國 立 政 治 大 學 應 用 數 學 系數 學 教 學 碩士在 職 專 班碩士學位論文

圖形的訊息傳遞問題
 Message Transmission Problems of Graphs

碩專班學生：余銘芬 撰
指導教授：郭大衛 博士
李陽明 博士
中華民國一百 年 七月九日

日 水 保

謝辭 II
中文摘要 III
英文摘要 IV
1．Introduction 1
2．Preliminary 3
3．Trees 6
4．Complete bipartite graphs 12
5．Double loop networks 13
6．References 16

謝 辭

在大學畢業五年後再次重新回到校園念書，其實心裡是很㤐忈不安的，還好一路上總是得到許多貴人的相助，讓我能夠順利的完成學業。

首先要特別感謝我的指導教授郭大衛老師在論文的研究過程中給予我的指導及協助。郭老師是我大學時期的導師，從大學開始，老師就常常提供他客觀的意見並耐心地指導我，老師的鼓勵與關心使我在求學的過程中備感溫暖。

我也要感謝我的指導教授李陽明老師，在政大修業的過程中，李老師除了課程的教學外，還常常分享了許多人生的經驗與道理，未來將會記住老師所諄諄教誨的話語。

另外，我要感謝參與我論文口試的張宜武老師，不吝提出寶貴的建議，讓這篇論文更加完善。

還要感謝真理大學的蔡馬良老師，蔡老師在我撰寫論文過程中有疑惑時，總能適時給我建議，及時解除我的困惑，讓我由陰霾中重見曙光 \circ 還有我的大學兼研究所同學怡君貼心的協助，在修業的過程中，怡君總是不吝嗇將她所知的告訴我，彼此相互扶持共同成長，能夠擁有妳這位好友，是我人生中最開心的事情。

最後，要特別感謝我的父母親一路給我的鼓勵與支持，謝謝我親愛的家人們默默一直陪在我的身邊。還有，我的老公思源，謝謝你給我的打氣加油。未來我亦當兢兢業業於教書上，期能貢獻所學，回饋給我的學生，以表達我最為誠摯的感謝之意。

中文摘要

給定一個圖形 G ，以及集合 $M=\{m(v): v \in V(G)\}, ~ M$ 為一描述圖形 G 中各點擁有訊息之情形的集合。圖形 G 相對於 M 的的傳遞數是指，於最短時間內，讓圖形中全部點皆獲得所有種類之訊息，並將符號記為 $t(G ; M)$ 。傳遞過程中每個時間單位將受到下列限制：
（1）圖形上的每個點只能與自己相鄰的點交換訊息。
（2）兩個相鄰的點在每個單位時間裡至多只能交換一個訊息。

我們希望可以找到在最短的時間裡完成傳遞的方法，也就是讓圖形 G 中的每一個點都獲得所有種類之訊息，我們稱此類型問題為訊息傳遞問題。

在本論文中，給定一個圖形 G ，且圖形 G 中每個點的訊息只有一個，G 中任兩點的訊息都不會相同，符號 $t(G)$ 代表完成傳遞所需最少的時間單位。我們給定圖形的傳遞數的上界與下界，並且定出一套公式計算樹圖，完全二部圖及雙環網路圖的傳遞數

關鍵詞：傳遞數，傳遞集，樹圖，完全二部圖，雙環網路

Message Transmission Problems of Graphs

Ming-Fen Yu

Abstract

Given a graph G together with a set $M=\{m(v): v \in V(G)\}$, the transmission number of G corresponding to M, denoted by $t(G ; M)$, is the minimum number of time needed to complete the transmission, that is, to let all the vertices in G know all the messages in $\bigcup_{v \in V(G)} m(v)$, subject to the constraints that at each time unit, each vertex can interchange messages with all its neighbors, but the number of messages that two vertices can interchange at each time unit is at most one. We want to find the minimum number of time units required to complete the transmission, that is, to let all the vertices in G know all the messages. We call such a problem the message transmission problem. Given a graph G, the transmission number of G, denoted $t(G)$, is the minimum number of time units required to complete the transmission, under the condition that $|m(v)|=1$ for all v in $V(G)$ and $m(u) \neq m(v)$ for all distinct vertices u, v in $V(G)$, and $M=\{m(v): v \in V(G)\}$. In this thesis, we give upper and lower bounds for the transmission number of G, and give formulas to compute the transmission numbers of trees, complete bipartite graphs and double loop networks.

