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Abstract

Johnson (1970) obtained expansions for marginal posterior distributions through
Taylor expansions. The expansion in Johnson (1970) is expressed in terms of the like-
lihood and the prior. Weng (2010b) and Weng and Hsu (2011) showed that by using
Stein’s identity we can approximate the posterior moments in terms of the likelihood
and the prior; then substituting these approximations into an Edgeworth series one
can obtain an expansion which is correct to O(t~3/2), similar to Johnson’s. Weng and
Hsu (2011) found that the O(t~!) terms in Weng (2010b) and Johnson (1970) do not
agree and further compared these two expansions by simulation study. The simulations
confirmed this finding and revealed that our O(t~!) term gives better performance than
Johnson’s. In addition to the comparison of Bayesian asymptotics, we try to extend
Weng (2010a)’s Edgeworth series for the distribution of a single parameter to the joint
distribution of all parameters. Since the calculation is quite complicated, we only derive
expansions for the two-parameter case and apply it to the experiment of multi-stage
data. Markov Chain Monte Carlo (MCMC) is a popular method for making Bayesian
inference. However, convergence of the chain is always an issue. Most of convergence
diagnosis in the literature is based solely on the simulation output. In this dissertation,
we proposed a graphical method for convergence diagnosis of the MCMC sequence. We
used some generalized linear models and mixture normal models for simulation study.
In summary, the goals of this dissertation are threefold: to compare some results in
Bayesian asymptotics, to study the expansion for the joint distribution of the param-
eters and its applications, and to propose a method for convergence diagnosis of the

MCMC sequence.

Key words: Edgeworth expansion; Markov Chain Monte Carlo; marginal posterior

distribution; Stein’s identity.
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1 Introduction

Let g(0) be a smooth function on the parameter space ©. The calculation of the posterior

mean of g(#), given a sample of observations x;, requires integration over © of the form

Efa(0) = a0 = 1/ O ONETR )

where £ is the log-likelihood function and & the prior. Quantities about the posterior distri-

bution such as moments, quantiles, cumulative distribution function, etc can be expressed
in the form of (1) by some functions g.

The integrations involved in (1) are usually intractable. The approximation techniques
can be divided into deterministic and nondeterministic methods. The nondeterministic
method refers to the Monte Carlo integration such as Markov Chain Monte Carlo (MCMC)
methods, which draw samples approximately from the desired distribution and forms sam-
ple averages to estimate the expectation. The deterministic approaches include Laplace’s
method, variational Bayes, among others. The Laplace’s method approximates integrals by
Taylor expansions and properties of Gaussian distribution (see Section 2.3 for details); the
variational Bayes method constructs a lower bound on marginal likelihood of the data and
then tries to optimize this bound.

Both deterministic and nondeterministic methods have their advantages. Computing
techniques like Markov chain Monte Carlo and importance sampling have made many com-
putations possible. Still, analytic approximations are simpler to compute for some models,
and are useful as a starting point for more exact methods. The study of these analytic
approximations are often referred to as Bayesian asymptotics. Moreover, when it comes to
sequential updating with new and huge data, the MCMC methods may not be computa-
tionally feasible, the reason being that it does not use of the analysis from the previous
data; see, for example, Section 2.8 in Glickman (1993).

A conventional deterministic approach to the problem (1) starts from a Taylor series
expansion at the maximum likelihood estimator (or at the modes of the integrands), pro-
ceeds from there to develop expansions on both the numerator and denominator, and then
obtains approximations by formal division of the two series. For example, Johnson (1967,

1970) derived expansions, correct to order O(t_3/ 2), for the posterior distribution associ-



ated with some pivotal quantity. Tierney and Kadane (1986) renewed interest in Laplace’s
method by assuming that ¢ is positive and expanding the integrand of the numerator in
(1) at the mode of the integrand itself, rather than at the posterior mode. They also de-
rived an expression for marginal posterior density of the parameter and argued that by
numerical renormalization the approximate density has relative errors of order O(t3/2) in
neighborhoods of the mode.

Recently Weng (2010a) uses a version of Stein’s identity to derive an Edgeworth series for
the posterior distribution of a normalized quantity. Note that an Edgeworth series expands
a probability distribution in terms of its moments; in contrast, the expansion in Johnson
(1970) is expressed in terms of the likelihood and the prior. Weng (2010b) and Weng and Hsu
(2011) further showed that by using that Stein’s identity we can approximate the posterior
moments in terms of the likelihood and the prior; then substituting these approximations
into the Edgeworth series one can obtain an expansion which is correct to O(t~%/2), similar
to Johnson’s. We shall compare these three O(t=%/2) results. Especially, Johnson (1970)
formulas have existed for about four decades, but to the best of our knowledge there seems
to be no related simulation studies in the literature. So, our study filled a gap in this area.

In addition to the comparison of Bayesian asymptotics, we try to extend Weng (2010a)’s
Edgeworth series for the distribution of a single parameter to the joint distribution of all
parameters. Since the calculation is quite complicated, we only derive expansions for the
two-parameter case (see Section 3.2). Using such expansions we conduct experiments to
study whether analytic approximations perform well when data arrive in different stages.

The present thesis also studies how to use the Edgeworth expansion for posterior dis-
tribution to validate convergence of MCMC simulation results. We use some generalized
linear models and mixture normal models for simulation study.

In summary, the goals of this dissertation are threefold: to compare some results in
Bayesian asymptotics, to study the expansion for the joint distribution of the parameters
and its applications, and to propose a method for convergence diagnosis of the MCMC
sequence.

The next chapter introduces the model and reviews some existing results. Chapter 3

presents theoretical results. Some simulation studies in Weng and Hsu (2011) are given



in Subsection 4.1.1. Subsection 4.1.2 gives comparisons with Tierney and Kadane (1986).
Section 4.2 considers approximations when data arrives in two stages. The rest of Chapter
4 contains simulation studies for diagnosing MCMC series. Chapter 5 gives some remarks

and directions for future research.

2 Preliminaries

2.1 The Model

Let X; be a random vector distributed according to a family of probability densities p;(z¢|6),
where t is a discrete or continuous parameter and # € ©, an open subset in P. Consider
a Bayesian model in which 6 has a prior density £ which is twice differentiable on RP
and vanishes off of ©. Assume that the log-likelihood function ¢;(#) is twice continuously
differentiable with respect to #. Assume also that the maximum likelihood estimator 6,
exists and satisfies Vﬁt(ét) = 0 and —V2€t(ét) being positive definite, where V indicates

differentiation with respect to 0. Define ¥; and Z,; as

EIS = =V?(6), (2)

Zy = (60— 6y). (3)

Then the posterior density of 8 given data z; is §(0) x exp(¢.(6))£(6), and the posterior
density of Z; is

Gul(z) < &(8(2)) o< expltu(6) — Lu(6:)]E(6), (4)

where the relation of # and z is given in (3). Now define
A~ 1 9
ut(6) = £e(0) = Le(0e) + 2" (5)

So, (4) can be rewritten as
Gi(2) oc @p(2) f(2), (6)

where fi(z) = £(0(z))explus(0)] and ¢, denotes the standard p-variate normal density and

¢ is the abbreviation of ¢;.



2.2 Stein’s Identity and Bayesian Edgeworth Expansion

The Stein’s Identity here was developed by Woodroofe (1989). Let ®,, denote the standard

p-variate normal distribution and let ® be the abbreviation of ®;. Write

O,h = / hd®,

for functions h for which the integral is finite.
For » > 0, denote H,(p ) as the collection of all measurable functions h : ®? — R for

which |h(2)|/b <1+ |z||" for some b > 0. Given h € HP) let ho = Oph, hy = h,

he(y1, - yk) = /§R kh(ylv-”vth)q)p—k(dw)? (7)
p—
1 o0 1
gk(ylv'”uyp) = @23/1%/ [hk(ylv"'vyk—law)_h’k*l(yla"'7yk‘71>]e_§w2dw7 (8)
Yk

for —oo < y1,...,yp < ooand k =1,...,p. Then let
Uh = (g1, gp)" and Vh = (U*h + U?LT) /2, (9)

where U2h is the p x p matrix whose kth column is Ugy and g is as in (8).
We will call a function f : ®* — R almost differentiable if there exists a function

Vf:RF — R* such that

1
F(@ )~ fl@) = /O YT f(x + ty)dt

for x,y € R*. Of course, a continuously differentiable function f is almost differentiable

with V f equal to the gradient.

Lemma 1 (Stein’s Identity) Let r be a nonnegative integer. Suppose that f is an almost

differentiable function on RP and

/ fldD, + / (1+ 2N IV £ (2)l|@y(dz) < oo.
RP RP
Then

@, (fh) Z@p(f)%(h)Jr/ (Uh(2))TV f(2)@p(d2), (10)

Rop
for all h € Hﬁp). If 0f/0zj,5 =1,...,p, are almost differentiable, and

|0+ IEnIv @l d2) < o

4



then
B,(11) = B0, (0) + @UN | VD) + [ (VRE)TE D), (1)
for all h € Hr(p).

Here tr denotes the trace of a matrix. Note that if A and B are p X p matrices, then
tr(AB) =3, ; aijbj = >P_ al'b;. Simple calculations by taking f(z) in (10) as z; and f(z)
in (11) as z;z; yield

¢, (Uh) = /§Rp zh(z)®p(dz), (12)

®,(Vh) = /WE p;(zzT—Ip)h(z)Cbp(dz). (13)

From (6), the posterior distribution is of a form appropriate for Stein’s Identity. So, by
Lemma 1,

B2} = wh+ EL{ 0nZ0 14

(15)

EHA(Z)} = Bph + (D,UR) B I:vft(Zt) M] }

+ E! {tr {Vh Z,
) B e T
In particular, if h(2z) = z;, then by (8) it follows Uh(z) = e;; and if h(z) = 2z and i < j,

then Uh(z) = z;e;, where {eq,--- ,ex} denote the standard basis for R*. For example, if

k =3 and h(z) = z122, then

0 91(z)
Uh(z)=| =z | =] 9(2)
0 93(2)
01 0
and UQh(Z):U(Uh):U(gl,gzaga)TZ(U917U92,U93): 00 0|,
000

where Ug; is obtained by applying the operator U on g;. With these special h functions,
(14) and (15) became

t, | VAZ
Bezn = EE{ fi(Zy) ] (16)
E{(ZiZyg) = 5Zq+E§[ {Z())]’ fori,g=1,...,k, (17)
iq



where 0;; = 1 if i = ¢ and 0 otherwise, and [-];; indicates the (i, ¢) component of a matrix.

