissue echogenicities in a mapping pair by gray-scale intensities. 

I_STDdiff was the difference of intensity standard deviation (SD). I_Rankdiff was the 
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difference of intensity rank10, the intensity magnitude of a region relative to other 235 

regions in an image. I_NRdiff is the other feature to calculate the difference of 

correlation which is the gradient between a region and its neighbor regions. 

Morphology features were widely used in describing region shape in ABUS 

images11. Voldiff was the difference of the region volumes which were the essential 

properties of segmented regions. Cube level, CubeL, was the level of a region being 240 

cube calculated by dividing the maximum value between height and width with the 

slice number:  

S

WH

R

RRMAX
CubeL

),(
=  (3) 

where RH, RW and RS is the height, width and slice number of a region, respectively. In 

the comparison of regions, dividing the CubeL difference by the CubeL of AP region 

to obtain CubeLdiff_ratio was a more useful feature to highlight the difference. 245 

Image moments such as eigenvalue, major axis length, and minor axis length 

were also calculated to be the morphology features12. Three measurements including 

raw moment, central moment and covariance matrix were defined first. For a 3-D 

image I(x, y, z), the raw moment of order p, q, r is defined as: 

 𝑀𝑝,𝑞,𝑟 = ∑ ∑ ∑ 𝑥𝑝𝑦𝑞𝑧𝑟𝐼(𝑥, 𝑦, 𝑧)

𝑋−1

𝑥=0

𝑌−1

𝑦=0

𝑍−1

𝑧=0

  (4) 

where X, Y, Z are the height, width, and depth. Pixels inside the region of I(x, y, z) is 250 
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set to 1 and 0 for others. The central moment of order p, q, r is defined as: 

 𝜇𝑝,𝑞,𝑟 =  ∑ ∑ ∑(𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞(𝑧 − 𝑧̅)𝑟𝐼(𝑥, 𝑦, 𝑧)

𝑋−1

𝑥=0

𝑌−1

𝑦=0

𝑍−1

𝑧=0

 (5) 

 𝑥̅ = 𝑀100/𝑀000 (6) 

 𝑦̅ = 𝑀010/𝑀000 (7) 

 𝑧̅ = 𝑀001/𝑀000 (8) 

where 𝑥̅, 𝑦̅, and 𝑧̅ are the centroid coordinates of a region. The covariance matrix is 

defined as: 

 [

𝜇200
′ 𝜇110

′ 𝜇101
′

𝜇110
′ 𝜇020

′ 𝜇011
′

𝜇101
′ 𝜇011

′ 𝜇002
′

] (9) 

where the matrix elements are normalized second order central moments13. From the 

matrix, three eigenvalues: 0, 1, and 2 were extracted to approximate the best-fit 255 

ellipse. The major axis length, ALmajor, and minor axis length, ALminor, were formulated 

by eigenvalues: 

ALmajor =4√𝜆2 (10) 

ALminor =4√𝜆0 (11) 

The corresponding difference features were ALmajor_diff and ALminor_diff. Eccentricity is 

the ratio of the lengths between two focal and the major axis of the ellipse: 

Ecc= √
𝜆1−𝜆0

𝜆1
 (12) 

The corresponding difference features was Eccdiff. 260 
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Texture features are the spatial correlations between pixels in a region used to 

describe a specified pattern. The echogenic patterns in the ABUS images were 

quantified using the gray-scale co-occurrence matrix (GLCM)14, 15 in the experiment. 

For an image I, a co-occurrence N× N× N matrix M is constructed with the element 

defined as P= [p (i,j,k|d,θ)]. Each element is the frequencies of three adjacent pixels 265 

with the intensity value i, j, and k in a distance d and angle θ. In the experiment, N=64, 

d=1, and θ=0°,45°,90°,135°. Six GLCM texture features are defined as follows: 

Entropy: 
( ) ( )( )−=

k j i

dkjipdkjipf  ,,,log,,,1  (13) 

Correlation: 

( )( )( ) ( )

zyx

k j

zyx

i

dkjipkji

f


 −−−

=

,,,

2  (14) 

Inverse Difference 

Moment: ( ) ( ) ( )
( ),,,

1

1
2223 dkjip

kjkiji
f

i j k


−+−+−+

=  (15) 

Inertia: ( ) ( ) ( ) ( ) −+−+−=
i j

dkjipkjkijif ,,,
222

4  (16) 

Cluster 

Prominence: 

( ) ( ) −−−++=
i j

zyx dkjipkjif  ,,,
4

5  (17) 

Haralick’s 

Correlation: 

( ) ( )

zyx

k i j

zyxdkjipkji

f


 −

=

,,,

6  (18) 

where μx, μy, μz, σx, σy, and σz are mean and SD of the marginal distributions of 

p(i,j,k|d,θ). The statistical mean and SD of the six GLCM features were calculated to 

be the texture features in this study. 270 

Location features were the three location criteria mentioned above including 
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clock difference (Clockdiff), relative distance (RDistancediff) and distance to nipple 

(Distancediff). They were also used in the classifier for further discrimination. 