Keywords:transmission number, transmitting set, tree, complete bipartite graph, double loop network.

1 Introduction

Given a connected graph G, consider the following message transmission problem defined on G : Assume that each vertex v in G owns a set of messages $m(v)(m(v)$ could be an empty set) at the beginning, and $M=\left\{m\left(v_{i}\right): 1 \leq i \leq n\right\}$. At each time unit, each vertex can interchange messages with its neighbors. For $A \subseteq \bigcup_{v \in V(G)} m(v)$, we use $A_{\overrightarrow{u v}}^{i}$ to denote that at the i th time unit, u send all the messages in A to v, and call $A_{\overrightarrow{u v}}^{i}$ a call. A set of calls $B(G)$ is said to be a transmitting set of G corresponding to M (or, simply, a transmitting set of G if M need not to be specified) if for each $A_{\overrightarrow{u v}}^{i} \in B(G), A \subseteq(\cup\{B: B \overrightarrow{w u} \in B(G)$, $1 \leq l \leq i-1\}) \cup m(u)$. For a transmitting set $B(G)$ of G, we use $\Delta_{B(G)}$ to denote the number $\max \left\{i: A_{\overrightarrow{u v}}^{i} \in B(G)\right\}$, and for all v in $V(G)$ and all $i, 1 \leq i \leq \Delta_{B(G)}$, we use $\left(m_{i}(v)\right)_{B(G)}$ to denote the set $\left(\cup\left\{A: A_{\overrightarrow{u v}}^{l} \in B(G), 1 \leq l \leq i\right\}\right) \cup m(v)$. If $B(G)$ is the only transmitting set we considered, we use $m_{i}(v)$ to replace $\left(m_{i}(v)\right)_{B(G)}$ for short.

A transmitting set $B(G)$ of G corresponding to M is called a complete transmitting set of G corresponding to M if $\left(m_{\Delta_{B(G)}}(v)\right)_{B(G)}=$ $\bigcup_{w \in V(G)} m(w)$ for all $v \in V(G)$. A complete transmitting set of G corresponding to M is called a k-complete transmitting set of G corresponding to M if $\Delta_{B(G)}=k$. If $B(G)$ is a k-complete transmitting set of G corresponding to M, then we use $b(G ; M ; B(G))$ to denote the number $\Delta_{B(G)}$. And we let $b(G ; M)=\min \{b(G ; M ; B(G))$: $B(G)$ is a complete transmitting set of G corresponding to $M\}$.

Chang et al.[1] consider the transmission problem under the restriction that at each time unit, each vertex can interchange mes-
sages with at most one of its neighbors, and the number of messages they can interchange is bounded by a constant k. They called such a problem a bounded- k broadcasting problem. This kind of problem can be viewed as a generalization of both the broadcasting problem and the gossiping problem. Most of the different variations of the broadcasting problem are bounded-1 broadcasting problem with special initial states. For example, the general broadcasting problem is equivalent to the bounded-1 broadcasting problem under the initial conditions $|m(v)|=1$ for some $v \in V(G)$, and $m(u)=\emptyset$ for all $u \neq v$. Hedetniemi and Hedetniemi [9] considered the bounded-1 broadcasting problem with the initial conditions $m(v)=\{a\}$ for all $v \in S \subseteq V(G)$, and $m(u)=\emptyset$ for all $u \neq v$. They called this the multiple originator broadcasting problem of G. Chinn, Hedetniemi, and Mitchell [3] and Farley [5] introduced the multiple message broadcasting problem of G, which can be viewed as the bounded- 1 broadcasting problem of G with the initial conditions $|m(v)|=l$ for some $l \geq 1$ and some v in $V(G)$, and $m(u)=\emptyset$ for all $u \neq v$. It is easy to see that bounded- k broadcasting problem of a graph G under the initial conditions $k \geq|V(G)|,|m(v)|=1$ for all $v \in V(G)$, and $m(u) \cap m(v)=\emptyset$ for all $u \neq v$, is equivalent to the well-known gossiping problem of the graph G.