Weng (2010a) obtained an Edgeworth expansion for the posterior distribution of Z;.
Since some arguments below are needed in Section 3.2, we give detailed descriptions. Let
qr denote Hermite polynomials, given by qi(2)¢(z) = (—d/dz)¥¢(z). For instance, for
k = 1,...,4 the Hermite polynomials are ¢i(2) = z, ¢2(2) = 22 — 1, g3(2) = 22 — 32, and
qu(2) = 2* — 622 + 3. Then, for j =1,...,p,

O f,/0zF s
|tz —on — S @D )| 0, )
hreHM ke{l,...,3s}

k#3s—1

where h* : R — R is a measurable function and HT(p ) is defined at the beginning of this

section. Together with the facts that

ok f,/0z £ .
Ef(fjft%)) = E(ar(Z)) (19)

and
U = [ a8z, (20)
the posterior distribution of Z;; can be expressed in terms of its moments.
In (18), taking h*(z;) = Lz <ery leads to an expansion for Pﬁt(th < z7); and collecting

terms in this expansion according to their orders yields
P2y < = Z Ri(z )+ Ot "), (21)

where

Rals) = Y to1() BN uZ)) = O %),
veJ;

Here J; = {1,3} and J; = {3i — 4,3i — 2,3i} for i > 1; for example, Jo = {2,4,6},
J3 ={5,7,9}. Equation (21) is referred to as a Bayesian Edgeworth expansion.

If ¥ in (2) is obtained by Cholesky decomposition, then it is an upper triangular and
by (3) we obtain

Zip = [Stlpp(bp — étp)- (22)

From this, we have Pg(ﬁp <ap) = Pg(th < z,), where 2z = [¥]p,(ap — 0:p). By (18)-(20)
and the relation [* qi(2)¢(2)dz = —gp—1(w)¢(w) it follows that

1 3s+1
Elap) = Sldol) + Y0 a(5)0(5) Bian(Zp) + O %
ke{l,..,3s}
k#3s—1

)k (23)



Equation (23) is a marginal posterior density.

2.3 The Laplace Method

In this section we describe the approximate marginal posterior density proposed by Tierney
and Kadane (1986). A sequence of observations y = (yi,...,¥:) is assumed to be drawn
independently from density f(y|f); so the posterior distribution of 6 is

m(0) 1o f(vil0) (24)

(0 =
) = o) T, Fwlo)a

where 7(6) is the prior of 6.
Laplace’s method provides an approximation for integrals of the form [ e*(?)df when
t is large. If L has a unique maximum at 6 and we set ¥ = —(V2L(0))~!, then we can

approximate L(0) by L(0) — (1/2)(0 — 0)T$1(d — §). This produces the approximation
/etL(a)dH = det(27% /1) 2exp{tL(f)}.

To obtain an approximation for (24), set 8 = (6y,62,..,6,) = (61,0_1). Suppose 8 is the
posterior mode, and let ¥ be minus the inverse of the Hessian of log[(6) [T._, f(v:|)] at 6;
thus ¥ is a p X p matrix. For a given 61, let the (p — 1) vector 6* | = 0% (1) maximize the
function 7 (6, .)e!?), the function me! with #; held fixed, and let ©* = %*(#;) be minus
the inverse of the Hessian of log[m(6y,.) [Ti—, f(vil61,.)], a (p — 1) x (p — 1) matrix.

Tierney and Kadane (1986) applied Laplace’s method to the integrals in the numerator

and denominator of the expression

f 7T(91, 0_1)6Z(91’9‘1)d9_1
T (0)ef@dp ’

m1(01]y) =

for the marginal posterior density of 61 and obtained the approximation

et (6) > V2 (9, 0,)e 00

g XA . 2
2rtdety 7(6)et®) (25)

T1(01]y) = <

By (25), one only needs to be able to maximize slightly modified likelihood functions and
to evaluate the observed information at the maxima. The principal regularity condition

required is that the likelihood times prior be unimodal.



2.4 The Gibbs Sampling and MCMC Convergence Diagnostic

The Gibbs sampler, proposed by Geman and Geman (1984), is a special case of single-
component Metropolis-Hastings. For details, see Gilks et al. (1995, chapter 5) and Tanner
(1993, chapter 6). It is widely used in statistical applications. The Gibbs sampler is to obtain
samples from a joint distribution, via iterated sampling from full conditional distributions.

Let § = (61,0, ...,0p), the full conditional distributions are

9,
(0;]61,02,...,60i—1,0i41,...,0p,y) = T m(6,9) (26)

for © =1,2,...,p, where 7(0,y) = 7(0) Hle f(y;|0). The Gibbs sampling algorithm is

described below. Given the starting point
00 = (0,657, ...,
this algorithm iterates the following loop:
Sample 0 from w(61]65",..., 00, y)

Sample Héﬂ'l) from 7T(¢92|9§i+1)70§i)’ Al "gz(ai),y)

Sample 91(,”1) from 77(0,,]0:(li+1), L1 ,Hl(fjll), Y).
The vectors 0,02 .. 0" . are a realization of a Markov chain.

MCMC Convergence Diagnostic By Gelman et al. (1995, chapter 11), for each scalar
estimand 6, we label the draws J parallel sequences of length ¢ as 6;; (i = 1,....,t; j =

1,...,J), and we compute B and W, the between- and within-sequence variances:

J t J
t _ ) 1 1A
B= 7J_1Z(9J—9 )2, where 6 ; = ;Ze,j, 0. = jZH,j
7=1 =1 7j=1
1 t o
W = jZSJ, where s? = jZ(Qw 0,)?
]:1 =1

The between-sequence variances, B , contains a factor of ¢ because it is based on the

variance of the within-sequence means, ¢ ;, each of which is an average of ¢ values 6;;.



We can estimate var(f|y), the marginal posterior variance of the estimand, by a weighted
average of W and B, namely

A t—1 1
vart (fly) = TW + ;B,

which overestimates the marginal posterior variance assuming the starting distribution is
approximately overdispersed, but is unbiased under stationarity, or in the limit ¢ — co. We
monitor convergence of the iterative simulation by estimating the factor by which the scale
of the current distribution for # might be reduced if the simulations were continued in the
limit £ — oo. This potential scale reduction is estimated by

@t (6ly)

R=
W )

which declines to 1 as t — oo.

2.5 The Generalized Linear Model

We briefly review the generalized linear model. For details, see McCullagh and Nelder
(1989). Generalized linear models are an extension of classical linear models. We may
demonstrate the classical linear model in the form: The components of y are independent

normal variables with constant variance o2 and
E(y) = p, where p= Xg. (27)

For generalized linear models, we shall rearrange (27) to produce the following three-part
specification:

1. The random component: the components of y have independent normal distributions

with E(y) = p and constant variance o;
2. The systematic component: covariates x1,x2,...,x, produce a linear predictor 7 given
by

p
n=y b
1

3. The link between the random and systematic components:



If we write
ni = g(pi), (28)

then g(.) will be called the link function. In this formulation, generalized linear models
allow two extensions; first the distribution in component 1 may come from an exponential
family other than the normal, and secondly the link function in component 3 may become
any monotonic differentiable function. We shall consider several principal functions in

subsequent chapters, namely:

logit : 7 = log{x/(1 — p)},
probit : 7 = &~ 1(p),
poisson : n = log,

gamma : n = —1/pu.

3 Theoretical Results

3.1 Validation of Simulation Results

The expansion (23) can be used to validate simulation results. If the posterior sample
is given, then using standard techniques we can obtain an approximate density based on
this sample. On the other hand, we can calculate the empirical moments of Z;, based on
this sample and plug these moment approximations into (23). This gives another density
approximation. We shall call this approximation the ”implied density” from the sample,

and denote it as %(lmp):

~ (imp) " 1 » % - (meme) _3s+1 ¢

& (ap) = Sl 0(zp) + Y 7 (2)0(2) Eg (ar (Zp)) +O(t™ 2 1) 5 .(29)
ke{l,..3s}
k#3s—1

If the posterior sample has converged to true distribution, then theoretically the posterior
density and %(zmp) should be close. This is the basic idea we use to validate convergence.
For inference on 6, we use Zy, in (22), which requires the MLE of 6, and [X],p, the

(p,p) component of the Cholesky decomposition of —V2/,. Note that it is important that

10



Zyy, involves only 6, so that Pg(ﬁp < ap) = Pg(th < zp) for 2 = [Si]pp(ap — 01p). The
inference on 6; can be achieved by taking ¥; in (2) to be lower triangular so that Z;; in
(3) can be expressed as Z;; = [S¢)11(01 — 011); and the inference of other 6; can be done
by the following: exchange the ith and pth columns in the design matrix and obtain the
corresponding (p, p) component of the Cholesky decomposition.

If for each 6; we need to obtain a new design matrix and re-do model fitting etc, it may

not be efficient. In the rest of this section we propose a simple method for this problem.

In (3), if ¥; = [04;] has only one nonzero element o;; in the ith row, then
Zyi = 0ii(0; — 01:) (30)

and it follows that {Zy; < 27} = {0; < 2} /o3 + 04} and PL(0; < a;) = PH(Zy; < 2}), where
2 = 04i(a; — By). Therefore, we obtain the implied density similar to (29) for all §;. That

is,

~ (imp) . 1 . \ — (meme) _Bsbl

& @) =oa {0z + D e ENa(Za) 0T )
ke{l,..,3s}
k#3s—1

where Zy; is defined in (30).

The lemma below shows how to obtain such ;.

Lemma 2 Let A be a p x p symmetric and positive definite matriz. Let Ej, be the p X p
matriz obtained by exchanging the ith and pth row (or column) of I, for i = 1,2,...,p.
Let C = E;j,AE;,, D = chol(C) so that C = DTD and B = Ei,DE;,. Then, for each
1=1,2,..,p,

(a) B}, = Eip and EpEy, = I,

(b) B = [bji] ,1 < j,l <p has only one nonzero element b; in the ith row, and BTB = A

Proof. First consider (a). For a fixed i € {1,2,...,p}, write Ej, = [eji] , 1 < j,1 < p. Then,

eip = epi = 1,

exk =1 for k#1i,p,

11



and the other elements are all zero. So Egj = Ej,. Write F' = Ep,Eiy, = [fj], 1 < 4,1 < p.
Then

fii = eipepi =1 and  fpp = epieip = 1,

ek = experr =1 for 1 <k<p and k #1,p,

and the other elements are all zero. So E;,E;, = I,,.

