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中文摘要

本論文主要討論貝氏漸近的比較, 推導出參數的聯合後驗分配與利用圖形來診斷馬可夫鏈蒙地卡羅

的收斂。 Johnson (1970) 利用泰勒展開式得到個別後驗分配的展開式, 此展開式是根據概似函數與先

驗分配。 Weng (2010b) 和 Weng and Hsu (2011) 利用 Stein’s 等式且由概似函數與先驗分配估計

後驗動差; 將這些後驗動差代入 Edgeworth 展開式得到近似後驗分配, 此近似分配的誤差可精確到大

O 的負3/2次方與 Johnson’s 相同。 另外 Weng and Hsu (2011) 發現 Weng (2010b) 和 Johnson

(1970) 的近似展開式各別項誤差到大 O 的負1次方不一致, 由模擬結果得到 Weng’s 在此項表現比

Johnson’s 好。 另外由 Weng (2010b) 得到一維參數 的 Edgeworth 近似後驗分配延伸到二維參數的

聯合後驗分配; 並應用二維參數的聯合後驗分配於多階段資料。 本論文我們提出利用圖形來診斷馬可夫

鏈蒙地卡羅收斂的方法, 並且應用一般化線性模型與混合常態模型做為模擬。

關鍵字: Edgeworth 展開式; 馬可夫鏈蒙地卡羅; 個別後驗分配; Stein’s 等式。
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Abstract

Johnson (1970) obtained expansions for marginal posterior distributions through

Taylor expansions. The expansion in Johnson (1970) is expressed in terms of the like-

lihood and the prior. Weng (2010b) and Weng and Hsu (2011) showed that by using

Stein’s identity we can approximate the posterior moments in terms of the likelihood

and the prior; then substituting these approximations into an Edgeworth series one

can obtain an expansion which is correct to O(t−3/2), similar to Johnson’s. Weng and

Hsu (2011) found that the O(t−1) terms in Weng (2010b) and Johnson (1970) do not

agree and further compared these two expansions by simulation study. The simulations

confirmed this finding and revealed that our O(t−1) term gives better performance than

Johnson’s. In addition to the comparison of Bayesian asymptotics, we try to extend

Weng (2010a)’s Edgeworth series for the distribution of a single parameter to the joint

distribution of all parameters. Since the calculation is quite complicated, we only derive

expansions for the two-parameter case and apply it to the experiment of multi-stage

data. Markov Chain Monte Carlo (MCMC) is a popular method for making Bayesian

inference. However, convergence of the chain is always an issue. Most of convergence

diagnosis in the literature is based solely on the simulation output. In this dissertation,

we proposed a graphical method for convergence diagnosis of the MCMC sequence. We

used some generalized linear models and mixture normal models for simulation study.

In summary, the goals of this dissertation are threefold: to compare some results in

Bayesian asymptotics, to study the expansion for the joint distribution of the param-

eters and its applications, and to propose a method for convergence diagnosis of the

MCMC sequence.

Key words: Edgeworth expansion; Markov Chain Monte Carlo; marginal posterior

distribution; Stein’s identity.
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1 Introduction

Let g(θ) be a smooth function on the parameter space Θ. The calculation of the posterior

mean of g(θ), given a sample of observations xt, requires integration over Θ of the form

Et
ξ[g(θ)] = Eξ[g(θ)|xt] =

∫
Θ g(θ)exp(`t(θ))ξ(θ)dθ∫

Θ exp(`t(θ))ξ(θ)dθ
, (1)

where `t is the log-likelihood function and ξ the prior. Quantities about the posterior distri-

bution such as moments, quantiles, cumulative distribution function, etc can be expressed

in the form of (1) by some functions g.

The integrations involved in (1) are usually intractable. The approximation techniques

can be divided into deterministic and nondeterministic methods. The nondeterministic

method refers to the Monte Carlo integration such as Markov Chain Monte Carlo (MCMC)

methods, which draw samples approximately from the desired distribution and forms sam-

ple averages to estimate the expectation. The deterministic approaches include Laplace’s

method, variational Bayes, among others. The Laplace’s method approximates integrals by

Taylor expansions and properties of Gaussian distribution (see Section 2.3 for details); the

variational Bayes method constructs a lower bound on marginal likelihood of the data and

then tries to optimize this bound.

Both deterministic and nondeterministic methods have their advantages. Computing

techniques like Markov chain Monte Carlo and importance sampling have made many com-

putations possible. Still, analytic approximations are simpler to compute for some models,

and are useful as a starting point for more exact methods. The study of these analytic

approximations are often referred to as Bayesian asymptotics. Moreover, when it comes to

sequential updating with new and huge data, the MCMC methods may not be computa-

tionally feasible, the reason being that it does not use of the analysis from the previous

data; see, for example, Section 2.8 in Glickman (1993).

A conventional deterministic approach to the problem (1) starts from a Taylor series

expansion at the maximum likelihood estimator (or at the modes of the integrands), pro-

ceeds from there to develop expansions on both the numerator and denominator, and then

obtains approximations by formal division of the two series. For example, Johnson (1967,

1970) derived expansions, correct to order O(t−3/2), for the posterior distribution associ-

1
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ated with some pivotal quantity. Tierney and Kadane (1986) renewed interest in Laplace’s

method by assuming that g is positive and expanding the integrand of the numerator in

(1) at the mode of the integrand itself, rather than at the posterior mode. They also de-

rived an expression for marginal posterior density of the parameter and argued that by

numerical renormalization the approximate density has relative errors of order O(t−3/2) in

neighborhoods of the mode.

Recently Weng (2010a) uses a version of Stein’s identity to derive an Edgeworth series for

the posterior distribution of a normalized quantity. Note that an Edgeworth series expands

a probability distribution in terms of its moments; in contrast, the expansion in Johnson

(1970) is expressed in terms of the likelihood and the prior. Weng (2010b) and Weng and Hsu

(2011) further showed that by using that Stein’s identity we can approximate the posterior

moments in terms of the likelihood and the prior; then substituting these approximations

into the Edgeworth series one can obtain an expansion which is correct to O(t−3/2), similar

to Johnson’s. We shall compare these three O(t−3/2) results. Especially, Johnson (1970)

formulas have existed for about four decades, but to the best of our knowledge there seems

to be no related simulation studies in the literature. So, our study filled a gap in this area.

In addition to the comparison of Bayesian asymptotics, we try to extend Weng (2010a)’s

Edgeworth series for the distribution of a single parameter to the joint distribution of all

parameters. Since the calculation is quite complicated, we only derive expansions for the

two-parameter case (see Section 3.2). Using such expansions we conduct experiments to

study whether analytic approximations perform well when data arrive in different stages.

The present thesis also studies how to use the Edgeworth expansion for posterior dis-

tribution to validate convergence of MCMC simulation results. We use some generalized

linear models and mixture normal models for simulation study.

In summary, the goals of this dissertation are threefold: to compare some results in

Bayesian asymptotics, to study the expansion for the joint distribution of the parameters

and its applications, and to propose a method for convergence diagnosis of the MCMC

sequence.

The next chapter introduces the model and reviews some existing results. Chapter 3

presents theoretical results. Some simulation studies in Weng and Hsu (2011) are given

2
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in Subsection 4.1.1. Subsection 4.1.2 gives comparisons with Tierney and Kadane (1986).

Section 4.2 considers approximations when data arrives in two stages. The rest of Chapter

4 contains simulation studies for diagnosing MCMC series. Chapter 5 gives some remarks

and directions for future research.

2 Preliminaries

2.1 The Model

Let Xt be a random vector distributed according to a family of probability densities pt(xt|θ),

where t is a discrete or continuous parameter and θ ∈ Θ, an open subset in <p. Consider

a Bayesian model in which θ has a prior density ξ which is twice differentiable on <p

and vanishes off of Θ. Assume that the log-likelihood function `t(θ) is twice continuously

differentiable with respect to θ. Assume also that the maximum likelihood estimator θ̂t

exists and satisfies ∇`t(θ̂t) = 0 and −∇2`t(θ̂t) being positive definite, where ∇ indicates

differentiation with respect to θ. Define Σt and Zt as

ΣT
t Σt = −∇2`t(θ̂t), (2)

Zt = Σt(θ − θ̂t). (3)

Then the posterior density of θ given data xt is ξt(θ) ∝ exp(`t(θ))ξ(θ), and the posterior

density of Zt is

ζt(z) ∝ ξt(θ(z)) ∝ exp[`t(θ) − `t(θ̂t)]ξ(θ), (4)

where the relation of θ and z is given in (3). Now define

ut(θ) = `t(θ) − `t(θ̂t) +
1
2
‖zt‖2. (5)

So, (4) can be rewritten as

ζt(z) ∝ φp(z)ft(z), (6)

where ft(z) = ξ(θ(z))exp[ut(θ)] and φp denotes the standard p-variate normal density and

φ is the abbreviation of φ1.

3
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2.2 Stein’s Identity and Bayesian Edgeworth Expansion

The Stein’s Identity here was developed by Woodroofe (1989). Let Φp denote the standard

p-variate normal distribution and let Φ be the abbreviation of Φ1. Write

Φph =
∫

hdΦp

for functions h for which the integral is finite.

For r > 0, denote H
(p)
r as the collection of all measurable functions h : <p → < for

which |h(z)|/b ≤ 1 + ‖z‖r for some b > 0. Given h ∈ H
(p)
r , let h0 = Φph, hp = h,

hk(y1, ..., yk) =
∫
<p−k

h(y1, ..., yk, w)Φp−k(dw), (7)

gk(y1, ..., yp) = e
1
2
y2

k

∫ ∞

yk

[hk(y1, ..., yk−1, w) − hk−1(y1, ..., yk−1)]e−
1
2
w2

dw, (8)

for −∞ < y1, ..., yp < ∞ and k = 1, ..., p. Then let

Uh = (g1, ..., gp)T and V h = (U2h + U2hT )/2, (9)

where U2h is the p × p matrix whose kth column is Ugk and gk is as in (8).

We will call a function f : <k → < almost differentiable if there exists a function

∇f : <k → <k such that

f(x + y) − f(x) =
∫ 1

0
yT∇f(x + ty)dt

for x, y ∈ <k. Of course, a continuously differentiable function f is almost differentiable

with ∇f equal to the gradient.

Lemma 1 (Stein’s Identity) Let r be a nonnegative integer. Suppose that f is an almost

differentiable function on <p and∫
<p

|f |dΦp +
∫
<p

(1 + ‖z‖r)‖∇f(z)‖Φp(dz) < ∞.

Then

Φp(fh) = Φp(f)Φp(h) +
∫
<p

(Uh(z))T∇f(z)Φp(dz), (10)

for all h ∈ H
(p)
r . If ∂f/∂zj , j = 1, ..., p, are almost differentiable, and∫

<p

(1 + ‖z‖r)‖∇2f(z)‖Φp(dz) < ∞,

4
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then

Φp(fh) = Φp(f)Φp(h) + (ΦpUh)T

∫
<p

∇f(z)Φp(dz) +
∫
<p

tr[(V h(z))∇2f(z)]Φp(dz), (11)

for all h ∈ H
(p)
r .

Here tr denotes the trace of a matrix. Note that if A and B are p × p matrices, then

tr(AB) =
∑

i,j aijbji =
∑p

i=1 aT
i bi. Simple calculations by taking f(z) in (10) as zi and f(z)

in (11) as zizj yield

Φp(Uh) =
∫
<p

zh(z)Φp(dz), (12)

Φp(V h) =
∫
<p

1
2
(zzT − Ip)h(z)Φp(dz). (13)

From (6), the posterior distribution is of a form appropriate for Stein’s Identity. So, by

Lemma 1,

Et
ξ{h(Zt)} = Φph + Et

ξ

{
[Uh(Zt)]T

∇ft(Zt)
ft(Zt)

}
, (14)

Et
ξ{h(Zt)} = Φph + (ΦpUh)T Et

ξ

[
∇ft(Zt)
ft(Zt)

]
+ Et

ξ

{
tr

[
V h(Zt)

∇2ft(Zt)
ft(Zt)

]}
. (15)

In particular, if h(z) = zi, then by (8) it follows Uh(z) = ei; and if h(z) = zizj and i < j,

then Uh(z) = ziej , where {e1, · · · , ek} denote the standard basis for <k. For example, if

k = 3 and h(z) = z1z2, then

Uh(z) =


0

z1

0

 =


g1(z)

g2(z)

g3(z)



and U2h(z) = U(Uh) = U
(
g1, g2, g3

)T =
(
Ug1, Ug2, Ug3

)
=


0 1 0

0 0 0

0 0 0

 ,

where Ugi is obtained by applying the operator U on gi. With these special h functions,

(14) and (15) became

Et
ξZt = Et

ξ

[
∇ft(Zt)
ft(Zt)

]
, (16)

Et
ξ(ZtiZtq) = δiq + Et

ξ

[
∇2ft(Zt)
ft(Zt)

]
iq

, for i, q = 1, . . . , k, (17)

5
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where δiq = 1 if i = q and 0 otherwise, and [·]iq indicates the (i, q) component of a matrix.

