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Message Transmission Problems of Graphs
Ming-Fen Yu
Abstract
Given a graph G together with a set M :{m(v) Y eV(G)}, the transmission number of

G corresponding to M, denoted by t(G;M), is the minimum number of time needed to
complete the transmission , that is, to let all the vertices in G know all the messages in
Uiav@M(V) , subject to the constraints that at each time unit, each vertex can
interchange messages with all its neighbors, but the number of messages that two
vertices can interchange at each time unit is at most one. We want to find the minimum
number of time units required to complete the transmission, that is, to let all the vertices

in G know all the messages. We call such a problem the message transmission problem.

Given a graph G, the transmission number of G, denoted t(G), is the minimum number
of time units required to complete the transmission, under the condition that |m(v)| =1
for all v in V(G) and m(u)=m(v) for all distinct vertices u,v in V(G), and
M :{m(v):VEV(G)}. In this thesis, we give upper and lower bounds for the

transmission number of G, and give formulas to compute the transmission numbers of

trees, complete bipartite graphs and double loop networks.

Keywords:transmission number, transmitting set, tree, complete bipartite graph, double

loop network.



1 Introduction

Given a connected graph G, consider the following message trans-
mission problem defined on G: Assume that each vertex v in G
owns a set of messages m(v) (m(v) could be an empty set) at
the beginning, and M = {m(v;) : 1 < i < n}. At each time
unit, each vertex can interchange messages with its neighbors. For

A C Upey(gym(v), we use AL, to denote that at the ith time

v

unit, u send all the messages in A to v, and call AL, a call. A
set of calls B(G) is said to be a transmitting set of G correspond-
ing to M (or, simply, a transmitting set of G if M need not to
be specified) if for each AL, € B(G), A C (U{B : BL. € B(G),
1 <1 <i—1})Um(u). For a transmitting set B(G) of G, we use
Ap(c) to denote the number max{i : A-, € B(G)}, and for all v in
V(G) and all 4, 1 < i < Ap(g), we use (m;(v))p() to denote the
set (U{A : AL, € B(G), 1 < I < i}) Um(v). If B(G) is the only
transmitting set we considered, we use m;(v) to replace (m;(v))p(q)
for short.

A transmitting set B(G) of G corresponding to M is called a com-
plete transmitting set of G corresponding to M if (ma ., (v)) @) =
Uwev (@ m(w) for all v € V(G). A complete transmitting set of ¢
corresponding to M is called a k-complete transmitting set of G cor-
responding to M if Ap) = k. If B(G) is a k-complete transmitting
set of G corresponding to M, then we use b(G; M; B(G)) to denote
the number Apgy. And we let b(G; M) = min{b(G; M; B(G)) :
B(G) is a complete transmitting set of G corresponding to M }.

Chang et al.[1] consider the transmission problem under the re-

striction that at each time unit, each vertex can interchange mes-



sages with at most one of its neighbors, and the number of messages
they can interchange is bounded by a constant k. They called such a
problem a bounded-k broadcasting problem. This kind of problem
can be viewed as a generalization of both the broadcasting prob-
lem and the gossiping problem. Most of the different variations of
the broadcasting problem are bounded-1 broadcasting problem with
special initial states. For example, the general broadcasting prob-
lem is equivalent to the bounded-1 broadcasting problem under the
initial conditions |m(v)| =1 for some v € V(G), and m(u) = 0 for
all u # v. Hedetniemi and Hedetniemi [9] considered the bounded-1
broadcasting problem with the initial conditions m(v) = {a} for all
v e S CV(G), and m(u) = 0 for all u # v. They called this the mul-
tiple originator broadcasting problem of GG. Chinn, Hedetniemi, and
Mitchell [3] and Farley [5] introduced the multiple message broad-
casting problem of GG, which can be viewed as the bounded-1 broad-
casting problem of G with the initial conditions |m(v)| = [ for some
[ > 1 and some v in V(G), and m(u) = 0 for all u # v. It is easy
to see that bounded-k broadcasting problem of a graph G under
the initial conditions k& > |V (G)|, |m(v)] = 1 for all v € V(G),
and m(u) Nm(v) = 0 for all u # v, is equivalent to the well-known
gossiping problem of the graph G.