Next consider (b). Since A is symmetric and positive definite matrix, C' = E;, AE;), is
also symmetric and positive definite matrix. Since D = chol(C), C = DTD and D is an
upper triangular matrix. Note that E;,D is the matrix obtained by exchanging the ith and
pth rows of D. So, the ith row of E;,D has only one nonzero element, and it is in the
(,p) entry. Moreover, this nonzero element is exactly d,,. Note that B = (E;,D)E;), is the
matrix obtained by exchanging the ith and pth columns of E;,D. So, the ith row of B has

only one nonzero element, which is in the (4,%) entry, and b;; = dpp. For example, let p =3

100 1 2 3
Eys = 0 0 1 |land D = 0 4 5
0 10 0 0 6
Then,
1 2 3 1.3 2
ExD=| 0 0 6 |and B=FEyDEyx3=| 0 6 0
0 45 0 5 4
Then,
B'B=ElD'E}E,\,DE,,
= B, D'E;,F;,DE;,
= E;, D' DE;,
= E;),CE;,
= Eip(EipAEip) Eip
= A’
where the second, the third and the sixth equalities follows from part (a). O
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We summarize the steps for obtaining oy; in (30). Let —V2ét be minus the observed
information matrix. For ¢ =1,2,...,p,
1. let C = Ejp(—V?0y)Eip;
2. let D = chol(C) so that D is upper triangular and C' = DT D;
3. let B = E;j, DE;p;
4. then BT B = —V?2/; and the (i,4) entry in B is the oy; in (30).

3.2 Joint Posterior Distributions

In this section we try to extend the marginal posterior density (23) to the joint posterior

density. Some notations are needed. Let

WO = hW =Uh= (D, i=1,- p},
h?) =U%h =UUh) = {hmz,h,iQ =1,---,p}, (31)

) = U*h = U(U*h) = {hm g W82, =1, p},

where Uh is defined in (8). So, (M) is a p x 1 array of functions, h(? is a p x p array, and

h(*) is a p x p x ... x p(k terms) array. For any function f : R? — R, denote by fi(f,)...,is (2)

the sth derivative of f with respect to z;,, ..., z,. One can rewrite (14) and (15) as
(1)
¢ _ Ly fei (Ze)
E{h(Z0)} = @ph+ 3 Eg b i Z)
¢ \, ) £ ZJ(Zt)
E{h(Z)} = @ h+Z<I> s E5 ZE§ ny 7
and we can obtain a more general form:
E{Z)} = <I>h+Z<I>h f“l +5" @,nl) B f“m( 2
Ji( Zt P 1 - flZy)
+ Z h(3) E! M . Z o, Rls) M
S 111223 5 ft(Zt i1...0s E ft(Zt)
+ B} REtY (7 % , 39
11 le-H Zl ZS_H( t) ft(Zt) ( )

13



provided all the expectations exist. Take h(2) = 1{z,<.» i=1,... p}, where 2] € R. Then the
left hand side of (32) becomes the joint cumulative distribution of Z;, and the right hand
side gives an expansion for the joint distribution. To obtain an expansion similar to (23),
we need to extend the results in (19) and (20).
Q1: How does Eé [ft(,sii...is (Zt)/ft(Zt)} relate to the moments of Z,?
Q2: How to calculate <I>ph§f_)_is and 8P<I>phz(»f.)nis/8a1 -+ 0ayp?

Since the generalization requires heavy calculations, in this thesis we only look at 2-
dimensional cases. For Q1, from (16) and (17) we know that

4

involve the first and the second posterior moments of Z;; and (16) and (17) are derived

by taking h(z) in (14) and (15) as z; and z;zj. To generalize these results, note that if
h(z) = z2, then by (8) it follows Uh(z) = (22 + 2)e;; and if h(2) = 22z; with i < j, then

i

Uh(z) = z2e; where {e1, -+ ,ex} denote the standard basis for R¥. If h(z) = 23, then by

i

(9) it follows that

2249 z1 O
Uh(z) = 10 and U2h(z) = Ulg1,92) = 010 :

and by (31), UPh is a 2 x 2 x 2 array with h{}) = 1 and h{)) = 0 for (i,j,k) # (1,1,1). By
(12), (13) and (32) with s = 3, we have

(3)
E{Z} = 3E{Zn + Ef {flfn(zt)}

(3)
EH(Z{1 Zio) = B Zs + Ef {f112 (Zt)}

For Q2, let

A={0:0;<a;,i=1,2}, B={2=%,(0—0,):0¢c A}, and h(z) = lizeBy- (33)
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We have

dyh
So,
0?Poh B
8@18@ N
where
By (12)
dUh
and it follows that
020,Uh
aCLlaCLQ

= /B¢2(z)dz
= /A¢2(2)|Et|d0
= 1z [ [ oaterasadty.

82 al az
Py dfsdo
| t|8a18a2 {/_Oo/_oo¢2(2) 2 1}

|Ze|¢2(27),

2 =3(a—6,). (34)

= /zh(z)fbg(dz)
= / 2¢9(2)|2¢|db
A

al a
i / / 260(2)d02d61,
aa 8@ {/ / 2(252 d92d01}

|Z¢]2* pa(2"),

which is a 2 x 1 vector; moreover, taking f(z) in (32) as z;z; gives 0,12 | where i, 7=1, 2.

First, let f(z) = 22. Then

RORN
£59(2)

So, by (32),
Dyh?

ij

2Z1) ( Pe) ff§><z>)(2 o)_
o ) \ e He 00

[ 5t - Dh)ealaz)
[ 503 = Doz I5ilas

|Et|/ /@1 1) (2)d02d8);

15



and hence,

62<I>2h§21) 52 ar praz | )
daday |Et|8a18a2 {/OO /OO 5(21 - 1)¢2(Z)d92d91}
1
= §|Et|(»’ff2 — 1)2(2");

The two terms <I>2h§22) and <I>2h§21) may be different, but can be combined. So we don’t need

to solve out the two terms individually. To see how, let f(z) = z122. Then,

(ﬁ%@)(@) (ﬁ%@ﬁ&@) 0 1)
£7(2) a ) \ e 2 10
By (16) and (17) it follows that

w3 + o) = [aan)ea)

= [ moEimio
A
al a2
7 ’2t|/ / 2129¢2(2)d02db; .
So,
0 (®2hy) + Bahly) 0? a raz
= |2
Oa10as | t‘aalaag {/;OO /_OO 2122¢2(z)d92d91}
= [Si|a12502(27);
@ _ [l
Dohyy = 2(22 1)h(2)P2(dz)
L 5
= [ 5z~ 1)¢a(2)[2|dd
A
al a 1 9
and hence,
M = |5 2 /a1 /a2 1(22 — 1)bo(2)df2df
8@18a2 - taaqaag - _002 2 2 2 1

= SIZGE - De()

Now, taking f(z) in (32) as 222 yields @ghgjg.ll, where i, j, k =1, 2. First, let f(2) = 2.

(fP@))(sﬁ) (fﬂ@ £ )(&10)
92 o ) \ e 1Be 0 0)
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£ (2) = 6 and fi(z) = 0 for (i, . k) # (1,1,1). So, by (32),
o0\ = / é(z{’—szl)h(z)%(dz)
= [ et = smesian
_ |zt|/ / 2 320)ga(2)dBadl:

and hence,

82‘1’2}1%?1)1
darday 8a18a2 {/ / —321)2(2 )d92d91}
Next let f(z) = z32. Then,

= LB - 8l
[ 2212 1(%)(2) fl(g) (z) Y [ 22 2=z
2 P 15 221 0
fZ(JSIE( ) = 0 except the three terms fl(i’;(z) = fl(g%(z) = 2(?%(2) =2, and ft(ji’i%i&u(z) =0.
By (32),

1 2
fézi 122

ft(Zy)

Z h§121)2 13

Q1,12

EHh(Z;)} = ®zh + Z ®,ht!

ft 11127,3

(4)
B ft,il...i4(Zt)
i Zt

heds T (Zy)

+ D B

0150004

(3) t
+ Z (I)thlizisEf

11,82,13

9

together with (16) and (17) it follows that
1
Doh{ly + Pohiyy + Bohly = /5(»2%22 — 22)h(2) P2 (dz)
L o
= 2(Z122—22)¢2( 2)[X¢|dO
= \Et’/ / S (2722 — 20) 6o (2)db2db).

So,

02(Dh'3), + ®uhY) + dynS)
8@10@

62 al a2 1 )
= |Et’8alaa2 {/ / 5(2122 — 22)¢2(z)d92d01}

1 * * * *
= §|Et\(212z2 — 23)¢2(2").
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Though the three terms (I)Qh(fi)Q, <I>2h§2)1 and <I>2h(1)1 may be different, we do not need to

write them out separately. Similarly, we can obtain
1
®hl) + 0y + 0 = [ S(15 - ) h() el
1 2
= 2(21272 — 21)¢2(2)|X¢[dO
= ml [ S - woul)dbade,

0%(®oh3), + BohSY, + ®yhS) 52 a e
(P2 122 @a1235;2 2 221) = ‘Et’(?al@ag {/ / 2(zlz§—zl)¢2(2)d92d91}

1 * % * *
= §|Et|(zlz22—zl)¢2(2 );

1
D08, = / g(zg’ — 329)h(2) Do (d2)

= /(15(22—322)%( )|E¢|do

= |Et|/ / 25 — 32p) o (2)dbadb ,

P ®shiy,
9ayday Oa 10as {/ / — 322)a(z )d92d91}

= g\zt\(% —325)¢2(2").