 

Statistical analysis 275 

The quantitative intensity, morphology, texture and location features mentioned 

above were combined in the binary logistic regression classifier16 to distinguish 

between the same and different regions in each pair. In feature selection, the lowest 

error rate of backward elimination in the trained classifier was the criterion to extract 

the most relevant subset of features. Leave-one-out cross-validation was used to 280 

validate the performance of the selected features. A case picked from the total K cases 

was used to test the model trained by the remaining K-1 cases. Each case was picked 

only once. After K times, the tested performances were averaged for a more 

generalized evaluation. 

According to the ground truth assessed by the radiologist, each mapping pair was 285 

given a probability indicating its likelihood being the same regions after classification. 

Mapping pairs with higher probability than a threshold was the predicted positive 

mappings. Otherwise, they were regarded as predicted negative mapping pairs which 

were not determined to have the same regions by the classification model. In each 

mapping pair, the regions in AP were mapped by regions from MED or LAT because 290 
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the AP regions provided the least distortion and displacement of tumor location and 

characteristics. Therefore, if a region on MED or LAT is mapping to two or more AP 

regions with higher predicted probabilities than the defined threshold, only the highest 

mapping pair is chosen. On the other hand, the regions on AP can be mapped by more 

than one region on MED or LAT. 295 

The performance of tumor mapping was evaluated by the mapping rate and 

error rate as defined below: 

Mapping Rate: 
number of correctly predicted positive mapping pairs

number of positive mapping pairs
 (19) 

Error Rate: 
number of  incorrectly predicted negative mapping pairs 

number of negative mapping pairs
 (20) 

where positive and negative mapping pairs were the same regions and different 

regions recognized by the radiologist in the ground truth, respectively. The trade-offs 

between mapping rate and error rate were illustrated using the receiver operating 300 

characteristic (ROC) curve. The normalized area under the curve, Az, was used in 

ROC evaluation. Az was obtained using ROCKIT software (C. Metz, University of 

Chicago, Chicago, IL, USA). 

 

Results 305 

For the 511 detected regions in the CADe system, the original number of 

mapping pairs was 1506. After the location criteria, the number of mapping pairs was 
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reduced to 118 as shown in Table 1. According to the ground truth, they were 51 

positive mapping pairs including 25 tumor and 26 non-tumor pairs and 67 negative 

mapping pairs. All mapping pairs with the same tumor regions were kept after 310 

location criteria. 

Table 1 The number of mapping pairs after different location criteria 

Location criteria Number of mapping pairs 

N/A 1506 

Clock 439 

Clock + Relative Distance 348 

Clock + Relative Distance + Distance to 

Nipple 
118 

A total of 20 quantitative features were selected after backward elimination as 

shown in Table 2. The performance achieved by the selected features is listed in Table 

3. The trade-offs between mapping and error rate was evaluated using the receiver 315 

operating characteristic (ROC) curve as shown in Fig. 6. The area under the ROC 

curve (Az) is 0.9094. 

Table 2 The selected features for tumor mapping 

Category Feature Description 

Intensity I_STDdiff Difference of intensity SD 

 I_Rankdiff Difference of intensity rank 

 I_NRdiff. Difference of neighbor intensity 

Morphology Voldiff  Difference of volume 

 CubeLdiff_ratio Difference of Cube level 

 
0_diff, 1_diff, and 

2_diff 
Three eigenvalue differences 

 ALmajor diff Difference of major axis length 

 ALminor diff Difference of minor axis length 
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 Eccdiff Difference of ellipse eccentricity 

Texture Entropymean_diff Difference of entropy mean 

 Correlationmean_diff Difference of correlation mean 

 IDMmean_diff Difference of inverse difference moment mean 

 IDMSD_diff Difference of inverse difference moment SD 

 InertiaSD_diff Difference of inertia SD 

 CPSD_diff Difference of cluster prominence SD 

 HCmean_diff Difference of Haralick correlation mean 

Location RDistancediff Difference of relative distance 

 Distancediff Difference of distance to nipple 

*SD= standard diviation 

 320 

Table 3 The mapping rate and error rate for different region types in a mapping pair. 