We consider the message transmission problem under the restric-
tion that at each time unit, each vertex can interchange messages
with all its neighbors, but the number of messages they can inter-
change is bound by one, in this thesis. To distinguish this with
the general message transmission problem, we use ¢(G; M; B(G))
and t(G; M) to replace the numbers b(G; M; B(G)) and b(G; M),
respectively. A message set M = {m(v) : v € V(G)} on G is
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called a standard message set if |m(v)| = 1 for all v in V(G) and
m(u) # m(v) for all distinct vertices u,v in V(G). Given a graph G,
the transmission number of G, denoted ¢(G), is the number ¢(G; M),
where M is the standard message set on GG. We give upper and lower
bounds for the transmission number of graphs in Section two, and
give formulas to compute the transmission number of trees and com-
plete bipartite graphs in Section three and four. And, in the last
section, we present some results for the transmission number of dou-

ble loop networks.

2 Preliminary

We give some basic properties for the transmission number of graphs
in this section. From now on, when consider a transmitting set
B(G) of G, if AL, € B(G) and j € A, we always assume that j ¢
(mi-1(v))B()- And, when consider the graphs K, and C,,, we always
assume that V(K,) = V(C,) = {vo, v1,...,0,_1} and m(v;) = {i}

for all 7, 0 <7 < n — 1. The following lemma is easy to verify.

Lemma 1 If H is a spanning subgraph of a graph G, then t(G) <
t(H).

Lemma 2 For any graph G with |V (G)| = n and |E(G)| = m,
1G) > [2o=0].

Proof. The total number of messages need to be transmitted is

n(n—1). Since at most m messages can be transmitted at each time

unit, the result follows. m

Lemma 3 For any graph G with |V(G)| = n and |E(G)| = m, if
B(G) is a k-complete transmitting set of G such that |[{AL, : AL, €
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B(G)}Y =m foralli, 1 <i<r <k, and Z?:TH\{A% : AZL_{) c
B(G)}| > (k—r—1)m+ 1, then B(G) is an optimal transmitting

set of G, and t(G) = [%W :

Proof. Since |[{AL, : AL, € B(G)} =mforalli, 1 <i<r <k,
and Zfer |{AZL_>U ; Az—{; eBG)}=>(k—-r—1m+1nn-1)>
rm+ (k—r—1)m+1= (k—=1)m+ 1. Hence t(G) > {%W >
{%-‘ = k by Lemma 2. Therefore, since B(G) is a k-complete
transmitting set of G, B(G) is an optimal transmitting set of G’ and

HG) =k =[2] . .

Lemma 4 Given a graph G with |V(G)| = n, if uv is a cut-edge of
G and Gy, Gy are components of G —uv containing u, v, respectively,
then

HG) > i d d .
( )_n+mm{wénva(\§1) Gl(u,w),wen%z) (v, w)}

Proof. Let B(G) be an optimal transmitting set of G. Note that
since uv is a cut-edge of G, every message in U,y (gym(v) must pass
through uv at some transmitting step. If in B(G), a is the last
message in U,ey(gym(v) that pass through wwv, then there exists £,
k > n, such that {a}t, € B(G) or {a}t, € B(G). If {a}%, € B(G),
and z is a vertex in G such that dg, (v, o) = max,ecv(a,) da, (v, w),
then there exists a vertex y and a number k', such that {a}’y’i;r €
B(G). Clearly, k' > k 4 dg,(v,z). Thus t(G) = A > k' >
kE+da,(v,2) > n 4 maxyey(a,) da, (v, w) in this case. By a similar
argument, t(G) > n+ maxyev(a,) da, (v, w) if {a}E. € B(G). Hence

t(G) = n + min{maxyev(c,) do, (u, w), MaxXyev(G,) de, (v, w)}.

Theorem 5 t(K,,) =2 for alln > 2.



Proof. Consider the transmitting set B(K,) of K,, defined by
BUK) = ((fm 0 0S4 <k <n-1JU{{k, 0 <
j < k < n — 1}. Since each vertex v; received all the messages
in {0,1,...,7— 1} at the first time unit, and received all the mes-
sages in {i+1,i+2,...,n— 1} at the second time unit, B(K,) is a
2-complete transmitting set of K,,. Thus ¢(K,) < 2. By Lemma 2,

we also have t(K,) > [ITIL*J(?I;;))I-‘ > 2. Hence t(K,) = 2 for all n > 2.