Weng (2010a) obtained an Edgeworth expansion for the posterior distribution of Ztj .

Since some arguments below are needed in Section 3.2, we give detailed descriptions. Let

qk denote Hermite polynomials, given by qk(z)φ(z) = (−d/dz)kφ(z). For instance, for

k = 1, ..., 4 the Hermite polynomials are q1(z) = z, q2(z) = z2 − 1, q3(z) = z3 − 3z, and

q4(z) = z4 − 6z2 + 3. Then, for j = 1, ..., p,

sup
h∗∈H

(1)
r

∣∣∣Et
ξ(h

∗(Ztj)) − Φh∗ −
∑

k∈{1,...,3s}
k 6=3s−1

(ΦUkh∗)Et
ξ

[∂kft/∂zk
tj

ft
(Zt)

]∣∣∣ = O(t−
3s+1

2
+s), (18)

where h∗ : < → < is a measurable function and H
(p)
r is defined at the beginning of this

section. Together with the facts that

Et
ξ

(∂kft/∂zk
tj

ft
(Zt)

)
= Et

ξ(qk(Ztj)) (19)

and

Φ(Ukh∗) =
1
k!

∫
<

qk(z)h∗(z)Φ(dz), (20)

the posterior distribution of Ztj can be expressed in terms of its moments.

In (18), taking h∗(zj) = 1{zj≤z∗j } leads to an expansion for P t
ξ (Ztj ≤ z∗j ); and collecting

terms in this expansion according to their orders yields

P t
ξ (Ztj ≤ z∗j ) = Φ(z∗j ) −

m∑
i=1

Rit(z∗j )φ(z∗j ) + O(t−
m+1

2 ), (21)

where

Rit(z∗j ) =
∑
v∈Ji

1
v!

qv−1(z∗j )E
t
ξ(qv(Ztj)) = O(t−

i
2 ).

Here J1 = {1, 3} and Ji = {3i − 4, 3i − 2, 3i} for i > 1; for example, J2 = {2, 4, 6},

J3 = {5, 7, 9}. Equation (21) is referred to as a Bayesian Edgeworth expansion.

If Σt in (2) is obtained by Cholesky decomposition, then it is an upper triangular and

by (3) we obtain

Ztp = [Σt]pp(θp − θ̂tp). (22)

From this, we have P t
ξ (θp ≤ ap) = P t

ξ (Ztp ≤ z∗p), where z∗p = [Σt]pp(ap − θ̂tp). By (18)-(20)

and the relation
∫ w
−∞ qk(z)φ(z)dz = −qk−1(w)φ(w) it follows that

ξt
p(ap) = [Σt]pp{φ(z∗p) +

∑
k∈{1,...,3s}

k 6=3s−1

1
k!

qk(z∗p)φ(z∗p)E
t
ξ(qk(Ztp)) + O(t−

3s+1
2

+s)}. (23)

6
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Equation (23) is a marginal posterior density.

2.3 The Laplace Method

In this section we describe the approximate marginal posterior density proposed by Tierney

and Kadane (1986). A sequence of observations y = (y1, . . . , yt) is assumed to be drawn

independently from density f(y|θ); so the posterior distribution of θ is

π(θ|y) =
π(θ)

∏t
i=1 f(yi|θ)∫

π(θ)
∏t

i=1 f(yi|θ)dθ
(24)

where π(θ) is the prior of θ.

Laplace’s method provides an approximation for integrals of the form
∫

etL(θ)dθ when

t is large. If L has a unique maximum at θ̂ and we set Σ = −(∇2L(θ̂))−1, then we can

approximate L(θ) by L(θ̂) − (1/2)(θ − θ̂)T Σ−1(θ − θ̂). This produces the approximation∫
etL(θ)dθ = det(2πΣ/t)1/2exp{tL(θ̂)}.

To obtain an approximation for (24), set θ = (θ1, θ2, .., θp) = (θ1, θ−1). Suppose θ̂ is the

posterior mode, and let Σ be minus the inverse of the Hessian of log[π(θ)
∏t

i=1 f(yi|θ)] at θ̂;

thus Σ is a p× p matrix. For a given θ1, let the (p− 1) vector θ̂∗−1 = θ̂∗−1(θ1) maximize the

function π(θ1, .)e`(θ1,.), the function πe` with θ1 held fixed, and let Σ∗ = Σ∗(θ1) be minus

the inverse of the Hessian of log[π(θ1, .)
∏t

i=1 f(yi|θ1, .)], a (p − 1) × (p − 1) matrix.

Tierney and Kadane (1986) applied Laplace’s method to the integrals in the numerator

and denominator of the expression

π1(θ1|y) =
∫

π(θ1, θ−1)e`(θ1,θ−1)dθ−1∫
π(θ)e`(θ)dθ

,

for the marginal posterior density of θ1 and obtained the approximation

π̂1(θ1|y) =
(

detΣ∗(θ1)
2πtdetΣ

)1/2 π(θ1, θ̂
∗
−1)e

`(θ1,θ̂∗−1)

π(θ̂)e`(θ̂)
. (25)

By (25), one only needs to be able to maximize slightly modified likelihood functions and

to evaluate the observed information at the maxima. The principal regularity condition

required is that the likelihood times prior be unimodal.

7
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2.4 The Gibbs Sampling and MCMC Convergence Diagnostic

The Gibbs sampler, proposed by Geman and Geman (1984), is a special case of single-

component Metropolis-Hastings. For details, see Gilks et al. (1995, chapter 5) and Tanner

(1993, chapter 6). It is widely used in statistical applications. The Gibbs sampler is to obtain

samples from a joint distribution, via iterated sampling from full conditional distributions.

Let θ = (θ1, θ2, . . . , θp), the full conditional distributions are

π(θi|θ1, θ2, . . . , θi−1, θi+1, . . . , θp, y) =
π(θ, y)∫
π(θ, y)dθi

(26)

for i = 1, 2, . . . , p, where π(θ, y) = π(θ)
∏t

i=1 f(yi|θ). The Gibbs sampling algorithm is

described below. Given the starting point

θ(0) = (θ(0)
1 , θ

(0)
2 , . . . , θ(0)

p ),

this algorithm iterates the following loop:

Sample θ
(i+1)
1 from π(θ1|θ(i)

2 , . . . , θ(i)
p , y)

Sample θ
(i+1)
2 from π(θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ(i)

p , y)

...

Sample θ(i+1)
p from π(θp|θ(i+1)

1 , . . . , θ
(i+1)
p−1 , y).

The vectors θ(1), θ(2), . . . , θ(t), . . . are a realization of a Markov chain.

MCMC Convergence Diagnostic By Gelman et al. (1995, chapter 11), for each scalar

estimand θ, we label the draws J parallel sequences of length t as θij (i = 1, ..., t; j =

1, ..., J), and we compute B and W , the between- and within-sequence variances:

B =
t

J − 1

J∑
j=1

(θ.j − θ..)2, where θ.j =
1
t

t∑
i=1

θij , θ.. =
1
J

J∑
j=1

θ.j

W =
1
J

J∑
j=1

s2
j , where s2

j =
1

t − 1

t∑
i=1

(θij − θ.j)2.

The between-sequence variances, B , contains a factor of t because it is based on the

variance of the within-sequence means, θ.j , each of which is an average of t values θij .

8
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We can estimate var(θ|y), the marginal posterior variance of the estimand, by a weighted

average of W and B, namely

v̂ar+(θ|y) =
t − 1

t
W +

1
t
B,

which overestimates the marginal posterior variance assuming the starting distribution is

approximately overdispersed, but is unbiased under stationarity, or in the limit t → ∞. We

monitor convergence of the iterative simulation by estimating the factor by which the scale

of the current distribution for θ might be reduced if the simulations were continued in the

limit t → ∞. This potential scale reduction is estimated by

R̂ =

√
v̂ar+(θ|y)

W
,

which declines to 1 as t → ∞.

2.5 The Generalized Linear Model

We briefly review the generalized linear model. For details, see McCullagh and Nelder

(1989). Generalized linear models are an extension of classical linear models. We may

demonstrate the classical linear model in the form: The components of y are independent

normal variables with constant variance σ2 and

E(y) = µ, where µ = Xβ. (27)

For generalized linear models, we shall rearrange (27) to produce the following three-part

specification:

1. The random component: the components of y have independent normal distributions

with E(y) = µ and constant variance σ2;

2. The systematic component: covariates x1, x2, . . . , xp produce a linear predictor η given

by

η =
p∑
1

xjθj ;

3. The link between the random and systematic components:

µ = η.

9
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If we write

ηi = g(µi), (28)

then g(.) will be called the link function. In this formulation, generalized linear models

allow two extensions; first the distribution in component 1 may come from an exponential

family other than the normal, and secondly the link function in component 3 may become

any monotonic differentiable function. We shall consider several principal functions in

subsequent chapters, namely:

logit : η = log{µ/(1 − µ)},

probit : η = Φ−1(µ),

poisson : η = logµ,

gamma : η = −1/µ.

3 Theoretical Results

3.1 Validation of Simulation Results

The expansion (23) can be used to validate simulation results. If the posterior sample

is given, then using standard techniques we can obtain an approximate density based on

this sample. On the other hand, we can calculate the empirical moments of Ztp based on

this sample and plug these moment approximations into (23). This gives another density

approximation. We shall call this approximation the ”implied density” from the sample,

and denote it as ξ̂t
p

(imp)
:

ξ̂t
p

(imp)
(ap) = [Σt]pp

φ(z∗p) +
∑

k∈{1,...,3s}
k 6=3s−1

1
k!

qk(z∗p)φ(z∗p) ˜Et
ξ(qk(Ztp))

(mcmc)

+ O(t−
3s+1

2
+s)

 .(29)

If the posterior sample has converged to true distribution, then theoretically the posterior

density and ξ̂t
p

(imp)
should be close. This is the basic idea we use to validate convergence.

For inference on θp we use Ztp in (22), which requires the MLE of θp and [Σt]pp, the

(p, p) component of the Cholesky decomposition of −∇2 ˆ̀
t. Note that it is important that

10
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Ztp involves only θp so that P t
ξ (θp ≤ ap) = P t

ξ (Ztp ≤ z∗p) for z∗p = [Σt]pp(ap − θ̂tp). The

inference on θ1 can be achieved by taking Σt in (2) to be lower triangular so that Zt1 in

(3) can be expressed as Zt1 = [Σt]11(θ1 − θ̂t1); and the inference of other θi can be done

by the following: exchange the ith and pth columns in the design matrix and obtain the

corresponding (p, p) component of the Cholesky decomposition.

If for each θi we need to obtain a new design matrix and re-do model fitting etc, it may

not be efficient. In the rest of this section we propose a simple method for this problem.

In (3), if Σt = [σij ] has only one nonzero element σii in the ith row, then

Zti = σii(θi − θ̂ti) (30)

and it follows that {Zti ≤ z∗i } = {θi ≤ z∗i /σii + θ̂ti} and P t
ξ (θi ≤ ai) = P t

ξ (Zti ≤ z∗i ), where

z∗i = σii(ai − θ̂ti). Therefore, we obtain the implied density similar to (29) for all θi. That

is,

ξ̂t
i

(imp)
(ai) = σii

φ(z∗i ) +
∑

k∈{1,...,3s}
k 6=3s−1

1
k!

qk(z∗i )φ(z∗i ) ˜Et
ξ(qk(Zti))

(mcmc)

+ O(t−
3s+1

2
+s)

 ,

where Zti is defined in (30).

The lemma below shows how to obtain such Σt.

Lemma 2 Let A be a p × p symmetric and positive definite matrix. Let Eip be the p × p

matrix obtained by exchanging the ith and pth row (or column) of Ip for i = 1, 2, ..., p.