In the following we shall write down the joint posterior density of 6.
Let A, B, and h(z) be asin (33). So, 6 € A if and only if z € B; and the joint probability

and joint density of 8 are
P{(0; < a;,i=1,2) = Pi(0 € A) = P{(Z; € B),

and

O’PLO € A)  *ELN(Z)]

t —
6 (al,a2) N 8a18a2 N 8a18a2

18



With the results in previous paragraphs, we have

O*PLO € A)  O*ELh(Z)]

t _
5 (ab a2) - 8@18@ N 6a18a2
Z fﬁi( )
8&18@ 3013612 ft(Zt)
12,2
P h2) i1 \ L)
+Zzaa18 ag B - f(Z)
91,0
(3)
92 frivinis (Zt)
P p'3) gt | Ltiaiis T
+z1§2:%3 day0ay 2Mivizia ¢ ft(Zt)
ft(4) ; (Zt)
+ E L
11214 g{ e Z4 ) ft(Zt)

= [Bef@2(2") + [Zeld2(z ZzzlEéztll

1 * * *
+5[Zelda(2 ) (#52 = bivia) (Bt Zsiy Zi, — Biyiy)

1112
Ga?; Dahi) %
+8a?;a (@203, + ®oh3) + @by EL %
 Dar0a; (2R3 + @ahlyy + Bohly) )L %
8ai29 ahiy B ft;fiz(jt)
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* * * ]' *
= [Zilea 1+ a1 () BeZiy + a1(25) B Zi, + 50(20) (B Zi — 1)

* * 1 *
+aq1(2)q1(25) (BEZa Zia) + §Q2(22)(E§Zt22 —-1)

1 * 1 * *
+EQ3(Z1)(E§ZE’1 —3E{Zn) + §Q2(Z1)Q1(Zz)(E§Zf1Zt2 — E{Zy) (35)
+1 () q2(23)(ELZn 2% — ELZ )+1 (2N (ELZE, — 3EL Z4o)]

2q1 z1)q2(z9 e 4t1449 411 6Q3 z9 £4t2 £4t2

4)
@ gy Juinis(Z)
© 3 m{i
4 Experimental Results

In Section 4.1 we compare the second order approximations for posterior densities by John-
son (1970), Tierney and Kadane (1986), and Weng (2010a). For Section 4.2, we evaluate
the performance of (37) when data comes in two stages. In Section 4.3-4.5, we use some
GLM examples to study the use of implied density (see (29) in Section 3.1) to diagnose
convergence of simulation series. In Section 4.6, we use the expansion (23) to diagnose the
posterior density with multi modes, but the result is not well. All computations here are

done in R (2010).

4.1 Comparison of Second Order Approximations
4.1.1 Comparison with Johnson (1970)

Johnson (1970) obtained expansions for marginal posterior distributions through Taylor
expansions. Weng (2010a) showed that the marginal posterior distribution of Zy, can be

expanded as

PiZiy < 2) = (z}) = 3 Ra(z)0(z) +O("), (36)

where

Ra(5) = - a0 1(5) B (Zg) = O(H).
ved;

Here ¢, are Hermite polynomials. Weng (2010b) applied a version of Stein’s identity to

approximate the posterior moments in (23) and derived the marginal posterior density for
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£ (ap) = [Selpplo(2) +Zta 2+ 0t ")}, (37)

where m = 1,2, which gives approximations accurate to O(t~!) and O(t_3/ 2), respectively.

Here

Qu(=) =Y j!qxz;)Eg(qj(th)) — o),

JeJdi

and Qit(z;) is obtained by replacing Eg (gj(Zsp)) with analytic approximations. These ana-
lytic approximations involve the loglikelihood and the prior and their derivatives. See Weng
(2010b) and Weng and Hsu (2011). Note that Q1 is of order O(t~1/2) and Qo is O(t~1).
Weng and Hsu (2011) found that the O(¢~1) terms in Weng (2010b) and Johnson (1970) do
not agree and further compared these two expansions by simulation study. The simulations
confirmed this finding and revealed that our O(t~!) term gives better performance than
Johnson’s. The materials below are taken from Weng (2010b) and Weng and Hsu (2011).

Johnson (1970) considered the posterior distribution of a centered and scaled variable

(see his Eq. (2.1), p. 853) in 1-dimensional case:

Y= (9 - ét)b(ét), (38)

where t is the sample size and

t
. 1 0? 1/2
b(0r) = [— g2 %8/ @0 Oly—s

Denote the posterior cdf of t1/2¢) by F,. He showed that the posterior distribution of Fj

possesses an asymptotic expansion in powers of t—1/2 (see his Theorem 2.1):

K
|Fy(w) — @(w) — >~ (w, )t /2 < Dyt~ 3K+, (39)
j=1

and his Proposition 2.1 shows that each 7;(w, ) is a polynomial in w having coefficients
bounded in z multiplied by the standard normal density. Here we use two examples for
simulation comparison. The first example is a Binomial-Beta model. Suppose that X ~
Bin(t, 6), where the prior of 6 is assumed to be Beta(a,b). Take a = 0.5,b =4,t =52 =2
and a = 0.5,b = 4,t = 30, = 12. Thus, the posterior distributions of # are Beta(2.5,7)

and Beta(12.5,22) respectively, which are shown in Figure 1.
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We compare the approximate posterior density of 6 by Johnson’s formulas and (37) to
orders O(t~!) and O(t=3/2). Here Johnson’s approximation to O(t!) is obtained by taking

K =1 in (39):

_dR(w) _ o ) o,
= S () + T2 4 o),

and the approximation to O(t~3/2) is by taking K = 2 in (39). Figures 1(al) and (a2)
give the true density and (37) to O(t~1) and O(t~%/?); Figures 1(b1) and (b2) give the true

pr(w)

density and Johnson’s approximations to O(t~') and O(t~3/?); and Figures 1(c1) and (c2)
contain the two O(t~1) approximations. We have some observations. First, Figures 1(c1)
and (c2) show that the two O(¢t~!) approximations are quite close. Secondly, Figure 1(al)
shows that our approximation to O(t~%/2) is closer to the true density than approximation
to O(t~1), but Figure 1(bl) reveals that Johnson’s formula to O(t~3/2) does not improve
upon O(t~1). Thirdly, Figures 1(a2) and (b2) show that the negative value of the two
approximations has improved for 6 (ranges between 0.5 and 1).

Next we consider a Poisson-Gamma example. Let yi,...,4: be an i.i.d. sample from
Poisson(6), where the prior of  is assumed to be Gamma(a, b). Suppose that (y1, y2, y3, ¥4, Y5) =
(3,5,7,10,3) and that (a,b) = (30,5). Thus, the MLE of 0 is 5.6, the prior mean of 6 is
6 and the posterior distribution of  follows Gamma(a + >>'_, y:,b + t)=Gamma(58,10).
We have some observations from Figure 2(al) to Figure 2(cl). First, Figure 2(cl) indicates
that the two O(t~!) approximations are fairly close; secondly, Figure 2(al) shows that (37)
to O(t~3/2) improves upon O(t~1), but Figure 2(bl) shows that Johnson’s does not.

Now we try different prior distributions to see its effect on the approximations. Suppose
that (a,b) = (15,5). So, the prior mean of # is 3 and 6|, ~ Gamma(43,10). The results are in
Figures 3(al) ~ 3(c1). As before, Figure 3(c1) indicates that the two O(¢t~!) approximations
are close. However, due to the fact that the prior mean of 8 may be farther from the MLE,
from Figures 3(al) and 3(b1) we found that both O(t=3/2) approximations are worse than
O(t1). A closer look at these two O(t3/2) curves show that Johnson’s approximation
(ranges between -2 and 1.5) fluctuates more widely than ours (ranges between -1 and 1).

Next we try different sample sizes for Poisson-Gamma example. We do (y1,y2, Y3, Y4, Y5) =
(3,5,7,10,3) for three times to obtain a sample size 15 with (a,b) = (30,5) and (15,5).
When (a,b) = (30,5), the MLE of # is 5.6, the prior mean of # is 6 and 6|, follows
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Gamma(114,20). Figure 2(c2) indicates that the two O(t~!) approximations are close.
Figure 2(a2) shows that the negative value of our O(t~3/2) approximation has improved
for 0 ranging between 2 and 4 while Figure 2(b2) shows that the negative value of John-
son’s O(t*3/ 2) approximation has also improved for @ ranging between 7 and 9. When
(a,b) = (15,5), the prior mean of § is 3 and 6|, follows Gamma(99,20). Figure 3(c2) in-
dicates that the two O(t~!) approximations are close. Figure 3(a2) shows that (37) to
O(t*3/ 2) shortens the range of negative value according to Figure 3(al) while Figure 3(b2)
shows that Johnson’s also shortens the range of negative value according to Figure 3(b1).
In Figure 3, the prior mean of 0 is farther from the MLE; the larger the sample size is, the
better the result will be.

sample size: t =5
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marginal posterior density

marginal posterior density

Figure 1: Marginal posterior pdf of 6. Beta-Binomial model.
(al) and (a2) Solid: Exact; Dashed: Eq (37) to O(t~1); Dotted: Eq (37) to O(t=3/2).
(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t~!); Dotted: Johnson’s O(t=3/2).
(c1) and (c2) Solid: Eq (37) to O(t~!); Dashed: Johnson’s O(t~1).
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Figure 2: Marginal posterior pdf of 6. Poisson model with prior Gamma(30,5).
(al) and (a2) Solid: Exact; Dashed: Eq (37) to O(t~1); Dotted: Eq (37) to O(t=3/2).
(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t~!); Dotted: Johnson’s O(t=3/2).

(c1) and (c2) Solid: Eq (37) to O(t~!); Dashed: Johnson’s O(t~1).
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sample size: t =5
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Figure 3: Marginal posterior pdf of #. Poisson model with prior Gamma(15,5).
(al) and (a2) Solid: Exact; Dashed: Eq (37) to O(t™1); Dotted: Eq (37) to O(t=3/2).
(b1) and (b2) Solid: Exact; Dashed: Johnson’s O(t~!); Dotted: Johnson’s O(t~3/2).

(c1) and (c2) Solid: Eq (37) to O(t™!); Dashed: Johnson’s O(t~1).

4.1.2 Comparison with Tierney and Kadane (1986)

In this section we compare (37) with (24) by Tierney and Kadane. We consider a data
taken from Mendenhall et al. (1989); see also Tanner (1993). The explanatory variable
is the number of days of radiotherapy received by each of 24 patients, and the response
variable is the absence (1) and presence (0) of disease at a site three years after treatment.