Theorem 6 t(G) > 2 for any graph G with |V (G)| > 2. And equal-
ity holds only if G = K, n > 2.

Proof. #(G) > 2 for any graph G with |V(G)| > 2 follows from

Lemma 2. Note that the equality does not hold if |E(G)| < @

Hence by Theorem 5, t{(G) =2 if andonly if G = K,, n > 2. =
From now on, for convenience, we use the notation [k],, to denote

the number (k modn).
Theorem 7 ¢(C,) =n—1 for alln > 3.

Proof. Consider the transmitting set B(C),) of C,, defined by
B(Ch) = {li+i— 1t e i1<i<n—1,0<j <n—1}
Since each vertex v; received the message [j — ], at the ith time
unit, (mn—1(vi))B(c,) = {0,1,2,--- ,n—1} for each vertex v;. Hence
B(C,,) is an (n — 1)-complete transmitting set of C,,, and so t(C,,) <
n — 1. By Lemma 2, we also have t(C,,) > {”("_1% > n — 1. Hence

|E(Cn)l
t(Ch)=n—1foraln>3 =



3 Trees

A rooted tree is a tree with one vertex chosen as the root. We
use T, to denote a tree T rooted at v. The height h(T,) of T, is
defined by h(T,) = max{d(v,w) : w € V(T)}. A vertex w in T, is
said to be in level i, denoted l(w) = i, if d(v,w) = 7, and we let
Ly(T,) = {u e V(T) : dlv,u) = j} for all j, 0 < j < h(T,). If
v; € N(v), we use T, to denote the subtree of T, rooted at v;. If u
is a vertex in a rooted tree T, and u # v, we use u; to denote the
father of u in T),.

Given a tree T' together with a message set M = {m(u) : u €
V(T)}, if T" is a subtree of T', then the message set restrict on 77,
denoted M |7, is defined by M| = {m(u) : u € V(1")}. If B(T) is
a transmitting set of T' corresponding to M, we use Mp(r) to denote
the message set {m/(u) : u € V(T)}, where m'(u) = ma,,, (u) for
all u e V(7).

Given a rooted tree T, with N(v) = {vy,vs,...,v.}, together
with a message set M = {m(u) : u € V(T,)} on T;,. We say that M
satisfies the message decreasing property if m(w) C m(wy) for all
w e V(T,), w# v, and |m(u)| > |m(v)| — i for all uw € L;(T,). And
we say that M satisfies the k-extended message decreasing property
if for each 4, 1 < i <, |m(v)\m(v;)| = k, and the message set M|r,
on T,, satisfies the message decreasing property. A message set M is
said to satisfies the k-total message decreasing property if M satisfies
the k-extended message decreasing property and m(v;) € m(v) for

alli, 1 <i<r.

Lemma 8 Given a rooted tree T, together with a message set M =

{m(u) :u € V(T,)}. If M satisfies the message decreasing property,
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then there exists a transmitting set B(T,), such that Apr,) = 1,
my(w) € my(wy) for allw € V(T,), w # v, and |mq(u)| > |m(v)| —
i+ 1 forallu e Ly(T,), i > 1.

Proof. Choose a,, € m(ws)\m(w) for each w € V(T;,) — {v} with
m(w) # m(wy), and let B(T,) = {{aw}i}w cw e V(T,) —{v} and
m(w) # m(wy)}. Then, clearly, Agr,) = 1, and my(w) C my(wy)
for all w € V(T,), w # v. Note that for each w € V(T,) — {v}
with |m(w)| = |m(v)] — l(w), we have |mi(w)| = |m(w)| + 1 =
|m(v)| — l(w) + 1. Hence |my(u)| > |m(v)| —i+1 for all u € L;(T,),
1>1. m

Lemma 9 Given a rooted tree T, together with a message set M =
{m(u) :uw € V(T,)}. If M satisfies the message decreasing property,
then t(T,; M) < h(T,).