Let C = EipAEip, D = chol(C) so that C = DT D and B = EipDEip. Then, for each

i = 1, 2, ..., p,

(a) ET
ip = Eip and EipEip = Ip

(b) B = [bjl] , 1 ≤ j, l ≤ p has only one nonzero element bii in the ith row, and BT B = A

Proof. First consider (a). For a fixed i ∈ {1, 2, ..., p}, write Eip = [ejl] , 1 ≤ j, l ≤ p. Then,

eip = epi = 1,

ekk = 1 for k 6= i, p,

11
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and the other elements are all zero. So ET
ip = Eip. Write F = EipEip = [fjl], 1 ≤ j, l ≤ p.

Then

fii = eipepi = 1 and fpp = epieip = 1,

fkk = ekkekk = 1 for 1 ≤ k ≤ p and k 6= i, p,

and the other elements are all zero. So EipEip = Ip.

Next consider (b). Since A is symmetric and positive definite matrix, C = EipAEip is

also symmetric and positive definite matrix. Since D = chol(C), C = DT D and D is an

upper triangular matrix. Note that EipD is the matrix obtained by exchanging the ith and

pth rows of D. So, the ith row of EipD has only one nonzero element, and it is in the

(i, p) entry. Moreover, this nonzero element is exactly dpp. Note that B = (EipD)Eip is the

matrix obtained by exchanging the ith and pth columns of EipD. So, the ith row of B has

only one nonzero element, which is in the (i, i) entry, and bii = dpp. For example, let p = 3

E23 =


1 0 0

0 0 1

0 1 0

 and D =


1 2 3

0 4 5

0 0 6

 .

Then,

E23D =


1 2 3

0 0 6

0 4 5

 and B = E23DE23 =


1 3 2

0 6 0

0 5 4

 .

Then,

BT B = ET
ipD

T ET
ipEipDEip

= EipD
T EipEipDEip

= EipD
T DEip

= EipCEip

= Eip(EipAEip)Eip

= A,

where the second, the third and the sixth equalities follows from part (a). 2

12
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We summarize the steps for obtaining σii in (30). Let −∇2 ˆ̀
t be minus the observed

information matrix. For i = 1, 2, . . . , p,

1. let C = Eip(−∇2 ˆ̀
t)Eip;

2. let D = chol(C) so that D is upper triangular and C = DT D;

3. let B = EipDEip;

4. then BT B = −∇2 ˆ̀
t and the (i, i) entry in B is the σii in (30).

3.2 Joint Posterior Distributions

In this section we try to extend the marginal posterior density (23) to the joint posterior

density. Some notations are needed. Let

h(0) = h, h(1) = Uh = {h(1)
i , i = 1, · · · , p},

h(2) = U2h = U(Uh) = {h(2)
i1i2

, i1, i2 = 1, · · · , p}, (31)

h(k) = Ukh = U(Uk−1h) = {h(k)
i1i2···ik , i1, i2, · · · , ik = 1, · · · , p},

where Uh is defined in (8). So, h(1) is a p × 1 array of functions, h(2) is a p × p array, and

h(k) is a p × p × . . . × p(k terms) array. For any function f : Rp → R, denote by f
(s)
i1,...,is

(z)

the sth derivative of f with respect to zi1 , . . . , zis . One can rewrite (14) and (15) as

Et
ξ{h(Zt)} = Φph +

∑
i

Et
ξ

[
h

(1)
i

f
(1)
t,i (Zt)

ft(Zt)

]

Et
ξ{h(Zt)} = Φph +

∑
i

Φph
(1)
i Et

ξ

[
f

(1)
t,i (Zt)
ft(Zt)

]
+

∑
i,j

Et
ξ

[
h

(2)
ij

f
(2)
t,ij(Zt)
ft(Zt)

]
;

and we can obtain a more general form:

Et
ξ{h(Zt)} = Φph +

∑
i1

Φph
(1)
i1

Et
ξ

[
f

(1)
t,i1

(Zt)
ft(Zt)

]
+

∑
i1,i2

Φph
(2)
i1i2

Et
ξ

[
f

(2)
t,i1i2

(Zt)
ft(Zt)

]

+
∑

i1,i2,i3

(Φph
(3)
i1i2i3

)Et
ξ

[
f

(3)
t,i1i2i3

(Zt)
ft(Zt)

]
+ · · · +

∑
i1,...,is

(Φph
(s)
i1...is

)Et
ξ

[
f

(s)
t,i1...is

(Zt)
ft(Zt)

]

+
∑

i1,...,is+1

Et
ξ

h
(s+1)
i1...is+1

(Zt)
f

(s+1)
t,i1...is+1

(Zt)

ft(Zt)

 , (32)

13
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provided all the expectations exist. Take h(z) = 1{Zi≤z∗i , i=1,··· ,p}, where z∗i ∈ R. Then the

left hand side of (32) becomes the joint cumulative distribution of Zt, and the right hand

side gives an expansion for the joint distribution. To obtain an expansion similar to (23),

we need to extend the results in (19) and (20).

Q1: How does Et
ξ

[
f

(s)
t,i1...is

(Zt)/ft(Zt)
]

relate to the moments of Zt?

Q2: How to calculate Φph
(s)
i1...is

and ∂pΦph
(s)
i1...is

/∂a1 · · · ∂ap?

Since the generalization requires heavy calculations, in this thesis we only look at 2-

dimensional cases. For Q1, from (16) and (17) we know that

Et
ξ

[
∇ft(Zt)
ft(Zt)

]
and Et

ξ

[
∇2ft(Zt)
ft(Zt)

]
involve the first and the second posterior moments of Zt; and (16) and (17) are derived

by taking h(z) in (14) and (15) as zi and zizj . To generalize these results, note that if

h(z) = z3
i , then by (8) it follows Uh(z) = (z2

i + 2)ei; and if h(z) = z2
i zj with i < j, then

Uh(z) = z2
i ej where {e1, · · · , ek} denote the standard basis for <k. If h(z) = z3

1 , then by

(9) it follows that

Uh(z) =

 z2
1 + 2

0

 and U2h(z) = U
(
g1, g2

)
=

 z1 0

0 0

 ;

and by (31), U3h is a 2 × 2 × 2 array with h
(3)
111 = 1 and h

(3)
ijk = 0 for (i, j, k) 6= (1, 1, 1). By

(12), (13) and (32) with s = 3, we have

Et
ξZ

3
t1 = 3Et

ξZt1 + Et
ξ

{
f

(3)
111

f
(Zt)

}

Et
ξ(Z

2
t1Zt2) = Et

ξZt2 + Et
ξ

{
f

(3)
112

f
(Zt)

}

Et
ξ(Zt1Z

2
t3) = Et

ξZt1 + Et
ξ

{
f

(3)
133

f
(Zt)

}

Et
ξ(Zt1Zt2Zt3) = Et

ξ

{
f

(3)
123

f
(Zt)

}
.

For Q2, let

A = {θ : θi ≤ ai, i = 1, 2}, B = {z = Σt(θ − θ̂t) : θ ∈ A}, and h(z) = 1{z∈B}. (33)

14
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We have

Φ2h =
∫

B
φ2(z)dz

=
∫

A
φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞
φ2(z)dθ2dθ1.

So,

∂2Φ2h

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞
φ2(z)dθ2dθ1

}
= |Σt|φ2(z∗),

where

z∗ = Σt(a − θ̂t). (34)

By (12)

Φ2Uh =
∫

zh(z)Φ2(dz)

=
∫

A
zφ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞
zφ2(z)dθ2dθ1,

and it follows that

∂2Φ2Uh

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞
zφ2(z)dθ2dθ1

}
= |Σt|z∗φ2(z∗),

which is a 2×1 vector; moreover, taking f(z) in (32) as zizj gives Φ2h
(2)
ij , where i, j = 1, 2.

First, let f(z) = z2
1 . Then f
(1)
1 (z)

f
(1)
2 (z)

 =

 2z1

0

 ,

 f
(2)
11 (z) f

(2)
12 (z)

f
(2)
21 (z) f

(2)
22 (z)

 =

 2 0

0 0

 .

So, by (32),

Φ2h
(2)
11 =

∫
1
2
(z2

1 − 1)h(z)Φ2(dz)

=
∫

A

1
2
(z2

1 − 1)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
2
(z2

1 − 1)φ2(z)dθ2dθ1;

15
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and hence,

∂2Φ2h
(2)
11

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
2
(z2

1 − 1)φ2(z)dθ2dθ1

}
=

1
2
|Σt|(z∗21 − 1)φ2(z∗);

The two terms Φ2h
(2)
12 and Φ2h

(2)
21 may be different, but can be combined. So we don’t need

to solve out the two terms individually. To see how, let f(z) = z1z2. Then, f
(1)
1 (z)

f
(1)
2 (z)

 =

 z2

z1

 ,

 f
(2)
11 (z) f

(2)
12 (z)

f
(2)
21 (z) f

(2)
22 (z)

 =

 0 1

1 0

 .

By (16) and (17) it follows that

Φ2h
(2)
12 + Φ2h

(2)
21 =

∫
z1z2h(z)Φ2(dz)

=
∫

A
z1z2φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞
z1z2φ2(z)dθ2dθ1.

So,

∂2(Φ2h
(2)
12 + Φ2h

(2)
21 )

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞
z1z2φ2(z)dθ2dθ1

}
= |Σt|z∗1z∗2φ2(z∗);

Φ2h
(2)
22 =

∫
1
2
(z2

2 − 1)h(z)Φ2(dz)

=
∫

A

1
2
(z2

2 − 1)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
2
(z2

2 − 1)φ2(z)dθ2dθ1;

and hence,

∂2Φ2h
(2)
22

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
2
(z2

2 − 1)φ2(z)dθ2dθ1

}
=

1
2
|Σt|(z∗22 − 1)φ2(z∗);

Now, taking f(z) in (32) as zizjzk yields Φ2h
(3)
ijk, where i, j, k = 1, 2. First, let f(z) = z3

1 .

Then  f
(1)
1 (z)

f
(1)
2 (z)

 =

 3z2
1

0

 ,

 f
(2)
11 (z) f

(2)
12 (z)

f
(2)
21 (z) f

(2)
22 (z)

 =

 6z1 0

0 0

 ,

16
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f
(3)
111(z) = 6 and f

(3)
ijk (z) = 0 for (i, j, k) 6= (1, 1, 1). So, by (32),

Φ2h
(3)
111 =

∫
1
6
(z3

1 − 3z1)h(z)Φ2(dz)

=
∫

A

1
6
(z3

1 − 3z1)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
6
(z3

1 − 3z1)φ2(z)dθ2dθ1;

and hence,

∂2Φ2h
(3)
111

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
6
(z3

1 − 3z1)φ2(z)dθ2dθ1

}
=

1
6
|Σt|(z∗31 − 3z∗1)φ2(z∗);

Next let f(z) = z2
1z2. Then, f

(1)
1 (z)

f
(1)
2 (z)

 =

 2z1z2

z2
1

 ,

 f
(2)
11 (z) f

(2)
12 (z)

f
(2)
21 (z) f

(2)
22 (z)

 =

 2z2 2z1

2z1 0

 ,

f
(3)
ijk (z) = 0 except the three terms f

(3)
112(z) = f

(3)
121(z) = f

(3)
211(z) = 2, and f

(4)
t,i1,i2,i3,i4

(z) = 0.

By (32),

Et
ξ{h(Zt)} = Φ2h +

∑
i1

Φph
(1)
i1

Et
ξ

[
f

(1)
t,i1

(Zt)
ft(Zt)

]
+

∑
i1,i2

Φ2h
(2)
i1i2

Et
ξ

[
f

(2)
t,i1i2

(Zt)
ft(Zt)

]

+
∑

i1,i2,i3

Φ2h
(3)
i1i2i3

Et
ξ

[
f

(3)
t,i1i2i3

(Zt)
ft(Zt)

]
+

∑
i1,...,i4

Et
ξ

[
h

(4)
i1...i4

f
(4)
t,i1...i4

(Zt)
ft(Zt)

]
;

together with (16) and (17) it follows that

Φ2h
(3)
112 + Φ2h

(3)
121 + Φ2h

(3)
211 =

∫
1
2
(z2

1z2 − z2)h(z)Φ2(dz)

=
∫

A

1
2
(z2

1z2 − z2)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
2
(z2

1z2 − z2)φ2(z)dθ2dθ1.