We consider the message transmission problem under the restriction that at each time unit, each vertex can interchange messages with all its neighbors, but the number of messages they can interchange is bound by one, in this thesis. To distinguish this with the general message transmission problem, we use $t(G ; M ; B(G))$ and $t(G ; M)$ to replace the numbers $b(G ; M ; B(G))$ and $b(G ; M)$, respectively. A message set $M=\{m(v): v \in V(G)\}$ on G is
called a standard message set if $|m(v)|=1$ for all v in $V(G)$ and $m(u) \neq m(v)$ for all distinct vertices u, v in $V(G)$. Given a graph G, the transmission number of G, denoted $t(G)$, is the number $t(G ; M)$, where M is the standard message set on G. We give upper and lower bounds for the transmission number of graphs in Section two, and give formulas to compute the transmission number of trees and complete bipartite graphs in Section three and four. And, in the last section, we present some results for the transmission number of double loop networks.

2 Preliminary

We give some basic properties for the transmission number of graphs in this section. From now on, when consider a transmitting set $B(G)$ of G, if $A_{\overparen{u v}}^{i} \in B(G)$ and $j \in A$, we always assume that $j \notin$ $\left(m_{i-1}(v)\right)_{B(G)}$. And, when consider the graphs K_{n} and C_{n}, we always assume that $V\left(K_{n}\right)=V\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $m\left(v_{i}\right)=\{i\}$ for all $i, 0 \leq i \leq n-1$. The following lemma is easy to verify.

Lemma 1 If H is a/spanning subgraph of a graph G, then $t(G) \leq$ $t(H)$.

Lemma 2 For any graph G with $|V(G)|=n$ and $|E(G)|=m$, $t(G) \geq\left\lceil\frac{n(n-1)}{m}\right\rceil$.

Proof. The total number of messages need to be transmitted is $n(n-1)$. Since at most m messages can be transmitted at each time unit, the result follows.

Lemma 3 For any graph G with $|V(G)|=n$ and $|E(G)|=m$, if $B(G)$ is a k-complete transmitting set of G such that $\mid\left\{A_{\overrightarrow{u v}}^{i}: A_{\overrightarrow{u v}}^{i} \in\right.$
$B(G)\} \mid=m$ for all $i, 1 \leq i \leq r<k$, and $\sum_{j=r+1}^{k} \mid\left\{A_{\overrightarrow{u v}}^{j}: A_{\overrightarrow{u v}}^{j} \in\right.$ $B(G)\} \mid \geq(k-r-1) m+1$, then $B(G)$ is an optimal transmitting set of G, and $t(G)=\left\lceil\frac{n(n-1)}{m}\right\rceil$.

Proof. Since $\left|\left\{A_{\overrightarrow{u v}}^{i}: A_{\overrightarrow{u v}}^{i} \in B(G)\right\}\right|=m$ for all $i, 1 \leq i \leq r<k$, and $\sum_{j=r+1}^{k}\left|\left\{A_{\overrightarrow{u v}}^{j}: A_{\overrightarrow{u v}}^{j} \in B(G)\right\}\right| \geq(k-r-1) m+1, n(n-1) \geq$ $r m+(k-r-1) m+1=(k-1) m+1$. Hence $t(G) \geq\left\lceil\frac{n(n-1)}{m}\right\rceil \geq$ $\left\lceil\frac{(k-1) m+1}{m}\right\rceil=k$ by Lemma 2. Therefore, since $B(G)$ is a k-complete transmitting set of $G, B(G)$ is an optimal transmitting set of G and $t(G)=k=\left\lceil\frac{n(n-1)}{m}\right\rceil$.

Lemma 4 Given a graph G with $|V(G)|=n$, if uv is a cut-edge of G and G_{1}, G_{2} are components of $G-u v$ containing u, v, respectively, then

$$
t(G) \geq n+\min \left\{\max _{w \in V\left(G_{1}\right)} d_{G_{1}}(u, w), \max _{w \in V\left(G_{2}\right)} d_{G_{2}}(v, w)\right\}
$$