A problem of interest is to use the covariate (days) to predict outcome.
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We fit the data using the logistic regression model

108;( P ) = 01 + 025,
1 —p;

where x; is the covariate for patient i and p; is the probability of success (no disease). So,
pi = exp(6h + 022;) /(1 +exp(61 + O2x;)). The intercept 6, represents the log-odds of success
for zero days, while the slope 05 represents the change in the log-odds of success for every

unit increase in the covariate. The loglikelihood and the second partial derivatives are

t t

£i(0) =Y [yilogp; + (1 — yi)log(1 — pi)] = > [yi(01 + owi) — log(1 + exp(61 + 021:)))],
i=1 =1

2 2 2
00 == pi1—p) 03 = =Y wipi(L ), 055 = = > a?pi(l —pi).  (40)

Now we take flat priors on both ; and 6. The comparison of the density in (25) and
(37) with m = 2 and moments replaced by approximations are in Figure 4(a); the two
methods and the true density are very close. Next we take the standard normal density
priors on both #; and 6. The results are in Figure 4(b); the result of (25) is close to the
exact density, but (37) performs poorly. Here the posterior means of ¢;(Z2), i = 1,...,4 are
(1.485,1.460,—0.045, —3.333) and (3.134,7.207, —0.336, —3.874), respectively. The reason
why analytic approximation (37) fails may be that the prior mean is farther from the MLE.
If we change priors to N(0,2), a less informative prior than N(0, 1), then the result of
(37) improves a bit; see Figure 4(c). Since the posterior standard error of 2 is around
1/23.25 = 0.043, the prior mean 0 is about two standard errors away from Oso. Figure 4
showed that the less informative the prior is (i.e. larger variance), the more accurate the
approximate density is.

Next we consider a data first analyzed by Finney (1947); see also Albert and Chib (1993)
for illustrating a sampling method for marginal posterior densities, and Myers (1990)[p.330-
332]. A probit model was fit to the data. The model is

pi = ®(01 + O2c1; + O3c2;), i =1,...,39,

where @ is the cdf of the standard normal density, c¢i; is the volume of air inspired, co; is
the rate of air inspired, and the binary outcome is the occurrence or non-occurrence on a

transient vasorestriction on the skin of the digits. Now we take flat priors on both #; and
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02 and obtain the results are in Figure 5, where (37) (with m = 2) is very close to the exact

density, but (25) shifts to left slightly.
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Figure 4: Marginal posterior pdf of 85. Logit2p model.
Solid: Equation (25); Dashed: Equation (37); Dotted: Exact distribution.
(a) flat-prior. (b) N(0,1) prior. (c) N(0,2) prior.
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Figure 5: Marginal posterior pdf of #3. Probit model with flat prior. Solid: Equation (25);

Dashed: Equation (37); Dotted: Exact distribution by numerical integration.

4.2 Multi-stage Data

The lemma below is well-known. It says that if data D = (Dj, D2), then the posterior
density of 6 given D is the same as the posterior density obtained by taking 0|D; as the
prior and Dy as the data. This result extends to the case D = (Dy, Do, ..., D). Suppose

that data arrive in different stages. With the first set of data, we can obtain the second
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order posterior density approximation by (37). This approximation is considered as the
prior density for the next data, and the updating procedure for posterior distribution is

repeated by using (37).

Lemma 3 Let £ be the prior for parameter 0 and D = (Dy, D2) be the observed data. As-
suming given 0 Dy and Da are independent. Let L1(6) and Lo(0) be the likelihood functions
based on Dy and Da, respectively. Let £(0]|D) be the posterior density of 6 given D. Then

D))
S T ATATT “

4.2.1 Binomial Model

First we consider a binomial model Y ~ Bin(t,#), where the prior distribution of 6 is

Beta(a, 3). Then, the posterior density for 6 is

p(0]y) o< 0¥(1 = 0)~46* (1~ 0)°!

x 9y+o¢—1(1 . G)t—y—f—ﬁ—l'

So,
Oly ~ Beta(a +y, 5+t —y).

Suppose that t = 58,y = 15, (a, ) = (0.5,4). So, the posterior distribution of 6 given
y is Beta(15.5,47). If the data comes in two stages: Y; ~ Bin(8,6) and Y2 ~ Bin(50, )
with y; = 3 and y» = 12, then the posterior distribution of 6 given y; can be approxi-
mated by (37). Using this as the prior and y» as second stage data, we can further update
the posterior distribution of 6 by (37) and compare it with the exact posterior distribu-
tion Beta(15.5,47). Figure 6(a) shows the exact and approximate posterior densities of
0 given y;; the two densities are close. Here the exact distribution is Beta(3.5,9) with
mean 3.5/(3.549)=0.28 and mode (3.5-1)/(3.54-9-2)=0.238, and the MLE based on y; is
3/8=0.375. Figure 6(b) shows the densities of exact posterior distribution Beta(15.5,47)
and our two-stage approximation. Here the MLE based on y is 15/58=0.259 and the mean
of Beta(15.5,47) is 15.5/(15.5+47)=0.248. We also conducted more experiments and found
that the approximation (37) may not perform well when the posterior mode in the previous

data greatly differs from the MLE of second-stage data.

28



4.2.2 Two-parameter Logit Model

To update posterior density for two-parameter problems in the two-stage scenario, we need
to have an approximate joint posterior density at the first stage, which will be considered
as the prior in the second stage. Such an approximation can be obtained by (35) with
posterior moments replaced by their approximations; that is,

. i . . 1 .

§(00,0:) =[Sl + a1 (D) EgZiy + a1(25) BeZi, + 502(21)(BeZih — 1)

*\ (T 1 -
+q1(20)q1(23) (BEZn Ziz) + §Q2(Z§)(E§Zt22 - 1)

1 *\ [ T - 1 * *\ [ T -
+-a3(20)(BEZY — BEEZn) + QQ2(Z1)611(22)(E§Z7:212& — E{Z)  (42)

6
L () (B 272 — L2 L) (BLZ3, — 3tz
+2(J1(21)Q2(Z2)( €4t1442 € t1)+GQ3(Zz)( 42 ¢ Z12)]-

The moment approximations are in terms of the loglikelihood and the prior and their deriva-
tives; see Weng (2010b) and Weng and Hsu (2011).

In the first stage, we consider the same data from Mendenhall et al. (1989) as in Section
4.1.2. The data D; contains 24 observations. We take flat priors on both #; and 62 and
obtain an approximate joint posterior density £ (6y,65) by (42). Next we use this approxi-
mation as prior and randomly select 18 observations from D; as the data of second stage,
denoted as Dy. Then we update the posterior density of § by (42). Since the exact pos-
terior density does not have a closed form, we compare our two-stage approximation with
MCMC results using MCMCpack (2010). The results are in Figure 7. We found that the
two densities are rather close, but the approximation method may sometimes give negative

values.

4.3 Logit Model

Two-parameter case. Consider the same logit model in Section 4.1.2. We take flat priors on
both #; and 2 and use the implied density (29) to validate convergence of MCMC samples.
To begin, we run the MCMClogit function in an R package MCMCpack (2010) to this data
and obtain the posterior of MCMC samples. The comparisons of the density of MCMC
samples and the implied density (29) are in Figures 8 and 9, based on posterior samples

of sizes 100 (burn-in=50) and 10000 (burn-in=>5000), respectively. Here [¥;]22 = 23.25,
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0 = —0.085, and the posterior means of qi(Z2), i =1,...,10 from the MCMC samples in
Figure 9 are (-0.224, 0.198, -0.416, 0.329, -0.069, -0.646, 2.844, -3.699, -6.565, 36.080) and R
is 1.0020 for #5. The sample sizes and burn-in are chosen so that one exhibits convergence,
but one does not. As expected, Figure 9 with s = 2 and s = 4 shows nice agreement;
however, for Figure 8, the posterior sample and the implied density (29) with s =2, s = 4,
s = 20 and s = 27 are disagreements and R is 1.2309 for #>. Now we take the standard
normal priors on both #; and 2 and use the implied density (29) to validate convergence
of MCMC samples. The comparisons of the density of the posterior samples (size=10000,
burn-in=5000) and the implied density (29) with s = 2 and s = 4 are in Figure 10. Here
the posterior means of ¢;(Z2), i = 1,...,10 from the MCMC samples are (1.507, 1.535,
0.095, -3.243 , -5.175, 4.035, 28.610, 22.206, -132.075, -336.186) and R is 1.0001 for 6. The
posterior samples has converged, but the implied density (29) failed to diagnose for this
example.

Three-parameter case. Next, we consider the data analyzed by Finney (1947). A logistic

regression was fit to the data. The model is

log( pi ) =01 + Oscq; + O3c95,1 =1,...,39.
1 —pi

The residual deviance gives a y?-value of 29.772 with 36 degrees of freedom, indicating that
the logistic model is quite adequate. The comparisons of the density of MCMC samples
(size=10000, burn-in=>5000) and the implied density (29) with s = 2 and s = 4 are in
Figure 11. The implied density (29) failed to diagnose for this example. The reason might
be that the posterior density has quite heavy tails. Here [¥;]33 = 1.093, étg = 2.649, and the
posterior means of ¢;(Z3), i = 1,...,10 from the MCMC samples in Figure 11 are (0.557,
0.666, 1.886, 5.581, 18.701, 73.833, 318.033, 1444.880, 6826.201, 32712.78) and R is 1.0023
for 603.

As a remedy, we truncate some extreme values from the MCMC samples. The compar-
isons of the density of MCMC samples (size=10000, burn-in=>5000) and the implied density
(29) with s = 2 and s = 4 are in Figure 12. Using a larger s gives better results. Here the
posterior means of ¢;(Z3), i = 1,...,10 from the MCMC samples in Figure 12 are (0.399,
0.086, 0.025, -0.381, -1.335, -0.560, 6.126, 13.857, -11.231, -116.282).
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We truncate some extreme values from the MCMC samples to get better results on
logit3p model at present section. We have a further discussion on this example and propose
a method that transforms Z; to another pivotal quantity in chapter 5.

Now we take the standard normal priors on #1, 02, and 63, and use the implied density
(29) to validate convergence of MCMC samples. Here the posterior means of ¢;(Z;3), i =
1,...,10 from MCMC samples are (-2.257, 4.217,-5.564, 1.478, 16.393, -43.238, 11.314,
241.204, -627.421, -488.959) and R is 1.0013 for 65. In this example the posterior samples
have heavy tails so we truncate some samples from the MCMC samples. Here the posterior
means of ¢;(Z3), ¢ = 1,...,10 from the MCMC samples are (-2.279, 4.299, -5.719, 1.509,
16.952, -45.244, 12.290, 253.552, -662.408, -522.589). The comparisons of the density of
MCMC samples and the implied density (29) with s = 2, s = 4 and s = 14 are in Figure
13, based on posterior samples of sizes 10000 (burn-in=>5000).