So,

∂2(Φ2h
(3)
112 + Φ2h

(3)
121 + Φ2h

(3)
211)

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
2
(z2

1z2 − z2)φ2(z)dθ2dθ1

}
=

1
2
|Σt|(z∗21 z∗2 − z∗2)φ2(z∗).

17
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Though the three terms Φ2h
(3)
112, Φ2h

(3)
121 and Φ2h

(3)
211 may be different, we do not need to

write them out separately. Similarly, we can obtain

Φ2h
(3)
122 + Φ2h

(3)
212 + Φ2h

(3)
221 =

∫
1
2
(z1z

2
2 − z1)h(z)Φ2(dz)

=
∫

A

1
2
(z1z

2
2 − z1)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
2
(z1z

2
2 − z1)φ2(z)dθ2dθ1,

∂2(Φ2h
(3)
122 + Φ2h

(3)
212 + Φ2h

(3)
221)

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
2
(z1z

2
2 − z1)φ2(z)dθ2dθ1

}
=

1
2
|Σt|(z∗1z∗22 − z∗1)φ2(z∗);

Φ2h
(3)
222 =

∫
1
6
(z3

2 − 3z2)h(z)Φ2(dz)

=
∫

A

1
6
(z3

2 − 3z2)φ2(z)|Σt|dθ

= |Σt|
∫ a1

−∞

∫ a2

−∞

1
6
(z3

2 − 3z2)φ2(z)dθ2dθ1,

∂2Φ2h
(3)
222

∂a1∂a2
= |Σt|

∂2

∂a1∂a2

{∫ a1

−∞

∫ a2

−∞

1
6
(z3

2 − 3z2)φ2(z)dθ2dθ1

}
=

1
6
|Σt|(z∗32 − 3z∗2)φ2(z∗).

In the following we shall write down the joint posterior density of θ.

Let A, B, and h(z) be as in (33). So, θ ∈ A if and only if z ∈ B; and the joint probability

and joint density of θ are

P t
ξ (θi ≤ ai, i = 1, 2) = P t

ξ (θ ∈ A) = P t
ξ (Zt ∈ B),

and

ξt(a1, a2) =
∂2P t

ξ (θ ∈ A)
∂a1∂a2

=
∂2Et

ξ[h(Zt)]
∂a1∂a2

.

18
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With the results in previous paragraphs, we have

ξt(a1, a2) =
∂2P t

ξ (θ ∈ A)
∂a1∂a2

=
∂2Et

ξ[h(Zt)]
∂a1∂a2

=
∂2

∂a1∂a2
Φ2h +

∑
i1

∂2

∂a1∂a2
Φ2h

(1)
i1

Et
ξ

[
f

(1)
t,i1

(Zt)
ft(Zt)

]

+
∑
i1,i2

∂2

∂a1∂a2
Φ2h

(2)
i1i2

Et
ξ

[
f

(2)
t,i1i2

(Zt)
ft(Zt)

]

+
∑

i1,i2,i3

∂2

∂a1∂a2
Φ2h

(3)
i1i2i3

Et
ξ

[
f

(3)
t,i1i2i3

(Zt)
ft(Zt)

]

+
∑

i1,...,i4

Et
ξ

{
h

(4)
i1...i4

(Zt)
f

(4)
t,i1...i4

(Zt)
ft(Zt)

}

= |Σt|φ2(z∗) + |Σt|φ2(z∗)
∑
i1

z∗i1E
t
ξZti1

+
1
2
|Σt|φ2(z∗)

∑
i1i2

[(z∗i1z
∗
i2 − δi1i2)(E

t
ξZti1Zti2 − δi1i2)]

+
∂2

∂a1∂a2
Φ2h

(3)
111E

t
ξ

[
f

(3)
t,111(Zt)
ft(Zt)

]

+
∂2

∂a1∂a2
(Φ2h

(3)
112 + Φ2h

(3)
121 + Φ2h

(3)
211)E

t
ξ

[
f

(3)
t,112(Zt)
ft(Zt)

]

+
∂2

∂a1∂a2
(Φ2h

(3)
122 + Φ2h

(3)
212 + Φ2h

(3)
221)E

t
ξ

[
f

(3)
t,122(Zt)
ft(Zt)

]

+
∂2

∂a1∂a2
Φ2h

(3)
222E

t
ξ

[
f

(3)
t,222(Zt)
ft(Zt)

]

+
∑

i1,...,i4

Et
ξ

{
h

(4)
i1...i4

(Zt)
f

(4)
t,i1...i4

(Zt)
ft(Zt)

}

19
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= |Σt|φ2(z∗)[1 + q1(z∗1)E
t
ξZt1 + q1(z∗2)E

t
ξZt2 +

1
2
q2(z∗1)(E

t
ξZ

2
t1 − 1)

+q1(z∗1)q1(z∗2)(E
t
ξZt1Zt2) +

1
2
q2(z∗2)(E

t
ξZ

2
t2 − 1)

+
1
6
q3(z∗1)(E

t
ξZ

3
t1 − 3Et

ξZt1) +
1
2
q2(z∗1)q1(z∗2)(E

t
ξZ

2
t1Zt2 − Et

ξZt2) (35)

+
1
2
q1(z∗1)q2(z∗2)(E

t
ξZt1Z

2
t2 − Et

ξZt1) +
1
6
q3(z∗2)(E

t
ξZ

3
t2 − 3Et

ξZt2)]

+
∑

i1,...,i4

Et
ξ

{
h

(4)
i1...i4

(Zt)
f

(4)
t,i1...i4

(Zt)
ft(Zt)

}
.

4 Experimental Results

In Section 4.1 we compare the second order approximations for posterior densities by John-

son (1970), Tierney and Kadane (1986), and Weng (2010a). For Section 4.2, we evaluate

the performance of (37) when data comes in two stages. In Section 4.3-4.5, we use some

GLM examples to study the use of implied density (see (29) in Section 3.1) to diagnose

convergence of simulation series. In Section 4.6, we use the expansion (23) to diagnose the

posterior density with multi modes, but the result is not well. All computations here are

done in R (2010).

4.1 Comparison of Second Order Approximations

4.1.1 Comparison with Johnson (1970)

Johnson (1970) obtained expansions for marginal posterior distributions through Taylor

expansions. Weng (2010a) showed that the marginal posterior distribution of Ztp can be

expanded as

P t
ξ (Ztp ≤ z∗p) = Φ(z∗p) −

m∑
i=1

Rit(z∗p)φ(z∗p) + O(t−
m+1

2 ), (36)

where

Rit(z∗p) =
∑
v∈Ji

1
v!

qv−1(z∗p)E
t
ξ(qv(Ztp)) = O(t−

i
2 ).

Here qv are Hermite polynomials. Weng (2010b) applied a version of Stein’s identity to

approximate the posterior moments in (23) and derived the marginal posterior density for
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θp:

ξt
p(ap) = [Σt]pp{φ(z∗p) +

m∑
i=1

Q̂it(z∗p)φ(z∗p) + O(t−
m+1

2 )}, (37)

where m = 1, 2, which gives approximations accurate to O(t−1) and O(t−3/2), respectively.

Here

Qit(z∗p) =
∑
j∈Ji

1
j!

qj(z∗p)Et
ξ(qj(Ztp)) = O(t−

i
2 ),

and Q̂it(z∗p) is obtained by replacing Et
ξ(qj(Ztp)) with analytic approximations. These ana-

lytic approximations involve the loglikelihood and the prior and their derivatives. See Weng

(2010b) and Weng and Hsu (2011). Note that Q̂1t is of order O(t−1/2) and Q̂2t is O(t−1).

Weng and Hsu (2011) found that the O(t−1) terms in Weng (2010b) and Johnson (1970) do

not agree and further compared these two expansions by simulation study. The simulations

confirmed this finding and revealed that our O(t−1) term gives better performance than

Johnson’s. The materials below are taken from Weng (2010b) and Weng and Hsu (2011).

Johnson (1970) considered the posterior distribution of a centered and scaled variable

(see his Eq. (2.1), p. 853) in 1-dimensional case:

ψ = (θ − θ̂t)b(θ̂t), (38)

where t is the sample size and

b(θ̂t) =
[
− 1

t

t∑
i=1

∂2

∂θ2
logf(xi, θ)|θ=θ̂t

]1/2
.

Denote the posterior cdf of t1/2ψ by Ft. He showed that the posterior distribution of Ft

possesses an asymptotic expansion in powers of t−1/2 (see his Theorem 2.1):

|Ft(w) − Φ(w) −
K∑

j=1

γj(w, x)t−j/2| ≤ D1t
− 1

2
(K+1), (39)

and his Proposition 2.1 shows that each γj(w, x) is a polynomial in w having coefficients

bounded in x multiplied by the standard normal density. Here we use two examples for

simulation comparison. The first example is a Binomial-Beta model. Suppose that X ∼

Bin(t, θ), where the prior of θ is assumed to be Beta(a, b). Take a = 0.5, b = 4, t = 5, x = 2

and a = 0.5, b = 4, t = 30, x = 12. Thus, the posterior distributions of θ are Beta(2.5,7)

and Beta(12.5,22) respectively, which are shown in Figure 1.
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We compare the approximate posterior density of θ by Johnson’s formulas and (37) to

orders O(t−1) and O(t−3/2). Here Johnson’s approximation to O(t−1) is obtained by taking

K = 1 in (39):

pt(w) ≡ dFt(w)
dw

= φ(w) +
dγj(w, x)

dw
t−1/2 + O(t−1);

and the approximation to O(t−3/2) is by taking K = 2 in (39). Figures 1(a1) and (a2)

give the true density and (37) to O(t−1) and O(t−3/2); Figures 1(b1) and (b2) give the true

density and Johnson’s approximations to O(t−1) and O(t−3/2); and Figures 1(c1) and (c2)

contain the two O(t−1) approximations. We have some observations. First, Figures 1(c1)

and (c2) show that the two O(t−1) approximations are quite close. Secondly, Figure 1(a1)

shows that our approximation to O(t−3/2) is closer to the true density than approximation

to O(t−1), but Figure 1(b1) reveals that Johnson’s formula to O(t−3/2) does not improve

upon O(t−1). Thirdly, Figures 1(a2) and (b2) show that the negative value of the two

approximations has improved for θ (ranges between 0.5 and 1).

Next we consider a Poisson-Gamma example. Let y1, ..., yt be an i.i.d. sample from

Poisson(θ), where the prior of θ is assumed to be Gamma(a, b). Suppose that (y1, y2, y3, y4, y5) =

(3, 5, 7, 10, 3) and that (a, b) = (30, 5). Thus, the MLE of θ is 5.6, the prior mean of θ is

6 and the posterior distribution of θ follows Gamma(a +
∑t

i=1 yi, b + t)=Gamma(58,10).

We have some observations from Figure 2(a1) to Figure 2(c1). First, Figure 2(c1) indicates

that the two O(t−1) approximations are fairly close; secondly, Figure 2(a1) shows that (37)

to O(t−3/2) improves upon O(t−1), but Figure 2(b1) shows that Johnson’s does not.

Now we try different prior distributions to see its effect on the approximations. Suppose

that (a, b) = (15, 5). So, the prior mean of θ is 3 and θ|y ∼ Gamma(43,10). The results are in

Figures 3(a1) ∼ 3(c1). As before, Figure 3(c1) indicates that the two O(t−1) approximations

are close. However, due to the fact that the prior mean of θ may be farther from the MLE,

from Figures 3(a1) and 3(b1) we found that both O(t−3/2) approximations are worse than

O(t−1). A closer look at these two O(t−3/2) curves show that Johnson’s approximation

(ranges between -2 and 1.5) fluctuates more widely than ours (ranges between -1 and 1).

Next we try different sample sizes for Poisson-Gamma example. We do (y1, y2, y3, y4, y5) =

(3, 5, 7, 10, 3) for three times to obtain a sample size 15 with (a, b) = (30, 5) and (15, 5).

When (a, b) = (30, 5), the MLE of θ is 5.6, the prior mean of θ is 6 and θ|y follows
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Gamma(114,20). Figure 2(c2) indicates that the two O(t−1) approximations are close.