Proof. Let $B(G)$ be an optimal transmitting set of G. Note that since $u v$ is a cut-edge of G, every message in $\cup_{v \in V(G)} m(v)$ must pass through $u v$ at some transmitting step. If in $B(G), a$ is the last message in $\cup_{v \in V(G)} m(v)$ that pass through $u v$, then there exists k, $k \geq n$, such that $\{a\}_{\overrightarrow{u v}}^{k} \in B(G)$ or $\{a\}_{\overrightarrow{v u}}^{k} \in B(G)$. If $\{a\}_{\overrightarrow{u v}}^{k} \in B(G)$, and x is a vertex in G_{2} such that $d_{G_{2}}(v, x)=\max _{w \in V\left(G_{2}\right)} d_{G_{2}}(v, w)$, then there exists a vertex y and a number k^{\prime}, such that $\{a\}_{\overrightarrow{y x}}^{k^{\prime}} \in$ $B(G)$. Clearly, $k^{\prime} \geq k+d_{G_{2}}(v, x)$. Thus $t(G)=\Delta_{B(G)} \geq k^{\prime} \geq$ $k+d_{G_{2}}(v, x) \geq n+\max _{w \in V\left(G_{2}\right)} d_{G_{2}}(v, w)$ in this case. By a similar argument, $t(G) \geq n+\max _{w \in V\left(G_{1}\right)} d_{G_{1}}(u, w)$ if $\{a\}_{\overrightarrow{v u}}^{k} \in B(G)$. Hence $t(G) \geq n+\min \left\{\max _{w \in V\left(G_{1}\right)} d_{G_{1}}(u, w), \max _{w \in V\left(G_{2}\right)} d_{G_{2}}(v, w)\right\}$.

Theorem $5 t\left(K_{n}\right)=2$ for all $n \geq 2$.

Proof. Consider the transmitting set $B\left(K_{n}\right)$ of K_{n}, defined by $B\left(K_{n}\right)=\{\{j\} \xrightarrow[\overrightarrow{v_{j} v_{k}}]{1}: 0 \leq j<k \leq n-1\} \cup\left\{\{k\}_{\overrightarrow{v_{k} v_{j}}}^{2}: 0 \leq\right.$ $j<k \leq n-1\}$. Since each vertex v_{i} received all the messages in $\{0,1, \ldots, i-1\}$ at the first time unit, and received all the messages in $\{i+1, i+2, \ldots, n-1\}$ at the second time unit, $B\left(K_{n}\right)$ is a 2-complete transmitting set of K_{n}. Thus $t\left(K_{n}\right) \leq 2$. By Lemma 2, we also have $t\left(K_{n}\right) \geq\left\lceil\frac{n(n-1)}{\left|E\left(K_{n}\right)\right|}\right\rceil \geq 2$. Hence $t\left(K_{n}\right)=2$ for all $n \geq 2$.

Theorem $6 t(G) \geq 2$ for any graph G with $|V(G)| \geq 2$. And equality holds only if $G=K_{n}, n \geq 2$.

Proof. $t(G) \geq 2$ for any graph G with $|V(G)| \geq 2$ follows from Lemma 2. Note that the equality does not hold if $|E(G)|<\frac{n(n-1)}{2}$. Hence by Theorem $5, t(G)=2$ if and only if $G=K_{n}, n \geq 2$.

From now on, for convenience, we use the notation $[k]_{n}$ to denote the number $(k \bmod n)$.

Theorem $7 t\left(C_{n}\right)=n-1$ for all $n \geq 3$.

Proof. Consider the transmitting set $B\left(C_{n}\right)$ of C_{n}, defined by $\left.B\left(C_{n}\right)=\left\{\left\{[j+i-1]_{n}\right\}\right\}_{v_{j} v_{[j+1] n}}^{i / \cap}: 1 \leq i \leq n-1,0 \leq j \leq n-1\right\}$. Since each vertex v_{j} received the message $[j-i]_{n}$ at the i th time unit, $\left(m_{n-1}\left(v_{i}\right)\right)_{B\left(C_{n}\right)}=\{0,1,2, \cdots, n-1\}$ for each vertex v_{i}. Hence $B\left(C_{n}\right)$ is an $(n-1)$-complete transmitting set of C_{n}, and so $t\left(C_{n}\right) \leq$ $n-1$. By Lemma 2, we also have $t\left(C_{n}\right) \geq\left\lceil\frac{n(n-1)}{\left|E\left(C_{n}\right)\right|}\right\rceil \geq n-1$. Hence $t\left(C_{n}\right)=n-1$ for all $n \geq 3$.