Siz-parameter case. Next, we consider a six-parameter problem. Kutner et al. (2004)
studied the strength of association between several risk factors and the duration of preg-
nancies based on 102 women. The risk factors were nutritional status (x;), mother’s age
(categorized into three groups and represented by two indicator variables x2 and x3), history
of alcohol use (z4), and history of tobacco use (z5). The response of interest, pregnancy
duration, was originally categorized into three groups: preterm (less than 36 weeks), inter-
mediate term (from 36 to 37 weeks), and full term (38 weeks or greater). Here we combine
the first two categories (coded 1) and let the full term be the second group (coded 0), and
then fit a logistic regression model to the data. For details, see Kutner et al. (2004). The

model is

10g<1 pip ) =01 + 02z1; + O329; + 0423 + O524; + Ox5, 1 =1,...,102.
— M

We run MCMCpack (2010) to obtain posterior samples of sizes 10000 (burn-in=10000).
Figure 14 shows that the implied density (29) with s = 4 is quite close to the MCMC
result. For example, for g we have [¥;]gs = 1.586, étG = 2.309, and the posterior means of
qi(Zy) for i = 1, ..., 4 from the MCMC samples in Figure 14 are (0.407, 0.237, 0.367, 0.610)
and R is 1.0114. With these six numbers, we can capture the posterior density of 8¢ pretty

well.
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4.4 Poisson Regression Model

We consider a data taken from Hinde (1982). The explanatory variable is the length of each
roll, and the response variable is the numbers of faults found in 32 rolls of fabric produced
in a particular factory. A problem of interest is the number of faults to be proportional to

the length of roll. We fit the data using the poisson regression model
log(u;) = 61 + Oax;

where x; is the length of ¢th roll and p; is the mean of related response variable. The
intercept #; represents the log-mean for zero length roll, while the slope 62 represents the
change in the log-mean of response variable for every unit increase in the covariate. The

loglikelihood and the second partial derivatives are

t t t
G(0) =601 yi+02 ) wiyi— Y exp(6y + bowi) + C,
=1 =1 =1

¢ t t
6521) =— Z exp(61 + Oaz;), 6522) =— Z xiexp(6; + 921’i),£§22) S — Zx?exp(@l + bax;).
i=1 i=1 i=1

Now we take flat priors on both ¢, and #3 and use the implied density (29) to validate
convergence of MCMC samples. We run WinBUGS Lunn et al. (2000) to obtain the posterior
MCMC samples of sizes 10000 (burn-in=5000). Figures 15(a2) and (b2) show that the
implied density (29) with s = 2 and s = 4 is quite close to the density of posterior samples.
Here we have [X;]a2 = 3264.80 and 0 = 0.0019, and the posterior means of qi(Z2),
i=1,...,4 from the MCMC samples in Figure 15(b2) are (0.052,—0.014,0.047,0.044) and
R is 1.0004 for f>. Now we take the standard normal priors on both 6#; and 6 and use the
implied density (29) to validate convergence of MCMC samples. Figures 16(a2) and (b2)
show that the implied density (29) with s = 2 and s = 4 is very close to the MCMC result.
Here the posterior means of ¢;(Z;2), i =1,...,4 from the MCMC samples in Figure 16(b2)
are (0.235,0.021, —0.026, —0.080) and R is 1.0011 for 65.

Given sample size t = 16, we randomly draw 16 observations from Hinde (1982). As
before, we take flat priors on both 6; and 5. Figures 15(al) and (b1) show that the implied
density (29) with s = 2 and s = 4 is quite close to the density of posterior samples. Here

we have [2]ag = 2487.49 and ;5 = 0.00199, and the posterior means of ¢;(Zs2), i = 1,...,4
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from the MCMC samples in Figure 15(b1) are (0.068, —0.030,0.012, —0.034). Now we take
the standard normal priors on both #; and 63, Figures 16(al) and (bl) show that the
implied density (29) with s = 2 and s = 4 is very close to the MCMC result. Here the
posterior means of ¢;(Z2), i = 1,...,4 from the MCMC samples in Figure 16(bl) are
(0.319,0.026, 0.004, 0.024).

4.5 Gamma Model

We consider the example of clotting time of blood given in Hurn et al. (1945); see also
McCullagh and Nelder (1989). The data set consists of clotting times in seconds (y) for
normal plasma diluted to nine different percentage concentrations with prothrombin-free
plasma (v); clotting was induced by two lots of thromboplastin.

Suppose that Y follows Gamma(a, 1/3) with mean a/5. McCullagh and Nelder (1989)

take the link function to be inverse; that is,

1
’[7:#_1:—:01—|—92:U7
af

where x = log(v). The loglikelihood and second partial derivatives are
t t
6(0) =y log(0y + Oaxi) — oy yil01 + Oa5) + C,
i=1 i=1
t @) _ N~ o @ _ N~ ox
B z; th +92$ 20 2 = _ZZ; (01 + O224)2’ 2 = _; (01 + O21)2
Since the MCMCpack (2010) does not provide GLM Gamma, we use WinBUGS Lunn et al.
(2000). However, GLM Gamma with inverse link produces negative values of 7, so we

consider the identity link function; that is,
n=pu=af =0+ 0,

where z = 1/log(v). The loglikelihood and second partial derivatives are

0(0) = —« Z log (61 + 622;) — « Z[yi/(el + O9;)] + C,

i=1 i=1

t

t
1 Yi
F=a|(-12Y P2y
= Y G e Y ;<"1+9M>3
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fiy = ; 01 +em Z (01 + 02,)3 |
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2 =« 20+ Ogr)? (01 + O2,)

We take flat priors on both 6; and 62 and use the implied density (29) to validate convergence
of MCMC samples. With WinBUGS Lunn et al. (2000) we obtain the posterior MCMC

samples of sizes 10000 (burn-in=20000). In this example, the number of burn-in needs to
be large to converge. Figures 17(a2) and (b2) show that the implied density (29) with
s =2 and s = 4 is close to the density of MCMC samples. Here [¥:]22 = 0.01247 and
04y = 154.4327, and the posterior means of qi(Z2), 1 = 1,...,4 from the MCMC samples
in Figure 17(b2) are (0.450,0.290,0.699,1.128) and R is 1.0111 for 6. Given sample size
t = 9, we randomly draw 9 observations from Hurn et al. (1945). Figures 17(al) and (bl)
show that the implied density (29) with s =2 and s = 4 is close to the density of MCMC
samples. Here [¥;]22 = 0.00713 and O = 194.6036, and the posterior means of ¢;(Z2),
i=1,...,4 from the MCMC samples in Figure 17(b1l) are (0.315,0.250, 1.143,2.170).

4.6 Mixture Normal

In this section we consider mixture normal models where the posterior density of the pa-
rameter may have multimodes. Suppose that a vector of observations y = (y1,...,y¢) is

drawn from a mixture distribution of two normals:

p(y]0) = wid(y; 01, 07) + wao(y; 02,03), (43)

2wy +wy =1, wy and 6,

where ¢(y;0,02) is normal density with mean @ and variance o
are unknown parameters of interest, 65, a%, and og are assumed known. The conjugate
prior distributions are (wy,ws) ~ Beta(a,8) and 0; ~ ¢(u;, 7) for i = 1,2. For detailed
discussions of mixture distributions, see Gilks et al. (1995, chapter 24) and Minka (2001).

It is convenient to introduce unobserved indicator variables (; with

¢ 1 if the ith observed is drawn from ¢(61,0%)

0 otherwise.

Given wi, each unobserved variable (; follows Bernoulli distribution with mean w;.
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We take 3 = 0 and 0? = 05 = 1, and assume that w; has prior distribution Beta(1,1).

Let 61 have a prior density ¢(0,100). The posterior density of (61, (,w1) given y is

p(br, G wily) o< p(bh, ¢ we,y)
o< p(br, w1)p(y, ¢|61,w1)
o< p(6h)p(w1)p(¢Clwi)p(y|61,C)
o exp(—03/200) [ ] [wio(yi: 02, 1)] [(1 — wi)e(i: 0,1)] 7. (44)

%

Given (915 wlvy)) by (44)5

(Gl o< TT [ 01, 1)) [(1 = wa)oss 0,1))

)

So
(G = 101, w1,y) < wid(yi;01,1), p(G =001, wi,y) = (1 —wi)d(y:;0,1);

where

ri = wi1¢(yi, 01, 1)/ [w1g(yi, 01,1) + (1 — w1)p(yi, 0, 1)]. (45)

So, the full conditional distribution for (; is Bernoulli distribution with mean r;. To con-

struct the full conditionals for w; and 6, by (44),

p(w1’y7 917 C) X ’11}12:9(1 — wl)t_ZCi;

and

p(O1ly, w1, ¢) o exp(=03/200) [T [#(wi:01.1)¢]
i(yi — 01)?
o exp(—6%/200)exp (—Z:C%—l)>
1 1 Z Gili 2
— | (— )0 — =———— :
) eXp( 2 [(100 R
So, the full conditional for w; is a Beta distribution, and the full conditional for #; is a
normal distribution with mean b/(1/100 + h) and variance 1/(1/100 + h), where h = > (;

and b = > (y;. The Gibbs sampler is easy to apply for the mixture normals because

the full conditional posterior distributions - 7(¢|01,w1,y), 7(w1]01,¢,y), 7(01|wi,C,y) -
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have standard forms and can be easily sampled from. One cycle of the Gibbs sampler is
described below.

Step 1 -Simulate ; :
(Gi|01,w1,y) ~ Bernoulli(r;), fori=1,2,....¢;

where 7; is in (45).
Step 2 -Simulate wy :
(/w1’917 C)y) ~ Beta‘(h + 17t + 1- h)u

where h =) (.
Step 3 -Simulate 67 :

b
(91|w17C7y)N¢< 1 ! )7

"1
m'f‘h m-i—h
where b = Gy;.

The loglikelihood and the second partial derivatives are
t
0(6) = log[wid(yi; 01, 1) + (1 = w1)(yi;0, 1),
i=1

where 6 = (wy, 61).