Figure 2(a2) shows that the negative value of our O(t−3/2) approximation has improved

for θ ranging between 2 and 4 while Figure 2(b2) shows that the negative value of John-

son’s O(t−3/2) approximation has also improved for θ ranging between 7 and 9. When

(a, b) = (15, 5), the prior mean of θ is 3 and θ|y follows Gamma(99,20). Figure 3(c2) in-

dicates that the two O(t−1) approximations are close. Figure 3(a2) shows that (37) to

O(t−3/2) shortens the range of negative value according to Figure 3(a1) while Figure 3(b2)

shows that Johnson’s also shortens the range of negative value according to Figure 3(b1).

In Figure 3, the prior mean of θ is farther from the MLE; the larger the sample size is, the

better the result will be.

sample size: t = 5

(a1) (b1) (c1)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5
1.

5
2.

5

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5
1.

5
2.

5
θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

sample size: t = 30

(a2) (b2) (c2)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

23



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Figure 1: Marginal posterior pdf of θ. Beta-Binomial model.

(a1) and (a2) Solid: Exact; Dashed: Eq (37) to O(t−1); Dotted: Eq (37) to O(t−3/2).

(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t−1); Dotted: Johnson’s O(t−3/2).

(c1) and (c2) Solid: Eq (37) to O(t−1); Dashed: Johnson’s O(t−1).

sample size: t = 5
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Figure 2: Marginal posterior pdf of θ. Poisson model with prior Gamma(30,5).

(a1) and (a2) Solid: Exact; Dashed: Eq (37) to O(t−1); Dotted: Eq (37) to O(t−3/2).

(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t−1); Dotted: Johnson’s O(t−3/2).

(c1) and (c2) Solid: Eq (37) to O(t−1); Dashed: Johnson’s O(t−1).

24



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

sample size: t = 5

(a1) (b1) (c1)

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0 2 4 6 8 10

−
2.

0
−

1.
0

0.
0

1.
0

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

sample size: t = 15

(a2) (b2) (c2)

3 4 5 6 7 8

0.
0

0.
5

1.
0

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

3 4 5 6 7 8

−
0.

5
0.

0
0.

5
1.

0

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

3 4 5 6 7 8

−
0.

2
0.

2
0.

6
1.

0

θ

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

Figure 3: Marginal posterior pdf of θ. Poisson model with prior Gamma(15,5).

(a1) and (a2) Solid: Exact; Dashed: Eq (37) to O(t−1); Dotted: Eq (37) to O(t−3/2).

(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t−1); Dotted: Johnson’s O(t−3/2).

(c1) and (c2) Solid: Eq (37) to O(t−1); Dashed: Johnson’s O(t−1).

4.1.2 Comparison with Tierney and Kadane (1986)

In this section we compare (37) with (24) by Tierney and Kadane. We consider a data

taken from Mendenhall et al. (1989); see also Tanner (1993). The explanatory variable

is the number of days of radiotherapy received by each of 24 patients, and the response

variable is the absence (1) and presence (0) of disease at a site three years after treatment.

A problem of interest is to use the covariate (days) to predict outcome.
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We fit the data using the logistic regression model

log
( pi

1 − pi

)
= θ1 + θ2xi,

where xi is the covariate for patient i and pi is the probability of success (no disease). So,

pi = exp(θ1 +θ2xi)/(1+exp(θ1 +θ2xi)). The intercept θ1 represents the log-odds of success

for zero days, while the slope θ2 represents the change in the log-odds of success for every

unit increase in the covariate. The loglikelihood and the second partial derivatives are

`t(θ) =
t∑

i=1

[yilogpi + (1 − yi)log(1 − pi)] =
t∑

i=1

[yi(θ1 + θ2xi) − log(1 + exp(θ1 + θ2xi))],

`
(2)
11 = −

∑
i

pi(1 − pi), `
(2)
12 = −

∑
i

xipi(1 − pi), `
(2)
22 = −

∑
i

x2
i pi(1 − pi). (40)

Now we take flat priors on both θ1 and θ2. The comparison of the density in (25) and

(37) with m = 2 and moments replaced by approximations are in Figure 4(a); the two

methods and the true density are very close. Next we take the standard normal density

priors on both θ1 and θ2. The results are in Figure 4(b); the result of (25) is close to the

exact density, but (37) performs poorly. Here the posterior means of qi(Zt2), i = 1, ..., 4 are

(1.485, 1.460,−0.045,−3.333) and (3.134, 7.207,−0.336,−3.874), respectively. The reason

why analytic approximation (37) fails may be that the prior mean is farther from the MLE.

If we change priors to N(0, 2), a less informative prior than N(0, 1), then the result of

(37) improves a bit; see Figure 4(c). Since the posterior standard error of θ2 is around

1/23.25 = 0.043, the prior mean 0 is about two standard errors away from θ̂t2. Figure 4

showed that the less informative the prior is (i.e. larger variance), the more accurate the

approximate density is.

Next we consider a data first analyzed by Finney (1947); see also Albert and Chib (1993)

for illustrating a sampling method for marginal posterior densities, and Myers (1990)[p.330-

332]. A probit model was fit to the data. The model is

pi = Φ(θ1 + θ2c1i + θ3c2i), i = 1, ..., 39,

where Φ is the cdf of the standard normal density, c1i is the volume of air inspired, c2i is

the rate of air inspired, and the binary outcome is the occurrence or non-occurrence on a

transient vasorestriction on the skin of the digits. Now we take flat priors on both θ1 and
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θ2 and obtain the results are in Figure 5, where (37) (with m = 2) is very close to the exact

density, but (25) shifts to left slightly.

(a) (b) (c)
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Figure 4: Marginal posterior pdf of θ2. Logit2p model.

Solid: Equation (25); Dashed: Equation (37); Dotted: Exact distribution.

(a) flat-prior. (b) N(0,1) prior. (c) N(0,2) prior.

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

θ3

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

Figure 5: Marginal posterior pdf of θ3. Probit model with flat prior. Solid: Equation (25);

Dashed: Equation (37); Dotted: Exact distribution by numerical integration.

4.2 Multi-stage Data

The lemma below is well-known. It says that if data D = (D1, D2), then the posterior

density of θ given D is the same as the posterior density obtained by taking θ|D1 as the

prior and D2 as the data. This result extends to the case D = (D1, D2, . . . , Dt). Suppose

that data arrive in different stages. With the first set of data, we can obtain the second
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order posterior density approximation by (37). This approximation is considered as the

prior density for the next data, and the updating procedure for posterior distribution is

repeated by using (37).

Lemma 3 Let ξ be the prior for parameter θ and D = (D1, D2) be the observed data. As-

suming given θ D1 and D2 are independent. Let L1(θ) and L2(θ) be the likelihood functions

based on D1 and D2, respectively. Let ξ(θ|D) be the posterior density of θ given D. Then

ξ(θ|D) =
ξ(θ|D1)L2(θ)∫
ξ(θ|D1)L2(θ)dθ

(41)

4.2.1 Binomial Model

First we consider a binomial model Y ∼ Bin(t, θ), where the prior distribution of θ is

Beta(α, β). Then, the posterior density for θ is

p(θ|y) ∝ θy(1 − θ)t−yθα−1(1 − θ)β−1

∝ θy+α−1(1 − θ)t−y+β−1.

So,

θ|y ∼ Beta(α + y, β + t − y).

Suppose that t = 58, y = 15, (α, β) = (0.5, 4). So, the posterior distribution of θ given

y is Beta(15.5,47). If the data comes in two stages: Y1 ∼ Bin(8, θ) and Y2 ∼ Bin(50, θ)

with y1 = 3 and y2 = 12, then the posterior distribution of θ given y1 can be approxi-

mated by (37). Using this as the prior and y2 as second stage data, we can further update

the posterior distribution of θ by (37) and compare it with the exact posterior distribu-

tion Beta(15.5,47). Figure 6(a) shows the exact and approximate posterior densities of

θ given y1; the two densities are close. Here the exact distribution is Beta(3.5,9) with

mean 3.5/(3.5+9)=0.28 and mode (3.5-1)/(3.5+9-2)=0.238, and the MLE based on y1 is

3/8=0.375. Figure 6(b) shows the densities of exact posterior distribution Beta(15.5,47)

and our two-stage approximation. Here the MLE based on y is 15/58=0.259 and the mean

of Beta(15.5,47) is 15.5/(15.5+47)=0.248. We also conducted more experiments and found

that the approximation (37) may not perform well when the posterior mode in the previous

data greatly differs from the MLE of second-stage data.
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4.2.2 Two-parameter Logit Model

To update posterior density for two-parameter problems in the two-stage scenario, we need

to have an approximate joint posterior density at the first stage, which will be considered

as the prior in the second stage. Such an approximation can be obtained by (35) with

posterior moments replaced by their approximations; that is,

ξ̂t(θ1, θ2) = |Σt|φ2(z∗)[1 + q1(z∗1)Ê
t
ξZt1 + q1(z∗2)Ê

t
ξZt2 +

1
2
q2(z∗1)(Ê

t
ξZ

2
t1 − 1)

+q1(z∗1)q1(z∗2)(Ê
t
ξZt1Zt2) +

1
2
q2(z∗2)(Ê

t
ξZ

2
t2 − 1)

+
1
6
q3(z∗1)(Ê

t
ξZ

3
t1 − 3Êt

ξZt1) +
1
2
q2(z∗1)q1(z∗2)(Ê

t
ξZ

2
t1Zt2 − Êt

ξZt2) (42)

+
1
2
q1(z∗1)q2(z∗2)(Ê

t
ξZt1Z

2
t2 − Êt

ξZt1) +
1
6
q3(z∗2)(Ê

t
ξZ

3
t2 − 3Êt

ξZt2)].

The moment approximations are in terms of the loglikelihood and the prior and their deriva-

tives; see Weng (2010b) and Weng and Hsu (2011).

In the first stage, we consider the same data from Mendenhall et al. (1989) as in Section

4.1.2. The data D1 contains 24 observations. We take flat priors on both θ1 and θ2 and

obtain an approximate joint posterior density ξ̂t(θ1, θ2) by (42). Next we use this approxi-

mation as prior and randomly select 18 observations from D1 as the data of second stage,

denoted as D2. Then we update the posterior density of θ by (42). Since the exact pos-

terior density does not have a closed form, we compare our two-stage approximation with

MCMC results using MCMCpack (2010). The results are in Figure 7. We found that the

two densities are rather close, but the approximation method may sometimes give negative

values.

4.3 Logit Model

Two-parameter case. Consider the same logit model in Section 4.1.2. We take flat priors on

both θ1 and θ2 and use the implied density (29) to validate convergence of MCMC samples.

To begin, we run the MCMClogit function in an R package MCMCpack (2010) to this data

and obtain the posterior of MCMC samples. The comparisons of the density of MCMC

samples and the implied density (29) are in Figures 8 and 9, based on posterior samples

of sizes 100 (burn-in=50) and 10000 (burn-in=5000), respectively. Here [Σt]22 = 23.25,
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θ̂t2 = −0.085, and the posterior means of qi(Zt2), i = 1, . . . , 10 from the MCMC samples in

Figure 9 are (-0.224, 0.198, -0.416, 0.329, -0.069, -0.646, 2.844, -3.699, -6.565, 36.080) and R̂

is 1.0020 for θ2. The sample sizes and burn-in are chosen so that one exhibits convergence,

but one does not. As expected, Figure 9 with s = 2 and s = 4 shows nice agreement;

however, for Figure 8, the posterior sample and the implied density (29) with s = 2, s = 4,

s = 20 and s = 27 are disagreements and R̂ is 1.2309 for θ2. Now we take the standard

normal priors on both θ1 and θ2 and use the implied density (29) to validate convergence

of MCMC samples. The comparisons of the density of the posterior samples (size=10000,

burn-in=5000) and the implied density (29) with s = 2 and s = 4 are in Figure 10. Here

the posterior means of qi(Zt2), i = 1, . . . , 10 from the MCMC samples are (1.507, 1.535,

0.095, -3.243 , -5.175, 4.035, 28.610, 22.206, -132.075, -336.186) and R̂ is 1.0001 for θ2. The

posterior samples has converged, but the implied density (29) failed to diagnose for this

example.

Three-parameter case. Next, we consider the data analyzed by Finney (1947). A logistic

regression was fit to the data. The model is

log
( pi

1 − pi

)
= θ1 + θ2c1i + θ3c2i, i = 1, . . . , 39.