Proof. We prove this by induction on the heights of the rooted trees.
The conclusion clearly holds for all rooted trees of height 1. Suppose
it holds for all rooted trees of height less than or equal to k, and let T;,
be a rooted tree of height k+1. Let N (v) = {vy,vs,...,v,}. Since M
satisfies the message decreasing property, by Lemma 8, there exists
a transmitting set B'(T),), such that Ag () =1, (mi(w))p(1,) C
my(wy)pr,) for all w € V(T,), w # v, and |(mi(u))p(1,)| >
Im(v)] —i+1 for all uw € L;(Ty), i > 1. Let m/(w) = (m1(w))p/(1,)
for all w € V(T,), and let Mg/ (1) = {m'(u) : u € V(T,)}. Since for
each i, 1 <i <, h(T,,) <k, and the message set Mp/ () 1,, of T,

satisfies the message decreasing property, there exists a k-complete
transmitting set B;(T,,) of T,. Let B(T,) = B'(T,) U {A%1 : A{m €
B;(T,,) for some i, 1 < i < r}. Then, clearly, B(T,) is a (k + 1)-



complete transmitting set of T,. Hence ¢(T,; M) < k + 1, which

complete the induction. m

Lemma 10 Given a rooted tree T, with N(v) = {vy,va, ..., 0.}, if
M ={m(u) :u e V(T,)} is a massage set on T, which satisfies the
k-extended message decreasing property, then there exists a trans-
mitting set B(T,) of T,, such that Apr,) =1 < k, and the message

set Mp(r,) satisfies the (k—1)-extended message decreasing property.

Proof. We prove this by induction on [. The conclusion clearly
holds for [ = 0. Suppose it holds for all 0 < [ < p. Let M =
{m(u) : w € V(T,)} be a massage set on T, which satisfies the k-
extended message decreasing property. Choose a,, € m(wy)\m(w)
for each w € V(T;,) — {v} with m(w) # m(wy), and let B'(T;) =
{{aw}fm cw € V(T,) — {v} and m(w) # m(ws)}. Then, clearly,
the message set M’ = Mp/(1,) of T, satisfies the (k — 1)-extended
message decreasing property. By the induction hypothesis, there
exists a transmitting set B”(T,) of T, corresponding to M’, such
that Agwr,y = p — 1, and the message set M; (1) satisfies the
(k — p)-extended message decreasing property. If we let B(T,) =
B(T,) U {A%1 \ Affu € B"(T,)}, then clearly, Ag(r,y = p, and the
message set Mp(r,) satisfies the (k —p)-extended message decreasing
property. Hence the conclusion also holds for [ = p. By the principle

of mathematical induction, the conclusion holds for all 0 <[ < k. m

Lemma 11 Given a rooted tree T, together with a message set M =
{m(u) : w € V(T,,)} on T,. If M satisfies the k-total message de-
creasing property and |m(v)| = n, then there exists a (k+h(T,)—1)-
complete transmitting set B(T,) of T, corresponding to M, such that



|(mi—114(w))B(r,)| = min{n, n — l(w) + i} and (Mp_14:(w))Bz,) €
(Mp—14:(wy)) By for all w # v in V(T,) and all i, 0 < i < h(T,).

Proof. Since M satisfies the k-extended message decreasing prop-
erty, by Lemma 10, there exists a transmitting set B'(T,) of T,
such that Ap/ 7,y = k — 1, and the message set Mp/(r,) satisfies
the l-extended message decreasing property. Thus, since M satis-
fies the k-total message decreasing property and |m(v)| = n, the
message set M’ on T, defined by M' = {m/(u) : u € V(T,)},
where m/(u) = (my-1(u))p/(r,) for all u in V(T,), satisfies the mes-
sage decreasing property. Hence by Lemma 9 and its proof, there
exists a h(T,)-complete transmitting set B”(T,) of T}, correspond-
ing to M’, such that for all w # v in V(T) and all i, 0 < i <
BT, () o] = mingn, 0 —w) + i}, and (m!(w)) prir) ©
(mi(wy)) prer,)- I welet B(T,) = BY(T,)U{AE . AL € B"(T,)},
then clearly, by the definition of B'(T},) and B"(T,), B(T,) is a (k+
h(T,)—1)-complete transmitting set of 7;, corresponding to M, such

> min{n, n—Ii(w)+:} and (my_14:(w))pr,) C

that [(mx—14+:(w)) Bz,
(mi—14i(wy))p(r,) for all w # v in V(T,) and all 4, 0 <@ < h(Ty).
|

From now on, in convenience, when consider a rooted tree T,
with N(v) = {vi,v9,...,0,}, we always assume that |V (T,,)| >
\V(Ty,)| > -+ > |V(T,,)|, and let n; = |V(T,,)| for all i, 1 <i <,
n=1|V(T,)| =14 n; +ng+ -+ n,. For a rooted tree T, together
with a standard message set M, a complete transmitting set B(T,)
of T, is called a good transmitting set if it satisfies the following

conditions.