2
551) =

i:01,1) — d(y:;0,1))? i — 0 i3 01,1)6(y:; 0,1
_Z [P (yis 01 )f2¢(y )] . _Z (yi — 01)o(y f21 )Py )’
2=y {wl(l — w){(yi = 01)% — 1]¢(yi}921, D(yi; 0, 1) — wie(yi; 01, 1) } '

where f = wid(y;;01,1) + (1 —w1)o(y;;0,1). In this simulation we set w; = 0.5 and 6, = 2,

i

and generate a data of sample size 20. Then, we take the prior of #; as N(0,100) and use the
implied density (29) to validate convergence of MCMC samples. We run R function to obtain
posterior samples of §; by Gibbs sampler with sample sizes 5000 (burn-in=5000). The initial
value for Gibbs sampler is (9&0),10%0)) = (—2,0.5). Figure 18 shows that the implied density
(29) with s = 2 and s = 4 is very close to the MCMC result. For this data, the posterior
distribution has a single mode and the posterior means of ¢;(Z;2) with Z;5 = [2]22(01 — étl),
i=1,...,4 from the Gibbs samples are (—0.00076,0.0786,0.0184,0.1693) and R is 1.0024

for 6. Next we let 03 = 10, meanwhile generating another data of sample size 20. We obtain
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the posterior samples of 6 by Gibbs sampler with sample sizes 5000 (burn-in=5000). The
initial value for Gibbs sampler is also (950),111%0)) = (—2,0.5). The posterior samples have
two modes. Figure 19(a) shows that the density of MCMC samples is close to the exact
density by numerical integration and 19(b) shows the implied density (29) failed to diagnose
for this example. The posterior means of ¢;(Z2), i = 1,...,4 from the Gibbs samples are
(—2.643,86.271, —925.97, 5850.66) and R is 1.0016 for 6.

We have a further discussion on this example and propose a method that transforms Z;

to another pivotal quantity in chapter 5.

5 Concluding Remarks

We have compared second order Bayesian asymptotics and found some agreements and some
disagreements. We found that our O(t_l/ 2) term is arithmetically equivalent to Johnson’s,
but the O(t~!) term is not. Since the derivation is tedious and difficult to detect errors,
simulation studies are conducted to further compare these expansions. The simulations
confirmed that the two expressions for O(t~1/2) term yield close results, and revealed that
our O(t~1) term gives better performance than Johnson’s. Note that the emphasis here is on
comparison of the two expansions, rather than the regularity conditions for the expansions.
We also conduct simulations to compare the order O(t~3/2) expansions with Tierney and
Kadane (1986) result.

Since the asymptotic posterior distribution depends on observed data, we try different
samples to see its effect on the asymptotic approximations. Here we have a further discussion
from both analytical and numerical (experimental) result.

Analytical results. In the appendix of Tierney and Kadane (1986), Laplace’s method

provides an approximation for integrals of the form [ etL®dg when t is large. If L has a

unique maximum at 6 and o2 = —1/V2L(f), then
j b
/ g = V2orot=1/2eH 0 (1 4 % + 5+ o™y, (46)

where, setting Ly = VkL(é), the constants a and b are given by

1 5
a = §04L4 + ﬂO’GLg
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and

1 6 35 8712 7 8 35 1072 385 1274
oL 2282 4 STl 4 2202, + oo 1214
187 16T 3g 0 Fat g bels o byl 00 L

b

Result (46) remains valid if L is replaced by a sufficiently well-behaved sequence L) of
functions. In this case the coefficients a and b may depend on ¢, but this dependence will
be suppressed. If ¢ and b do indeed depend on ¢, we will assume regularity conditions for
the sequence L) that insure that a and b are bounded in ¢.

In Weng (2010a) (see Theorem 2, page 752), to ensure the marginal posterior density
(Eq(23)), the following condition is required:

(A1) For each r > 0, E{([Z:]]") = O(1).
Here O(1) means convergence of a sequence of real numbers as ¢ — oo. However, it is
difficult to judge O(1) from the posterior moments of Z;.

Numerical (experimental) result. Consider the same logit model in Section 4.1.2. Given
sample sizes t = 12 and t = 15, we randomly draw three samples from 24 observations,
respectively, and the comparisons of the density (Eq(23)) with exact density (numerical
integration) are in Figures 20 and 21 with s = 2. Figure 20 contains the results of three
different samples for ¢ = 12. The posterior means of the three samples Z},, r = 1,...,10
from numerical integration are in Table 1.1, where the seventh to tenth posterior moments
of Z; for the three samples are large and it does not seem to satisfy the condition (A1).
The approximations are not well in Figures 20(a), (b) and (c).

Figure 21 contains the results of three different samples for ¢ = 15. The posterior means
of the three samples ZJ,, = 1,...,10 from numerical integration are in Table 1.2, where
the seventh to tenth posterior moments of Z;5 for the three samples are also large and it
does not seem to satisfy the condition (Al). In this example we found that the posterior
moments of the first sample are relatively smaller than the other two samples. So, the
approximations are not well in Figures 21(b) and (c); however, the approximation is well in
Figure 21(a).

Now we consider the same observed data from the previous paragraph. The comparisons
of the density (Eq(23)) and the MCMC density with both s = 2 and s = 7 are in Figures
22 and 23, where the sample sizes are t = 12 and t = 15, respectively. The posterior means

of the three samples Z,, r = 1,...,6 from MCMC samples are in Table 2.1, where the fifth
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to sixth posterior moments of Z; in the first sample are larger than the other two samples.
The first sample does not seem to satisfy the condition (A1) and the approximation is not
well in Figure 22-1. However, the posterior moments of the second and third samples are
relatively smaller than the first sample and the approximations are well in Figures 22-2 and
22-3.

The posterior means of the three samples Zj,, r =1,...,6 from MCMC samples are in
Table 2.2, where the fifth to sixth posterior moments of Z;s in the third sample are larger
than the other two samples. The third sample does not seem to satisfy the condition (A1)
and the approximation is not well in Figure 23-3. However, the posterior moments of the
first and second samples are relatively smaller than the third sample and the approximations

are well in Figures 23-1 and 23-2.

posterior moments (exact density)

Zt2 Zt22 ZEQ Zfz Zt52 Zt62 Zt72 Zt82 27?2 ZtlQO
data
1 -0.55 1.76 -3.53 11.94 -37.29 139.1 -521.6 2100.7 -8596.0 36413.0
2 -0.44 158 -2.68 9.40 -26.51 99.36 -351.4 1406.9 -5562.5 23389.6
3 -0.27 143 -1.72 7,50 -17.20 72.31 -226.5 966.7 -3549.9 15526.2
Table 1.1 sample size t = 12.
posterior moments (exact density)
d Zt2 Zth Zt32 Z§12 Zt52 Zt62 Zt72 Zt82 27?2 Ztlzo
ata

1 -0.19 1.28 -1.10 5.74 -10.14 47.47 -124.4 565.8 -1845.8 8401.6

2 -0.54 1.70 -3.44 11.34 -35.62 130.9 -491.2 1961.0 -8013.8 33771.0

3 -0.75  2.14 -5.39 18.01 -62.90 239.6 -949.5 3908.4 -16496.7 71105.2
Table 1.2 sample size ¢t = 15.
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posterior moments (MCMC density)

Zyy Zt22 Zfz Zt42 Zt52 Zt62
data

1 -0.51 1.75 -3.56 13.26 -47.28 208.5
2 -0.39 154 -2.29 837 -20.85 79.53

3 -024 136 -1.48 6.46 -13.14 54.34
Table 2.1 sample size ¢t = 12.

posterior moments (MCMC density)

Zyy Zt22 Z?z 2;12 Zt52 Zt62
data

1 -0.14 1.20 -0.79 4.67 -6.23 32.96
2 -0.52 1.64 -3.22 10.59 -33.25 123.8

3 -0.78 245 -7.41 30.61 -142.1 743.2
Table 2.2 sample size t = 15.

In Section 4.2.1, we have described the binomial model Y ~ Bin(¢, #) with prior Beta(«, [3)
of # for multi-stage data and compared the posterior density (Eq(37)) with the exact distri-
bution. Now we try different priors to see its effect on the approximations. We compared
the exact posterior distribution of 6 given the first-stage data y; with posterior density
(Eq(37)) for four different priors; the results are in Figures 24(a), (b), (c) and (d), respec-
tively. Next, we try four different second-stage data for each of the settings in Figures 24(a),
(b), (c) and (d). The results are in Figures 25 to 28. We have some observations from Fig-
ure 25 to Figure 28. First, the approximated posterior density (Eq(37)) is near the exact
distribution when the MLE of second-stage data does not differ much from the posterior
mode in the previous data, see Figures 25(a)(b), 26(a)(b), 27(a)(b) and 28(a)(b). Secondly,
the approximation (Eq(37)) may not perform well and may have some negative values when
the posterior mode in the previous data greatly differs from the MLE of second-stage data;
see Figures 25(c), 26(c), 27(c) and 28(c). Thirdly, the problem of negative values by ap-
proximated posterior density (Eq(37)) may be improved when the sample size increases;
see Figures 25(d), 26(d), 27(d) and 28(d). Our experiments on multi-stage data showed

that the analytic approximations are reasonably well when the MLE of second-stage data
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does not differ much from the posterior mode in the previous data. However, when the
MLE of second-stage data greatly differs from the posterior mode in the previous data, the
approximations may be not well; the larger the sample size is, the better the result will be.

We also proposed a graphical method for validating convergence of MCMC. Our method
is based on a Bayesian Edgeworth expansion for the posterior distribution. The method has
been tested on some GLM models and mixture normal models, but the results are mixed.
One problem is that in some occasions the posterior densities seem to have heavier tails.
In fact, for a Bayesian Edgeworth expansion to be valid, the posterior moments need to be
finite. So, intuitively a density with heavy tails may cause some problems. However, in a
simulation sample, all moments can be calculated and are finite; therefore, it is difficult to
judge whether the real moments are finite or not.

When the posterior moments of Z; are large, the asymptotic result is often not well.
We transform Z; to Wy = w * Zy, where 0 < w < 1. Since W; has smaller moments,
we expect the asymptotic result for W; to be better. By (22), Z;, involves only 6, so
that P{(0, < ap) = P{(Ziyp < zp) for 25 = [Silppap — 01p). Let @, = wh,. We obtain

Pft(gop < wap) = Pg(th < wy) and Pg(th < wy) = Pgt(th < wy/w), where wy;, = wz; =

[S¢]pp(wa, — why,). Then, by (21) and (23), we derive the marginal posterior density for

¥Pp-
1 w? 1 wy ws W, JTES
€0 = [P 6C2) + D ma(SR)O(-)ELa(=2)) + O F ) {, (47)
kef1,..,3s}
k#3s—1

where b, = wa,. Two examples below are illustrated.