The residual deviance gives a χ2-value of 29.772 with 36 degrees of freedom, indicating that

the logistic model is quite adequate. The comparisons of the density of MCMC samples

(size=10000, burn-in=5000) and the implied density (29) with s = 2 and s = 4 are in

Figure 11. The implied density (29) failed to diagnose for this example. The reason might

be that the posterior density has quite heavy tails. Here [Σt]33 = 1.093, θ̂t3 = 2.649, and the

posterior means of qi(Zt3), i = 1, . . . , 10 from the MCMC samples in Figure 11 are (0.557,

0.666, 1.886, 5.581, 18.701, 73.833, 318.033, 1444.880, 6826.201, 32712.78) and R̂ is 1.0023

for θ3.

As a remedy, we truncate some extreme values from the MCMC samples. The compar-

isons of the density of MCMC samples (size=10000, burn-in=5000) and the implied density

(29) with s = 2 and s = 4 are in Figure 12. Using a larger s gives better results. Here the

posterior means of qi(Zt3), i = 1, . . . , 10 from the MCMC samples in Figure 12 are (0.399,

0.086, 0.025, -0.381, -1.335, -0.560, 6.126, 13.857, -11.231, -116.282).
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We truncate some extreme values from the MCMC samples to get better results on

logit3p model at present section. We have a further discussion on this example and propose

a method that transforms Zt to another pivotal quantity in chapter 5.

Now we take the standard normal priors on θ1, θ2, and θ3, and use the implied density

(29) to validate convergence of MCMC samples. Here the posterior means of qi(Zt3), i =

1, . . . , 10 from MCMC samples are (-2.257, 4.217,-5.564, 1.478, 16.393, -43.238, 11.314,

241.204, -627.421, -488.959) and R̂ is 1.0013 for θ3. In this example the posterior samples

have heavy tails so we truncate some samples from the MCMC samples. Here the posterior

means of qi(Zt3), i = 1, . . . , 10 from the MCMC samples are (-2.279, 4.299, -5.719, 1.509,

16.952, -45.244, 12.290, 253.552, -662.408, -522.589). The comparisons of the density of

MCMC samples and the implied density (29) with s = 2, s = 4 and s = 14 are in Figure

13, based on posterior samples of sizes 10000 (burn-in=5000).

Six-parameter case. Next, we consider a six-parameter problem. Kutner et al. (2004)

studied the strength of association between several risk factors and the duration of preg-

nancies based on 102 women. The risk factors were nutritional status (x1), mother’s age

(categorized into three groups and represented by two indicator variables x2 and x3), history

of alcohol use (x4), and history of tobacco use (x5). The response of interest, pregnancy

duration, was originally categorized into three groups: preterm (less than 36 weeks), inter-

mediate term (from 36 to 37 weeks), and full term (38 weeks or greater). Here we combine

the first two categories (coded 1) and let the full term be the second group (coded 0), and

then fit a logistic regression model to the data. For details, see Kutner et al. (2004). The

model is

log
( pi

1 − pi

)
= θ1 + θ2x1i + θ3x2i + θ4x3i + θ5x4i + θ6x5i, i = 1, . . . , 102.

We run MCMCpack (2010) to obtain posterior samples of sizes 10000 (burn-in=10000).

Figure 14 shows that the implied density (29) with s = 4 is quite close to the MCMC

result. For example, for θ6 we have [Σt]66 = 1.586, θ̂t6 = 2.309, and the posterior means of

qi(Zt6) for i = 1, ..., 4 from the MCMC samples in Figure 14 are (0.407, 0.237, 0.367, 0.610)

and R̂ is 1.0114. With these six numbers, we can capture the posterior density of θ6 pretty

well.
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4.4 Poisson Regression Model

We consider a data taken from Hinde (1982). The explanatory variable is the length of each

roll, and the response variable is the numbers of faults found in 32 rolls of fabric produced

in a particular factory. A problem of interest is the number of faults to be proportional to

the length of roll. We fit the data using the poisson regression model

log(µi) = θ1 + θ2xi

where xi is the length of ith roll and µi is the mean of related response variable. The

intercept θ1 represents the log-mean for zero length roll, while the slope θ2 represents the

change in the log-mean of response variable for every unit increase in the covariate. The

loglikelihood and the second partial derivatives are

`t(θ) = θ1

t∑
i=1

yi + θ2

t∑
i=1

xiyi −
t∑

i=1

exp(θ1 + θ2xi) + C,

`
(2)
11 = −

t∑
i=1

exp(θ1 + θ2xi), `
(2)
12 = −

t∑
i=1

xiexp(θ1 + θ2xi), `
(2)
22 = −

t∑
i=1

x2
i exp(θ1 + θ2xi).

Now we take flat priors on both θ1 and θ2 and use the implied density (29) to validate

convergence of MCMC samples. We run WinBUGS Lunn et al. (2000) to obtain the posterior

MCMC samples of sizes 10000 (burn-in=5000). Figures 15(a2) and (b2) show that the

implied density (29) with s = 2 and s = 4 is quite close to the density of posterior samples.

Here we have [Σt]22 = 3264.80 and θ̂t2 = 0.0019, and the posterior means of qi(Zt2),

i = 1, ..., 4 from the MCMC samples in Figure 15(b2) are (0.052,−0.014, 0.047, 0.044) and

R̂ is 1.0004 for θ2. Now we take the standard normal priors on both θ1 and θ2 and use the

implied density (29) to validate convergence of MCMC samples. Figures 16(a2) and (b2)

show that the implied density (29) with s = 2 and s = 4 is very close to the MCMC result.

Here the posterior means of qi(Zt2), i = 1, . . . , 4 from the MCMC samples in Figure 16(b2)

are (0.235, 0.021,−0.026,−0.080) and R̂ is 1.0011 for θ2.

Given sample size t = 16, we randomly draw 16 observations from Hinde (1982). As

before, we take flat priors on both θ1 and θ2. Figures 15(a1) and (b1) show that the implied

density (29) with s = 2 and s = 4 is quite close to the density of posterior samples. Here

we have [Σt]22 = 2487.49 and θ̂t2 = 0.00199, and the posterior means of qi(Zt2), i = 1, ..., 4
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from the MCMC samples in Figure 15(b1) are (0.068,−0.030, 0.012,−0.034). Now we take

the standard normal priors on both θ1 and θ2, Figures 16(a1) and (b1) show that the

implied density (29) with s = 2 and s = 4 is very close to the MCMC result. Here the

posterior means of qi(Zt2), i = 1, . . . , 4 from the MCMC samples in Figure 16(b1) are

(0.319, 0.026, 0.004, 0.024).

4.5 Gamma Model

We consider the example of clotting time of blood given in Hurn et al. (1945); see also

McCullagh and Nelder (1989). The data set consists of clotting times in seconds (y) for

normal plasma diluted to nine different percentage concentrations with prothrombin-free

plasma (ν); clotting was induced by two lots of thromboplastin.

Suppose that Y follows Gamma(α, 1/β) with mean αβ. McCullagh and Nelder (1989)

take the link function to be inverse; that is,

η = µ−1 =
1

αβ
= θ1 + θ2x,

where x = log(ν). The loglikelihood and second partial derivatives are

`t(θ) = α
t∑

i=1

log(θ1 + θ2xi) − α
t∑

i=1

yi(θ1 + θ2xi) + C,

`
(2)
11 = −

t∑
i=1

α

(θ1 + θ2xi)2
, `

(2)
12 = −

t∑
i=1

αxi

(θ1 + θ2xi)2
, `

(2)
22 = −

t∑
i=1

αx2
i

(θ1 + θ2xi)2
.

Since the MCMCpack (2010) does not provide GLM Gamma, we use WinBUGS Lunn et al.

(2000). However, GLM Gamma with inverse link produces negative values of η, so we

consider the identity link function; that is,

η = µ = αβ = θ1 + θ2x,

where x = 1/log(ν). The loglikelihood and second partial derivatives are

`t(θ) = −α
t∑

i=1

log(θ1 + θ2xi) − α
t∑

i=1

[yi/(θ1 + θ2xi)] + C,

`
(2)
11 = α

[
(−1)2

t∑
i=1

1
(θ1 + θ2xi)2

+ (−1)3 2!
t∑

i=1

yi

(θ1 + θ2xi)3

]
,
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`
(2)
12 = α

[
(−1)2

t∑
i=1

xi

(θ1 + θ2xi)2
+ (−1)3 2!

t∑
i=1

xiyi

(θ1 + θ2xi)3

]
,

`
(2)
22 = α

[
(−1)2

t∑
i=1

x2
i

(θ1 + θ2xi)2
+ (−1)3 2!

t∑
i=1

x2
i yi

(θ1 + θ2xi)3

]
.

We take flat priors on both θ1 and θ2 and use the implied density (29) to validate convergence

of MCMC samples. With WinBUGS Lunn et al. (2000) we obtain the posterior MCMC

samples of sizes 10000 (burn-in=20000). In this example, the number of burn-in needs to

be large to converge. Figures 17(a2) and (b2) show that the implied density (29) with

s = 2 and s = 4 is close to the density of MCMC samples. Here [Σt]22 = 0.01247 and

θ̂t2 = 154.4327, and the posterior means of qi(Zt2), i = 1, ..., 4 from the MCMC samples

in Figure 17(b2) are (0.450, 0.290, 0.699, 1.128) and R̂ is 1.0111 for θ2. Given sample size

t = 9, we randomly draw 9 observations from Hurn et al. (1945). Figures 17(a1) and (b1)

show that the implied density (29) with s = 2 and s = 4 is close to the density of MCMC

samples. Here [Σt]22 = 0.00713 and θ̂t2 = 194.6036, and the posterior means of qi(Zt2),

i = 1, ..., 4 from the MCMC samples in Figure 17(b1) are (0.315, 0.250, 1.143, 2.170).

4.6 Mixture Normal

In this section we consider mixture normal models where the posterior density of the pa-

rameter may have multimodes. Suppose that a vector of observations y = (y1, ..., yt) is

drawn from a mixture distribution of two normals:

p(y|θ) = w1φ(y; θ1, σ
2
1) + w2φ(y; θ2, σ

2
2), (43)

where φ(y; θ, σ2) is normal density with mean θ and variance σ2, w1 + w2 = 1, w1 and θ1

are unknown parameters of interest, θ2, σ2
1, and σ2

2 are assumed known. The conjugate

prior distributions are (w1, w2) ∼ Beta(α, β) and θi ∼ φ(µi, τ
2
i ) for i = 1, 2. For detailed

discussions of mixture distributions, see Gilks et al. (1995, chapter 24) and Minka (2001).

It is convenient to introduce unobserved indicator variables ζi with

ζi =

 1 if the ith observed is drawn from φ(θ1, σ
2
1)

0 otherwise.

Given w1, each unobserved variable ζi follows Bernoulli distribution with mean w1.
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We take θ2 = 0 and σ2
1 = σ2

2 = 1, and assume that w1 has prior distribution Beta(1, 1).

Let θ1 have a prior density φ(0, 100). The posterior density of (θ1, ζ, w1) given y is

p(θ1, ζ, w1|y) ∝ p(θ1, ζ, w1, y)

∝ p(θ1, w1)p(y, ζ|θ1, w1)

∝ p(θ1)p(w1)p(ζ|w1)p(y|θ1, ζ)

∝ exp(−θ2
1/200)

∏
i

[
w1φ(yi; θ1, 1)

]ζi
[
(1 − w1)φ(yi; 0, 1)

]1−ζi . (44)

Given (θ1, w1, y), by (44),

p(ζ|θ1, w1, y) ∝
∏

i

[
w1φ(yi; θ1, 1)

]ζi
[
(1 − w1)φ(yi; 0, 1)

]1−ζi .

So

p(ζi = 1|θ1, w1, y) ∝ w1φ(yi; θ1, 1), p(ζi = 0|θ1, w1, y) = (1 − w1)φ(yi; 0, 1);

where

ri = w1φ(yi, θ1, 1)/[w1φ(yi, θ1, 1) + (1 − w1)φ(yi, 0, 1)]. (45)

So, the full conditional distribution for ζi is Bernoulli distribution with mean ri. To con-

struct the full conditionals for w1 and θ1, by (44),

p(w1|y, θ1, ζ) ∝ w
P

ζi

1 (1 − w1)t−
P

ζi ;

and

p(θ1|y, w1, ζ) ∝ exp(−θ2
1/200)

∏
i

[
φ(yi; θ1, 1)ζi

]
∝ exp(−θ2

1/200)exp
(
−

∑
ζi(yi − θ1)2

2

)
∝ exp

(
−1

2

[
(

1
100

+
∑

ζi)(θ1 −
∑

ζiyi
1

100 +
∑

ζi
)2

])
.