(1) AB(TU) =n-+ h(Tv) — 1.



(2) [(mi(v))B@,y| =i+ 1foralli, 0<i<n-—1
(3) Forallw # vin V(T,) and all 4,0 < i < h(T5,), [(mn—14i(w)) B(1y)|

min{n, n —l(w) + i}, and (mn-11i(w))Br,) € (Mn-11i(wy)) Bz

Lemma 12 FEvery rooted tree T,, with a standard message set M =

{m(u) :uw € V(T,)} has a good transmitting set.

Proof. We prove this by induction on the order & of the rooted
tree. The conclusion clearly holds for £ = 1,2. Suppose it holds
for all 2 < k < n, and T, be a rooted tree with n vertices. Let
N(v) = {v1,v,...,0,}. For each 4, 1 <1i <, let T, be the subtree
induced by V(T,,) U {v} which is rooted at v. Since each of the
rooted subtrees Ty, T, , T, ..., T, has fewer than n vertices, by
the induction hypothesis, there is a good transmitting set B;(7,)
of T;,, and for each 7, 2 < i < r, there is a good transmitting set
Bi(Ty) of Ty

Let m(vy) = ay. For each j, 1 < j < m; — 1, choose an element
aj1 frommj(vy)—{ay, as, ..., a;} if ay,as, ..., a; are all determined.
Let B;1(T,,) = {Ai_w € Bi(T,) : 1 <j<m} Foralli 2<i<r,
let By (Ty) = {AL. € By(T:) : 1 < j < m;}, and let M/ be the
message set on T, defined by {m'(w) : w € V(T})}, where m/(w) =
(mn, (W) p,(1;) and m'(v) = {a1, as,. .., an,}. Since for each i, 2 <
i <7, Bi(T}) is a good transmitting set of T}, , M; is a message set
on T, which satisfies the n;-extended message decreasing property.
By Lemma 10, for each i, 2 < ¢ < r, there exists a transmitting set
Bip(T,) of T7;, corresponding to M; such that Ap, ) = n1 — ni,
and the message set (M)) Bia(Ty,) Satisfies the n;-extended message
decreasing property. Let Bj,(T)) = {Az_j;j : Ai_w € Byp(T;)}, and
let B'(T,) be the transmitting set of T, corresponding to M defined

10
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by B(T,) = Bua (Lo )U(UL B (1) (U BT {as Yy 1 <
Jj <mni}. If M" is the message set on T, defined by M" = {m"(w) :
w € V(T,)}, where m"(w) = (my,, (w)) p(r,), then, by the definition
of B11(T,,), Bi(Ty) and Bjy(T;), M" satisfies the (n — ni)-total
message decreasing property and |m(v)| = n. Hence by Lemma 11,
there exists a (n—ny+h(7T,)—1)-complete transmitting set B”(T,,) of
T, corresponding to M” such that |(m,—n,—14:(w))per,)| > min{n,
n —l(w) + i} and (Mn—n,-145(W)) Bz € (Mn—py—144(wy)) e, for
all w # v in V(T,) and all 4, 0 < i < h(T)).

Now, let B(T,) = B'(T,)U{AL" : A’ € B"(T,)}. Then, by the
definition of B'(T,) and B"(T,), B(T,) is an a-complete transmitting
set of T, corresponding to M, where o =ny+ (n—ny1 +h(7,)—1) =
n+ WT,) — 1, |(mi(v))sr,)| > i+ 1foralli, 0 <i<n-—1,
and [(mn—14:(w))p,)| 2 min{n, n = l(w) + i}, (Mn-14:(w)) (T, C
(Mp—14i(wy))p(r,) for all w # v in V(T,) and all 7, 0 < ¢ < h(T}).
Hence B(T),) is a good transmitting set of T}, and so the conclusion
also holds for £k = n. By the principle of mathematical induction,
every rooted tree T, with a standard message set M = {m(u) : u €

V(T,)} has a good transmitting set. m
Theorem 13 For any tree T' with |V (T)| =n > 2.
t(T) =n+rad(T) — 1.