Region Type 

 

Overall 

Mapping Rate/ 

Error Rate 

Tumor Region 

(Mapping Rate/Error Rate) 

Non-tumor Region 

(Mapping Rate/Error Rate) 

80.39% (41/51)/ 

5.97%(4/67) 

80.00% (20/25)/ 

0.00% (0/25) 

80.76% (21/26)/ 

9.52% (4/42) 

90.19% (46/51)/ 

19.40%(13/67) 

92.00% (23/25)/ 

24.00% (6/25) 

88.46% (23/26)/ 

16.67% (7/42) 

100.00% (51/51)/ 

47.76%(32/67) 

100.00% (25/25)/ 

60.00% (15/25) 

100.00% (26/26)/ 

40.47% (17/42) 
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Fig. 6. The ROC curve of the mapping result 

 The distribution of correctly predicted positive mapping pairs with the same 325 

tumor regions is shown in Table 4. Under the mapping rate of 80%, the error rates are 

0% which means no mapping pairs with different regions are misclassified. 

Simultaneously, 88% (15/17) benign tumors and 62.5% (5/8) malignant tumors in the 

positive mapping pairs were successfully predicted. Fig. 7 shows a correctly classified 

fibroadenoma case. The mapping pair of the true fibroadenoma in MED (Fig. 7 (a)) 330 

mapped to the same region in AP (Fig. 7 (b)) is correctly classified as a positive 
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mapping pair with the probability of 0.861 while the mapping pair to a shadow in AP 

(Fig. 7 (c)) is also correctly classified as a negative mapping pair with the probability 

of 0.001. 

 335 

Table 4 The distribution of tumor sizes and pathologies at different mapping rates 

Mapping Rate 

(%) 

Malignant (cm) Benign (cm) 

<1.0 1.0 – 2.0 2.0 – 3.0 >3.0 <1.0 1.0 – 2.0 2.0 – 3.0 >3.0 

60 0 0 2 1 2 5 3 2 

70 1 0 2 1 3 6 3 2 

80 1 0 2 2 3 7 3 2 

 

(a) 



 

21 

 

340 

(b)

 

(c) 

Fig. 7. Mapping pairs of a fibroadenoma case with red circles indicating the detected 

regions in axial, sagittal, and coronal view of the CADe system includes (a) A 345 
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true fibroadenoma in MED pass (b) The true fibroadenoma in AP pass (c) A 

shadow in AP pass. As a mapping result, the mapping pair of (a) and (b) is 

correctly classified as a positive mapping pair with the probability of 0.861 

and the mapping pair of (a) and (c) is correctly classified as a negative 

mapping pair with the probability of 0.001. 350 

 

Discussion 

US is a useful modality to detect breast cancer in dense breasts6, 17, 18. For the 

reproducibility and efficiency, ABUS is developed to automatically scan the whole 

breast without operator dependence. In the ABUS scanning, three passes including AP, 355 

MED, and LAT are performed to completely cover the breast tissues. Reviewing the 

thousands of 2D slices for a patient with two breasts is a time-consuming task to 

radiologists. Based on the detected result of a CADe system10, this study further took 

the overlappings between passes into consideration and proposed a tumor mapping 

algorithm to find the same regions in different passes. The use of location criteria 360 

reduced about 92% mapping pairs with different regions. In the further classification, 

20 quantitative intensity, morphology, texture and location features were combined in 

the logistic regression model to achieve the mapping rate of 80.39% (41/51) with 

error rate of 5.97% (4/67) as shown in Table 3. For tumor regions, the mapping rate 

was 80.00% (20/25) with the error rate of 0.00% (0/25). For non-tumor regions, the 365 

mapping rate was 80.76% (21/26) and the error rate was 9.52% (4/42). In clinical use, 
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the tumor mapping rate of 80.00% means that radiologists don’t need to manually find 

all the correspondences between tumors in different passes. The mapping algorithm 

can automatically provide the corresponding location information for 80% tumors 

with error rate of 0%. Radiologists would save more time in finding the same tumors 370 

and take more time in interpreting the tumor characteristics for diagnosis. 

Tan et al.19 proposed a method based on intensity, speculation, boldness, and 

contrast features to predict tumor locations from one pass to another pass. The ABUS 

images were obtained from the Siemens ACUSON S2000 ABVS in the Radboud 

University Nijmegen Medical Center (Nijmegen, The Netherlands) and the Jules 375 

Bordet Institute (Brussels, Belgium). They achieved an average error=15.64±16.13 

mm for location measurement. Rather than calculating the displacement only, this 

study extended the CADe system10 to the following tumor mapping in different passes. 

Combining the proposed mapping algorithm with an existed CADe system would 

provide a more efficient and reliable procedure for ABUS examinations. 380 

A limitation of the mapping algorithm is that if two regions are very close to the 

nipple, their clock difference must be very small. At this time, this mapping pair 

would not be filtered out by the other two criteria: relative distance and distance to 

nipple because the two criteria are also small. A possible solution is using adaptive 

thresholds for different distances between mapping pairs and the corresponding nipple. 385 
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More observation and experiments in the future study will be useful to explore more 

reliable location criteria and quantitative features in improving the mapping rate of the 

tumor mapping algorithm. 
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