So, the full conditional for w1 is a Beta distribution, and the full conditional for θ1 is a

normal distribution with mean b/(1/100 + h) and variance 1/(1/100 + h), where h =
∑

ζi

and b =
∑

ζiyi. The Gibbs sampler is easy to apply for the mixture normals because

the full conditional posterior distributions - π(ζ|θ1, w1, y), π(w1|θ1, ζ, y), π(θ1|w1, ζ, y) -
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have standard forms and can be easily sampled from. One cycle of the Gibbs sampler is

described below.

Step 1 -Simulate ζi :

(ζi|θ1, w1, y) ∼ Bernoulli(ri), for i = 1, 2, . . . , t;

where ri is in (45).

Step 2 -Simulate w1 :

(w1|θ1, ζ, y) ∼ Beta(h + 1, t + 1 − h),

where h =
∑

ζi.

Step 3 -Simulate θ1 :

(θ1|w1, ζ, y) ∼ φ

(
b

1
100 + h

,
1

1
100 + h

)
,

where b =
∑

ζiyi.

The loglikelihood and the second partial derivatives are

`t(θ) =
t∑

i=1

log
[
w1φ(yi; θ1, 1) + (1 − w1)φ(yi; 0, 1)

]
,

where θ = (w1, θ1).

`
(2)
11 = −

∑
i

[φ(yi; θ1, 1) − φ(yi; 0, 1)]2

f2
, `

(2)
12 = −

∑
i

(yi − θ1)φ(yi; θ1, 1)φ(yi; 0, 1)
f2

,

`
(2)
22 = −

∑
i

{
w1(1 − w1)[(yi − θ1)2 − 1]φ(yi; θ1, 1)φ(yi; 0, 1) − w2

1φ(yi; θ1, 1)2

f2

}
.

where f = w1φ(yi; θ1, 1)+(1−w1)φ(yi; 0, 1). In this simulation we set w1 = 0.5 and θ1 = 2,

and generate a data of sample size 20. Then, we take the prior of θ1 as N(0,100) and use the

implied density (29) to validate convergence of MCMC samples. We run R function to obtain

posterior samples of θ1 by Gibbs sampler with sample sizes 5000 (burn-in=5000). The initial

value for Gibbs sampler is (θ(0)
1 , w

(0)
1 ) = (−2, 0.5). Figure 18 shows that the implied density

(29) with s = 2 and s = 4 is very close to the MCMC result. For this data, the posterior

distribution has a single mode and the posterior means of qi(Zt2) with Zt2 = [Σt]22(θ1− θ̂t1),

i = 1, . . . , 4 from the Gibbs samples are (−0.00076, 0.0786, 0.0184, 0.1693) and R̂ is 1.0024

for θ1. Next we let σ2
2 = 10, meanwhile generating another data of sample size 20. We obtain
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the posterior samples of θ1 by Gibbs sampler with sample sizes 5000 (burn-in=5000). The

initial value for Gibbs sampler is also (θ(0)
1 , w

(0)
1 ) = (−2, 0.5). The posterior samples have

two modes. Figure 19(a) shows that the density of MCMC samples is close to the exact

density by numerical integration and 19(b) shows the implied density (29) failed to diagnose

for this example. The posterior means of qi(Zt2), i = 1, . . . , 4 from the Gibbs samples are

(−2.643, 86.271,−925.97, 5850.66) and R̂ is 1.0016 for θ1.

We have a further discussion on this example and propose a method that transforms Zt

to another pivotal quantity in chapter 5.

5 Concluding Remarks

We have compared second order Bayesian asymptotics and found some agreements and some

disagreements. We found that our O(t−1/2) term is arithmetically equivalent to Johnson’s,

but the O(t−1) term is not. Since the derivation is tedious and difficult to detect errors,

simulation studies are conducted to further compare these expansions. The simulations

confirmed that the two expressions for O(t−1/2) term yield close results, and revealed that

our O(t−1) term gives better performance than Johnson’s. Note that the emphasis here is on

comparison of the two expansions, rather than the regularity conditions for the expansions.

We also conduct simulations to compare the order O(t−3/2) expansions with Tierney and

Kadane (1986) result.

Since the asymptotic posterior distribution depends on observed data, we try different

samples to see its effect on the asymptotic approximations. Here we have a further discussion

from both analytical and numerical (experimental) result.

Analytical results. In the appendix of Tierney and Kadane (1986), Laplace’s method

provides an approximation for integrals of the form
∫

etL(θ)dθ when t is large. If L has a

unique maximum at θ̂ and σ2 = −1/∇2L(θ̂), then∫
etL(θ)dθ =

√
2πσt−1/2etL(θ̂)(1 +

a

t
+

b

t2
+ O(t−3)), (46)

where, setting Lk = ∇kL(θ̂), the constants a and b are given by

a =
1
8
σ4L4 +

5
24

σ6L2
3
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and

b =
1
48

σ6L6 +
35
384

σ8L2
4 +

7
48

σ8L3L5 +
35
64

σ10L2
3L4 +

385
1152

σ12L4
3.

Result (46) remains valid if L is replaced by a sufficiently well-behaved sequence L(t) of

functions. In this case the coefficients a and b may depend on t, but this dependence will

be suppressed. If a and b do indeed depend on t, we will assume regularity conditions for

the sequence L(t) that insure that a and b are bounded in t.

In Weng (2010a) (see Theorem 2, page 752), to ensure the marginal posterior density

(Eq(23)), the following condition is required:

(A1) For each r > 0, Et
ξ(‖Zt‖r) = O(1).

Here O(1) means convergence of a sequence of real numbers as t → ∞. However, it is

difficult to judge O(1) from the posterior moments of Zt.

Numerical (experimental) result. Consider the same logit model in Section 4.1.2. Given

sample sizes t = 12 and t = 15, we randomly draw three samples from 24 observations,

respectively, and the comparisons of the density (Eq(23)) with exact density (numerical

integration) are in Figures 20 and 21 with s = 2. Figure 20 contains the results of three

different samples for t = 12. The posterior means of the three samples Zr
t2, r = 1, . . . , 10

from numerical integration are in Table 1.1, where the seventh to tenth posterior moments

of Zt2 for the three samples are large and it does not seem to satisfy the condition (A1).

The approximations are not well in Figures 20(a), (b) and (c).

Figure 21 contains the results of three different samples for t = 15. The posterior means

of the three samples Zr
t2, r = 1, . . . , 10 from numerical integration are in Table 1.2, where

the seventh to tenth posterior moments of Zt2 for the three samples are also large and it

does not seem to satisfy the condition (A1). In this example we found that the posterior

moments of the first sample are relatively smaller than the other two samples. So, the

approximations are not well in Figures 21(b) and (c); however, the approximation is well in

Figure 21(a).

Now we consider the same observed data from the previous paragraph. The comparisons

of the density (Eq(23)) and the MCMC density with both s = 2 and s = 7 are in Figures

22 and 23, where the sample sizes are t = 12 and t = 15, respectively. The posterior means

of the three samples Zr
t2, r = 1, . . . , 6 from MCMC samples are in Table 2.1, where the fifth
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to sixth posterior moments of Zt2 in the first sample are larger than the other two samples.

The first sample does not seem to satisfy the condition (A1) and the approximation is not

well in Figure 22-1. However, the posterior moments of the second and third samples are

relatively smaller than the first sample and the approximations are well in Figures 22-2 and

22-3.

The posterior means of the three samples Zr
t2, r = 1, . . . , 6 from MCMC samples are in

Table 2.2, where the fifth to sixth posterior moments of Zt2 in the third sample are larger

than the other two samples. The third sample does not seem to satisfy the condition (A1)

and the approximation is not well in Figure 23-3. However, the posterior moments of the

first and second samples are relatively smaller than the third sample and the approximations

are well in Figures 23-1 and 23-2.

posterior moments (exact density)

Zt2 Z2
t2 Z3

t2 Z4
t2 Z5

t2 Z6
t2 Z7

t2 Z8
t2 Z9

t2 Z10
t2

data

1 -0.55 1.76 -3.53 11.94 -37.29 139.1 -521.6 2100.7 -8596.0 36413.0

2 -0.44 1.58 -2.68 9.40 -26.51 99.36 -351.4 1406.9 -5562.5 23389.6

3 -0.27 1.43 -1.72 7.50 -17.20 72.31 -226.5 966.7 -3549.9 15526.2

Table 1.1 sample size t = 12.

posterior moments (exact density)

Zt2 Z2
t2 Z3

t2 Z4
t2 Z5

t2 Z6
t2 Z7

t2 Z8
t2 Z9

t2 Z10
t2

data

1 -0.19 1.28 -1.10 5.74 -10.14 47.47 -124.4 565.8 -1845.8 8401.6

2 -0.54 1.70 -3.44 11.34 -35.62 130.9 -491.2 1961.0 -8013.8 33771.0

3 -0.75 2.14 -5.39 18.01 -62.90 239.6 -949.5 3908.4 -16496.7 71105.2

Table 1.2 sample size t = 15.
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posterior moments (MCMC density)

Zt2 Z2
t2 Z3

t2 Z4
t2 Z5

t2 Z6
t2

data

1 -0.51 1.75 -3.56 13.26 -47.28 208.5

2 -0.39 1.54 -2.29 8.37 -20.85 79.53

3 -0.24 1.36 -1.48 6.46 -13.14 54.34

Table 2.1 sample size t = 12.

posterior moments (MCMC density)

Zt2 Z2
t2 Z3

t2 Z4
t2 Z5

t2 Z6
t2

data

1 -0.14 1.20 -0.79 4.67 -6.23 32.96

2 -0.52 1.64 -3.22 10.59 -33.25 123.8

3 -0.78 2.45 -7.41 30.61 -142.1 743.2

Table 2.2 sample size t = 15.

In Section 4.2.1, we have described the binomial model Y ∼ Bin(t, θ) with prior Beta(α, β)

of θ for multi-stage data and compared the posterior density (Eq(37)) with the exact distri-

bution. Now we try different priors to see its effect on the approximations. We compared

the exact posterior distribution of θ given the first-stage data y1 with posterior density

(Eq(37)) for four different priors; the results are in Figures 24(a), (b), (c) and (d), respec-

tively. Next, we try four different second-stage data for each of the settings in Figures 24(a),

(b), (c) and (d). The results are in Figures 25 to 28. We have some observations from Fig-

ure 25 to Figure 28. First, the approximated posterior density (Eq(37)) is near the exact

distribution when the MLE of second-stage data does not differ much from the posterior

mode in the previous data, see Figures 25(a)(b), 26(a)(b), 27(a)(b) and 28(a)(b). Secondly,

the approximation (Eq(37)) may not perform well and may have some negative values when

the posterior mode in the previous data greatly differs from the MLE of second-stage data;

see Figures 25(c), 26(c), 27(c) and 28(c). Thirdly, the problem of negative values by ap-

proximated posterior density (Eq(37)) may be improved when the sample size increases;

see Figures 25(d), 26(d), 27(d) and 28(d). Our experiments on multi-stage data showed

that the analytic approximations are reasonably well when the MLE of second-stage data
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does not differ much from the posterior mode in the previous data. However, when the

MLE of second-stage data greatly differs from the posterior mode in the previous data, the

approximations may be not well; the larger the sample size is, the better the result will be.

We also proposed a graphical method for validating convergence of MCMC. Our method

is based on a Bayesian Edgeworth expansion for the posterior distribution. The method has

been tested on some GLM models and mixture normal models, but the results are mixed.

One problem is that in some occasions the posterior densities seem to have heavier tails.

In fact, for a Bayesian Edgeworth expansion to be valid, the posterior moments need to be

finite. So, intuitively a density with heavy tails may cause some problems. However, in a

simulation sample, all moments can be calculated and are finite; therefore, it is difficult to

judge whether the real moments are finite or not.

When the posterior moments of Zt are large, the asymptotic result is often not well.