Proof. Choose a vertex v in the center, and consider the rooted tree
T,. By lemma 12, there exists a (n+h(7),)—1)-complete transmitting
set B(T,) of T,,. Hence t(T') < Apr,) = n + h(T,) — 1. Since v is a
vertex in the center, h(T,) = rad(7"), thus t(7') < n+rad(7T)—1. To
prove the lower bound, consider a vertex w in V(T,,) with d(v, w) =

rad(7T"), and let T,, be a rooted subtree of T, containing w which

11



is rooted at a vertex u in N(v). Then, by Lemma 4, t(T) > n +
d(u,w) =n+rad(T) — 1. Hence t(T') = n+rad(T) — 1 for any tree
T with |[V(T)|=n>2. =

Corollary 14 ¢(P,) =n+ |2]| — 1 for all n > 2.
Combining Lemma 1 and Theorem 13, we have

Theorem 15 For any graph G with |V (G)| > 2, t(G) < |[V(G)| +
rad(G) — 1.

If uv is a cut-edge of G, then we use a(u, v) to denote the number
min{maxyev () da, (¥, ), MaxXyev(cs) da, (v, w) }, where Gy, Gy are
components of G —uwv containing u, v, respectively. By lemma 4 and

Lemma 12, we have

Theorem 16 If G is a graph with cut-edges, then t(G) = |V (G)| +

max{a(u,v) : uv is a cut-edge of G} — 1.
4 Complete bipartite graphs

We study the transmission number of complete bipartite graphs in
this section. For convenience, when consider the complete bipartite
graph K, ,,, m > n, we always assume that V (K, ,) ={v; : 0 <i <
m+n—1}, E(Kpy) ={vv;:0<i<m—-1m<j<m+n—1},
and m(v;) = {i} forall i, 0 <i <m+n— 1.

Theorem 17 t(K,,,) = {W—‘ for allm >n > 1.

mn

Proof. Let d = ged(m,n) (the greatest common divisor of m,n),

let m —1=nqg+r, where 0 <r <n—1, and let 7’ = [mr],. Let

BY(Kpnn) = {{it5es:0<j<m—-10<i<n—1},
B Kpn) = {{m+i}2—0:0<j<m—-1,0<i<n-—1},

Um+44Vj
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and for all [, 3 <[ < q+2, let

BY(Kp.) = {[(1-3)n+j+it1]nt—0 0 < j <m—1,0<i <n—1}

Um+iVj
Consider the following cases:
Case 1. mr +n(n —1) < mn.
In this case, let
Bq+3(Km,n)
i
= {lng+i+|—]|+1n} 0<i<mr—1
(e[ et )
N rd ) 443 . )
U {m+0'+it+|— |+ =] +1n}i 0<i<n®—n-—1},
n n m gt i | 22 1

and let B(K,,,) = U BI(K,,.,).
Case 2. mr + n(n — 1) > mn.

In this case, let

B (Kpy) = {{lan+i+i+ )i :0<j<m—1,0<i<r—1},
m-+iVj

B (Kppn) = {{m+[j+i+1)202:0<j<n-2,0<i<n-1},
JYm—+1

and let B(K,,,) = U BI(K,,.,)-

It is easy to verify that for each of the two cases above, B(K,, ) is
a complete transmitting set of K, ,. Since [{AL, : ALy € B(K;, )} =
mn for all i, 1 <7 < ¢+2, and \{Az_f : Ag?’ € B(Km7n)}]+]{Ag4 :
Ag4 € B(Kpn)} > mn+ 1 when mr + n(n — 1) > mn, by
Lemma 3, B(K,,,) is an optimal transmitting set of K, ,, and
H(EKmn) = {ww in either case. m

mn

5 Double loop network

A double-loop network Z_DZ(a,b) with n being positive integer, 0 <

a<n,0<b<n,and a # b can be viewed as a directed graph

13



with n vertices vg, vy, vs, ..., v,_1 and 2n directed edges of the form
m and m , referred to as a-links and b-links. The under-
lying graph of the directed graph l?n(a; b) is denoted D, (a,b). We
study the transmission number of D,,(1,b) in this section. Note that
D, (1,b) ~ D,(1,n—0b) for all b, 2 < b < n—2. Hence, when consider
the graph D, (1,b), we always assume that 2 < b < ng )

For convenience, when consider the standard message set M =
{m(v;) : 0 <i<n—1} of D,(1,b), we always assume that m(v;) =
{i} for all i, 0 < i < n — 1. A message set M = {m(v;) : 0 <
i <n—1}on D,(1,b) is said to satisfy the p-condition if m(v;) =
{0,1,2, ..., n—11\{[i+1],, [i+2]., .., [i+p]n} foralli,0 <i < n—1.