Logit model (three-parameter case.) Consider the same logit model in Section 4.3.
Here we take the posterior MCMC samples of parameters with sample sizes 10000 (burn-
in=5000). Now we take w = 0.5 and to compare the posterior density (Eq(47)) with MCMC
densities in Figure 29, where the posterior means of ¢;(W;3), i = 1,...,6 from the MCMC
samples are (0.2786, -0.5833, -0.3912, 1.2865, 1.1674, -4.8815). The results are well.

Mizture model. Consider the same mixture model in Section 4.6. Here we take the pos-
terior samples of #; with sample sizes 5000 (burn-in=5000) and Z;2 = [X¢]22(61 — étl). Now
we take w = 0.5, w = 0.1 and to compare the posterior density (Eq(47)) with MCMC den-
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sities in Figures 30(a) and (b). In Figure 30(a), the posterior means of ¢;(Wy2), i =1,...,6
from the MCMC samples are (-1.3218, 20.8179, -112.77, 3561.29, -31987.67, 1253357). The
result is not well. In Figure 30(b), the posterior means of ¢;(Wi2), i = 1,...,6 from the
MCMC samples are (-0.2643, -0.1272, -0.1407, 3.666, -5.229, 19.425) and we obtain better
results for larger s.

When the numbers of both burn-in and MCMC sample are small, the asymptotic result
for Z; is not well. We transform Z; to W; to see its effect on the asymptotic result. Some
examples below are illustrated.

Logit model (two-parameter case.) Consider the same logit model in Section 4.3. Here
we take the posterior MCMC samples of parameters with sample sizes 100 (burn-in=>50).
Next we take w = 0.1 and to compare the posterior densities (Eq(47)) with MCMC densi-
ties in Figures 31(a) with s = 10 and 31(b) with s = 20. The posterior means of ¢;(Wi2),
i=1,...,4 from the MCMC samples are (—0.0445, —0.9823,0.1291,2.895). The approxi-
mations are not well.

Poisson model. Consider the same Poisson model in Section 4.4. Here we take the
posterior MCMC samples of parameters with sample sizes 100 (burn-in=>50). The posterior
means of ¢;(Z2), 1 = 1,...,4 from the MCMC samples are (—0.1730, 0.2623, —1.004, 1.0059)
and R is 1.5873 for 6. The comparisons of the density (Eq(47)) with the density (MCMC)
are in Figures 32(a) with s = 10 and 32(b) with s = 20. The approximations are not well.
Now we take w = 0.1 and to compare the posterior densities (Eq(47)) with MCMC densities
in Figure 33. The posterior means of ¢;(Wy2), i =1,...,4 from the MCMC samples are
(—0.0173,—0.9873,0.0503, 2.9248). The approximations are not well.

Mixture model. Consider the same mixture model in Section 4.6. Here we take the
posterior samples of #; with sample sizes 50 (burn-in=50). The posterior means of ¢;(Z2),
i=1,...,4 from the MCMC samples are (0.84976,1.8444,8.3110,40.6077) and R is 1.1375
for 61. The posterior samples have two modes. Figure 34(a) shows that the density (MCMC)
is not close to the exact density (numerical integration). The comparisons of the density
(Eq(47)) with the density (MCMC) are in Figures 34(b) with s = 7 and 34(c) with s = 27.
The approximations are not well. Now we take w = 0.1 and to compare the posterior

densities (Eq(47)) with MCMC densities in Figure 35. The posterior means of ¢;(W2),
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i=1,...,4 from the MCMC samples are (0.0849, —0.9715, —0.2440,2.834). The approxi-

mations are not well.
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50, meme=100);

Dashed: MCMC(burn-in
Solid: Equation (29) with s =2, s =4, s = 20 and s = 27.

R is 1.2309 for 65.
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Figure 15: Marginal posterior pdf of #; and 3. Poisson model with flat prior.
Dashed: MCMC (burn-in=5000, mcmc=10000).
Solid: Equation (29) with s =2 and s = 4.
R is 1.0004 for 6 with t=32.
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Figure 16: Marginal posterior pdf of #; and 2. Poisson model with N(0,1) prior.
Dashed: MCMC(burn-in=5000, mcmc=10000);
Solid: Equation (29) with s = 2 and s = 4.
R is 1.0011 for 6, with t=32.
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Figure 17: Marginal posterior pdf of 8; and #3. Gamma model(identity link) with flat prior.
Dashed: MCMC(burn-in=20000, mcmc=10000);
Solid: Equation (29) with s = 2 and s = 4.
R is 1.0111 for 0, with t=18.
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Figure 18: Marginal posterior pdf of ; with R =1.0024. Mixture normal model.
Dashed: MCMC(burn-in=5000, mcmc=5000);
Solid: Equation (29) with s =2 and s = 4.
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Figure 19: Marginal posterior pdf of ; with R = 1.0016. Mixture normal model.
Dashed: MCMC (burn-in=>5000, memc=5000); Solid: Equation (29).
(a)Dot-dashed: Exact distribution by numerical integration; (b)s = 27.
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Figure 20: Marginal posterior pdf of 8 with t = 12. Logit2p-flat model.
Dotted: Equation (23); Dot-dashed: Exact distribution by numerical integration.
(a), (b) and (c) with s = 2.
(a) (b) (c)
© - f“:‘. S
i g 24 g o
0 - 4 Bl G 5 N7
K =] =l
< 4 Y 5 5 2
it E\7 f;
o i % § °A
; : k= s g |
o~ \ : % o o é |
- - P t 5 I T
Bé \ E w0 | E 8 4
Y IR I 45 W i E ] -
T T T T T T T T T T T T T
-06 -04 -02 00 02 04 -0.5 0.0 05 -1.0 -0.5 0.0 0.5
0, 0, 6,

Figure 21: Marginal posterior pdf of s with ¢ = 15. Logit2p-flat model.
Dotted: Equation (23); Dot-dashed: Exact distribution by numerical integration.
(a), (b) and (c) with s = 2.
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Figure 22: Marginal posterior pdf of 6; and 6, with t = 12. Logit2p-flat model.
Dashed: MCMC (burn-in=5000, mcme=10000); Dotted: Equation (23).
(al) and (bl) with s = 2; (a2) and (b2) with s = 7.
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Figure 23: Marginal posterior pdf of #; and 6, with ¢t = 15. Logit2p-flat model.
Dashed: MCMC(burn-in=5000, mcmc=10000); Dotted: Equation (23).
(al) and (bl) with s = 2; (a2) and (b2) with s = 7.
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Figure 24: Marginal posterior pdf of #. Beta-Binomial model (t1,y1) = (8, 3).
Dotted: Equation (37); Dot-dashed: Exact distribution.
(a) prior Beta(0.5,4). (b) prior Beta(2.5,4). (c¢) prior Beta(4,6). (d) prior Beta(6, 2).
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Figure 25: Marginal posterior pdf of . Beta-Binomial prior Beta(0.5,4). (t1,y1) = (8, 3).
Dotted: Equation (37); Dot-dashed: Exact distribution.
(a)(t2,y2) = (12,3). (b)(t2,42) = (25,6). (c)(t2,y2) = (20,10). (d)(t2,y2) = (80,40).
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Figure 26: Marginal posterior pdf of §. Beta-Binomial prior Beta(2.5,4). (¢t1,y1) = (8,3)
Dotted: Equation (37); Dot-dashed: Exact distribution.
(a)(t2,52) = (10,3). (b)(f2,y2) = (20,7). (c)(t2,52) = (20,12). (d)(t2,32) = (60, 36)
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Figure 27: Marginal posterior pdf of #. Beta-Binomial prior Beta(4,6). (t1,y1) = (8,3)
Dotted: Equation (37); Dot-dashed: Exact distribution.
(a)(t2,52) = (16,6). (b)(t2,52) = (32,12). (c)(t2,y2) = (20,12). (d)(t2,y2) = (60,36)
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Figure 28: Marginal posterior pdf of §. Beta-Binomial prior Beta(6,2). (t1,y1) = (8,3)
Dotted: Equation (37); Dot-dashed: Exact distribution.
(a)(f2,52) = (10,7). (b)(f2,y2) = (20,12). (¢)(t2,y2) = (10,2). (d)(t2,32) = (80, 16)
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Figure 29: Marginal posterior pdf of @1, @2 and p3 (W = 0.5 % Z;). Logit model with flat

prior.

10000);

5000, mcmc

Dashed: MCMC(burn-in

Solid: Equation (47) with s =2 and s = 4.
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Figure 30: Marginal posterior pdf of ¢1. Mixture normal model.
Dashed: MCMC (burn-in=>5000, mcmc=>5000); Solid: Equation (47).
()W = 0.5 % Z; with s =27; (b)IW; = 0.1 % Z; with s = 27.
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Figure 31: Marginal posterior pdf of ¢ and o (W = 0.1% Z;). Logit model with flat prior.
Dashed: MCMC (burn-in=50, mcmc=100); Solid: Equation (47). (a) s = 10; (b) s = 20.
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Figure 32: Marginal posterior pdf of 8; and 3. Poisson-flat model.
Dashed: MCMC (burn-in=>50, memc=100); Solid: Equation (23).
(a) s = 10; (b) s = 20. R is 1.5873 for 65.
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Figure 33: Marginal posterior pdf of ¢; and o (W = 0.1 % Z;). Poisson-flat model.
Dashed: MCMC(burn-in=>50, memec=100); Solid: Equation (47). (a) s = 10; (b) s = 20.
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Figure 34: Marginal posterior pdf of ; with R = 1.1375. Mixture normal model.
Dashed: MCMC (burn-in=50, mcmc=50); Solid: Equation (23).
(a)Dot-dashed: Exact distribution by numerical integration; (b)s = 7; (¢)s = 27.
(a) (b) ()
) 2 . i z | )
; g . T .
N e B 2 :
W o - . - __.,\/\‘ A

Figure 35: Marginal posterior pdf of ¢; (W = 0.1 * Z;). Mixture normal model.

Dashed: MCMC (burnin=50, mcmc=>50); Solid: Equation (47).

(a) s=2;(b) s=T7;(c) s=27.
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