We transform Zt to Wt = w ∗ Zt, where 0 < w < 1. Since Wt has smaller moments,

we expect the asymptotic result for Wt to be better. By (22), Ztp involves only θp so

that P t
ξ (θp ≤ ap) = P t

ξ (Ztp ≤ z∗p) for z∗p = [Σt]pp(ap − θ̂tp). Let ϕp = wθp. We obtain

P t
ξ (ϕp ≤ wap) = P t

ξ (Wtp ≤ w∗
p) and P t

ξ (Wtp ≤ w∗
p) = P t

ξ (Ztp ≤ w∗
p/w), where w∗

p = wz∗p =

[Σt]pp(wap − wθ̂tp). Then, by (21) and (23), we derive the marginal posterior density for

ϕp:

ξt
ϕ(bp) =

1
w

[Σt]pp

φ(
w∗

p

w
) +

∑
k∈{1,...,3s}

k 6=3s−1

1
k!

qk(
w∗

p

w
)φ(

w∗
p

w
)Et

ξ(qk(
Wtp

w
)) + O(t−

3s+1
2

+s)

 , (47)

where bp = wap. Two examples below are illustrated.

Logit model (three-parameter case.) Consider the same logit model in Section 4.3.

Here we take the posterior MCMC samples of parameters with sample sizes 10000 (burn-

in=5000). Now we take w = 0.5 and to compare the posterior density (Eq(47)) with MCMC

densities in Figure 29, where the posterior means of qi(Wt3), i = 1, . . . , 6 from the MCMC

samples are (0.2786, -0.5833, -0.3912, 1.2865, 1.1674, -4.8815). The results are well.

Mixture model. Consider the same mixture model in Section 4.6. Here we take the pos-

terior samples of θ1 with sample sizes 5000 (burn-in=5000) and Zt2 = [Σt]22(θ1 − θ̂t1). Now

we take w = 0.5, w = 0.1 and to compare the posterior density (Eq(47)) with MCMC den-
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sities in Figures 30(a) and (b). In Figure 30(a), the posterior means of qi(Wt2), i = 1, . . . , 6

from the MCMC samples are (-1.3218, 20.8179, -112.77, 3561.29, -31987.67, 1253357). The

result is not well. In Figure 30(b), the posterior means of qi(Wt2), i = 1, . . . , 6 from the

MCMC samples are (-0.2643, -0.1272, -0.1407, 3.666, -5.229, 19.425) and we obtain better

results for larger s.

When the numbers of both burn-in and MCMC sample are small, the asymptotic result

for Zt is not well. We transform Zt to Wt to see its effect on the asymptotic result. Some

examples below are illustrated.

Logit model (two-parameter case.) Consider the same logit model in Section 4.3. Here

we take the posterior MCMC samples of parameters with sample sizes 100 (burn-in=50).

Next we take w = 0.1 and to compare the posterior densities (Eq(47)) with MCMC densi-

ties in Figures 31(a) with s = 10 and 31(b) with s = 20. The posterior means of qi(Wt2),

i = 1, . . . , 4 from the MCMC samples are (−0.0445,−0.9823, 0.1291, 2.895). The approxi-

mations are not well.

Poisson model. Consider the same Poisson model in Section 4.4. Here we take the

posterior MCMC samples of parameters with sample sizes 100 (burn-in=50). The posterior

means of qi(Zt2), i = 1, . . . , 4 from the MCMC samples are (−0.1730, 0.2623,−1.004, 1.0059)

and R̂ is 1.5873 for θ2. The comparisons of the density (Eq(47)) with the density (MCMC)

are in Figures 32(a) with s = 10 and 32(b) with s = 20. The approximations are not well.

Now we take w = 0.1 and to compare the posterior densities (Eq(47)) with MCMC densities

in Figure 33. The posterior means of qi(Wt2), i = 1, . . . , 4 from the MCMC samples are

(−0.0173,−0.9873, 0.0503, 2.9248). The approximations are not well.

Mixture model. Consider the same mixture model in Section 4.6. Here we take the

posterior samples of θ1 with sample sizes 50 (burn-in=50). The posterior means of qi(Zt2),

i = 1, . . . , 4 from the MCMC samples are (0.84976, 1.8444, 8.3110, 40.6077) and R̂ is 1.1375

for θ1. The posterior samples have two modes. Figure 34(a) shows that the density (MCMC)

is not close to the exact density (numerical integration). The comparisons of the density

(Eq(47)) with the density (MCMC) are in Figures 34(b) with s = 7 and 34(c) with s = 27.

The approximations are not well. Now we take w = 0.1 and to compare the posterior

densities (Eq(47)) with MCMC densities in Figure 35. The posterior means of qi(Wt2),
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i = 1, . . . , 4 from the MCMC samples are (0.0849,−0.9715,−0.2440, 2.834). The approxi-

mations are not well.
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Figure 6: Marginal posterior pdf of θ. Beta-Binomial model.

Sequential update. Dotted: Equation (37); Dot-dashed: Exact distribution.

(a)(t1, y1) = (8, 3), p(θ|y1).

(b)(t1, y1) = (8, 3), (t2, y2) = (50, 12) two stage approximation of p(θ|y1, y2).
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Figure 7: Marginal posterior pdf of θ2. Sequential update for logit model. Dotted: Equation

(37); Dashed: MCMC(burn-in=5000, mcmc=10000) as Exact.
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Figure 8: Marginal posterior pdf of θ1 and θ2. Logit model with flat prior.

Dashed: MCMC(burn-in=50, mcmc=100);

Solid: Equation (29) with s = 2, s = 4, s = 20 and s = 27.

R̂ is 1.2309 for θ2.

47



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

(a) s = 2

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

θ1

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

−0.3 −0.2 −0.1 0.0 0.1

0
2

4
6

8

θ2

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

(b) s = 4

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

θ1

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

−0.3 −0.2 −0.1 0.0 0.1

0
2

4
6

8

θ2

m
ar

gi
na

l p
os

te
rio

r 
de

ns
ity

Figure 9: Marginal posterior pdf of θ1 and θ2. Logit model with flat prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0020 for θ2.
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Figure 10: Marginal posterior pdf of θ1 and θ2. Logit model with N(0,1) prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0001 for θ2.
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Figure 11: Marginal posterior pdf of θ1, θ2 and θ3. Logit model with flat prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0022 for θ3.
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Figure 12: Marginal posterior pdf of θ1, θ2 and θ3 (truncated). Logit model with flat prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.
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Figure 13: Marginal posterior pdf of θ1, θ2 and θ3 (truncated). Logit model with N(0,1)

prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2, s = 4 and s = 14.
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Figure 14: Marginal posterior pdf of θ1 . . . θ6. Logit model with flat prior.

Dashed: MCMC(burn-in=10000, mcmc=10000);

Solid: Equation (29) with s = 4.

R̂ is 1.0114 for θ6.
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Figure 15: Marginal posterior pdf of θ1 and θ2. Poisson model with flat prior.

Dashed: MCMC(burn-in=5000, mcmc=10000).

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0004 for θ2 with t=32.
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Figure 16: Marginal posterior pdf of θ1 and θ2. Poisson model with N(0,1) prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0011 for θ2 with t=32.
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Figure 17: Marginal posterior pdf of θ1 and θ2. Gamma model(identity link) with flat prior.

Dashed: MCMC(burn-in=20000, mcmc=10000);

Solid: Equation (29) with s = 2 and s = 4.

R̂ is 1.0111 for θ2 with t=18.
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Figure 18: Marginal posterior pdf of θ1 with R̂ = 1.0024. Mixture normal model.

Dashed: MCMC(burn-in=5000, mcmc=5000);

Solid: Equation (29) with s = 2 and s = 4.
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Figure 19: Marginal posterior pdf of θ1 with R̂ = 1.0016. Mixture normal model.

Dashed: MCMC(burn-in=5000, mcmc=5000); Solid: Equation (29).

(a)Dot-dashed: Exact distribution by numerical integration; (b)s = 27.
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Figure 20: Marginal posterior pdf of θ2 with t = 12. Logit2p-flat model.

Dotted: Equation (23); Dot-dashed: Exact distribution by numerical integration.

(a), (b) and (c) with s = 2.
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Figure 21: Marginal posterior pdf of θ2 with t = 15. Logit2p-flat model.

Dotted: Equation (23); Dot-dashed: Exact distribution by numerical integration.

(a), (b) and (c) with s = 2.
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Figure 22: Marginal posterior pdf of θ1 and θ2 with t = 12. Logit2p-flat model.

Dashed: MCMC(burn-in=5000, mcmc=10000); Dotted: Equation (23).

(a1) and (b1) with s = 2; (a2) and (b2) with s = 7.
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Figure 23: Marginal posterior pdf of θ1 and θ2 with t = 15. Logit2p-flat model.

Dashed: MCMC(burn-in=5000, mcmc=10000); Dotted: Equation (23).

(a1) and (b1) with s = 2; (a2) and (b2) with s = 7.
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Figure 24: Marginal posterior pdf of θ. Beta-Binomial model (t1, y1) = (8, 3).

Dotted: Equation (37); Dot-dashed: Exact distribution.

(a) prior Beta(0.5, 4). (b) prior Beta(2.5, 4). (c) prior Beta(4, 6). (d) prior Beta(6, 2).
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Figure 25: Marginal posterior pdf of θ. Beta-Binomial prior Beta(0.5, 4). (t1, y1) = (8, 3).

Dotted: Equation (37); Dot-dashed: Exact distribution.

(a)(t2, y2) = (12, 3). (b)(t2, y2) = (25, 6). (c)(t2, y2) = (20, 10). (d)(t2, y2) = (80, 40).
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Figure 26: Marginal posterior pdf of θ. Beta-Binomial prior Beta(2.5, 4). (t1, y1) = (8, 3)

Dotted: Equation (37); Dot-dashed: Exact distribution.

(a)(t2, y2) = (10, 3). (b)(t2, y2) = (20, 7). (c)(t2, y2) = (20, 12). (d)(t2, y2) = (60, 36)
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Figure 27: Marginal posterior pdf of θ. Beta-Binomial prior Beta(4, 6). (t1, y1) = (8, 3)

Dotted: Equation (37); Dot-dashed: Exact distribution.

(a)(t2, y2) = (16, 6). (b)(t2, y2) = (32, 12). (c)(t2, y2) = (20, 12). (d)(t2, y2) = (60, 36)
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Figure 28: Marginal posterior pdf of θ. Beta-Binomial prior Beta(6, 2). (t1, y1) = (8, 3)

Dotted: Equation (37); Dot-dashed: Exact distribution.

(a)(t2, y2) = (10, 7). (b)(t2, y2) = (20, 12). (c)(t2, y2) = (10, 2). (d)(t2, y2) = (80, 16)
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Figure 29: Marginal posterior pdf of ϕ1, ϕ2 and ϕ3 (Wt = 0.5 ∗ Zt). Logit model with flat

prior.

Dashed: MCMC(burn-in=5000, mcmc=10000);

Solid: Equation (47) with s = 2 and s = 4.
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Figure 30: Marginal posterior pdf of ϕ1. Mixture normal model.

Dashed: MCMC(burn-in=5000, mcmc=5000); Solid: Equation (47).

(a)Wt = 0.5 ∗ Zt with s = 27; (b)Wt = 0.1 ∗ Zt with s = 27.
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Figure 31: Marginal posterior pdf of ϕ1 and ϕ2 (Wt = 0.1∗Zt). Logit model with flat prior.

Dashed: MCMC(burn-in=50, mcmc=100); Solid: Equation (47). (a) s = 10; (b) s = 20.
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Figure 32: Marginal posterior pdf of θ1 and θ2. Poisson-flat model.

Dashed: MCMC(burn-in=50, mcmc=100); Solid: Equation (23).

(a) s = 10; (b) s = 20. R̂ is 1.5873 for θ2.
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Figure 33: Marginal posterior pdf of ϕ1 and ϕ2 (Wt = 0.1 ∗ Zt). Poisson-flat model.

Dashed: MCMC(burn-in=50, mcmc=100); Solid: Equation (47). (a) s = 10; (b) s = 20.
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Figure 34: Marginal posterior pdf of θ1 with R̂ = 1.1375. Mixture normal model.

Dashed: MCMC(burn-in=50, mcmc=50); Solid: Equation (23).

(a)Dot-dashed: Exact distribution by numerical integration; (b)s = 7; (c)s = 27.
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Figure 35: Marginal posterior pdf of ϕ1 (Wt = 0.1 ∗ Zt). Mixture normal model.

Dashed: MCMC(burnin=50, mcmc=50); Solid: Equation (47).

(a) s = 2; (b) s = 7; (c) s = 27.
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