Lemma 18 If M is a message set on D,(1,b) which satisfies the

p-condition, where 0 < p < 2b — 3, then t(D,(1,b); M) < Pﬂ }

Proof. To prove this, we only need to show that there exists a
(%W—complete transmitting set of D, (1,b) corresponding to M. We
prove this by induction on p. The conclusion clearly holds for p = 0.
For p = 1, let B(D,(1,b)) = {{[i + 2],,1}11}1%—“]; :0< i< n—1}
Then clearly, B(D,(1,b)) is a 1-complete transmitting set of D, (1, b)
corresponding to M. Suppose the conclusion holds for all 1 < p <
k < 2b—3, and M is a message set on D, (1,b) which satisfies the

k-condition. Let

B'(D,(1,0)) = {{[i +k+1].} :0<i<n-1}

" vivita,

U {{i+k+b—1],)1

-
ViVlitblpn

:0<i<n-—1},

and let M" = {m/(v;) : 0 <7 < n—1)}, where m/(v;) = (m1(vi)) B/(Dy(1,0))-
Then, it is easy to see that M’ is a message set on D, (1,b) which
satisfies the (k — 2)-condition. By the induction hypothesis, there

14



exists a [%52]-complete transmitting set B"(D,(1,b)) of D,(1,b)
corresponding to M'. If we let B(D,,(1,b)) = B'(D,(1,b)) U {A%l; :
A . € B"(D,(1,b))}, then, clearly, B(D,(1,b)) is a [%]-complete
transmlttlng set of D, (1,b) corresponding to M. Hence the conclu-
sion also holds for p = k. By the principle of mathematical induction,

the conclusion holds for all p, 0 <p <20 —3. m
Theorem 19 (D, (1,b)) = [251] for alln >5,2<b < |2].

Proof. Let n—1 = (2b — 2)g + r, where 0 < r < 2b — 3, and let
jgo = [j — Up—1 + [ 3] (2b — 2) for all positive integer j. For each i,
0<1<n—1,let

B'(Dy(1,b) = {i}h 1< < (0= 1)g}

Ulit+ipln Vlitip+1ln
U W 11595 0~ o)

and let B'(D,(1,b)) = U}~ B*(D,(1,b)). By the definition of B'(D,,(1,b)),
it is easy to see that all the vertex v;, j € {i, [i+1],, [i+2],,..., [+

(2b —2)q|,,}, owns the message ¢ after the ith transmission step un-

der the transmitting set B'(D,(1,0)). Thus (m@y_1)¢(vi)) 51D, (1)) =
{i,[i+r+1],, [i+r+2,,...,[i+7r+(20-2)¢],} ={0,1,2,...,n—
LIN{[i 4+ 1], [i + 2], ..., i + 7]} forall i, 0 <i<m—1.

Now, if we let m'(v;) = (mp-1)q(v:)) B/ (D) for all 4, 0 < i <
n—1, and let M’ = {m/(v;) : 0 <i <n—1)}, then the message set
M" on D,(1,b) satisfies the r-condition. Hence by Lemma 18, there
exists a [%]-complete transmitting set B”(D,(1,b)) of D,(1,b) cor-
responding to M’. If we let B(D,(1,b)) = B'(D,(1,b))U {A%}%{’*l)q :
Aim? € B"(D,(1,b))}, then, B(D,(1,b)) is a complete transmitting
set of D,,(1,b) corresponding to M with Ap(p, 1)) = (b—1)g+[%] =
(b—1)g+ {%-‘ = [22] . Hence t(D,(1,b)) < [%] . Since

2
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|E(D,(1,b))| = 2n, by Lemma 2, we also have ¢(D,(1,b)) > [251].
Thus t(D,(1,b)) = [%52]| foralln >5,2<b < [%]. m
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