3 Trees

A rooted tree is a tree with one vertex chosen as the root. We use T_{v} to denote a tree T rooted at v. The height $h\left(T_{v}\right)$ of T_{v} is defined by $h\left(T_{v}\right)=\max \{d(v, w): w \in V(T)\}$. A vertex w in T_{v} is said to be in level i, denoted $l(w)=i$, if $d(v, w)=i$, and we let $L_{j}\left(T_{v}\right)=\{u \in V(T): d(v, u)=j\}$ for all $j, 0 \leq j \leq h\left(T_{v}\right)$. If $v_{i} \in N(v)$, we use $T_{v_{i}}$ to denote the subtree of T_{v} rooted at v_{i}. If u is a vertex in a rooted tree T_{v} and $u \neq v$, we use u_{f} to denote the father of u in T_{v}.

Given a tree T together with a message set $M=\{m(u): u \in$ $V(T)\}$, if T^{\prime} is a subtree of T, then the message set restrict on T^{\prime}, denoted $\left.M\right|_{T^{\prime}}$, is defined by $\left.M\right|_{T^{\prime}}=\left\{m(u): u \in V\left(T^{\prime}\right)\right\}$. If $B(T)$ is a transmitting set of T corresponding to M, we use $M_{B(T)}$ to denote the message set $\left\{m^{\prime}(u): u \in V(T)\right\}$, where $m^{\prime}(u)=m_{\Delta_{B(T)}}(u)$ for all $u \in V(T)$.

Given a rooted tree T_{v} with $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, together with a message set $M=\left\{m(u): u \in V\left(T_{v}\right)\right\}$ on T_{v}. We say that M satisfies the message decreasing property if $m(w) \subseteq m\left(w_{f}\right)$ for all $w \in V\left(T_{v}\right), w \neq v$, and $|m(u)| \geq|m(v)|-i$ for all $u \in L_{i}\left(T_{v}\right)$. And we say that M satisfies the k-extended message decreasing property if for each $i, 1 \leq i \leq r,\left|m(v) \backslash m\left(v_{i}\right)\right|=k$, and the message set $\left.M\right|_{T_{v_{i}}}$ on $T_{v_{i}}$ satisfies the message decreasing property. A message set M is said to satisfies the k-total message decreasing property if M satisfies the k-extended message decreasing property and $m\left(v_{i}\right) \subseteq m(v)$ for all $i, 1 \leq i \leq r$.

Lemma 8 Given a rooted tree T_{v} together with a message set $M=$ $\left\{m(u): u \in V\left(T_{v}\right)\right\}$. If M satisfies the message decreasing property,
then there exists a transmitting set $B\left(T_{v}\right)$, such that $\Delta_{B\left(T_{v}\right)}=1$, $m_{1}(w) \subseteq m_{1}\left(w_{f}\right)$ for all $w \in V\left(T_{v}\right), w \neq v$, and $\left|m_{1}(u)\right| \geq|m(v)|-$ $i+1$ for all $u \in L_{i}\left(T_{v}\right), i \geq 1$.

Proof. Choose $a_{w} \in m\left(w_{f}\right) \backslash m(w)$ for each $w \in V\left(T_{v}\right)-\{v\}$ with $m(w) \neq m\left(w_{f}\right)$, and let $B\left(T_{v}\right)=\left\{\left\{a_{w}\right\}_{\overrightarrow{w_{f} w}}^{1}: w \in V\left(T_{v}\right)-\{v\}\right.$ and $\left.m(w) \neq m\left(w_{f}\right)\right\}$. Then, clearly, $\Delta_{B\left(T_{v}\right)}=1$, and $m_{1}(w) \subseteq m_{1}\left(w_{f}\right)$ for all $w \in V\left(T_{v}\right), w \neq v$. Note that for each $w \in V\left(T_{v}\right)-\{v\}$ with $|m(w)|=|m(v)|-l(w)$, we have $\left|m_{1}(w)\right|=|m(w)|+1=$ $|m(v)|-l(w)+1$. Hence $\left|m_{1}(u)\right| \geq|m(v)|-i+1$ for all $u \in L_{i}\left(T_{v}\right)$, $i \geq 1$.

Lemma 9 Given a rooted tree T_{v} together with a message set $M=$ $\left\{m(u): u \in V\left(T_{v}\right)\right\}$. If M satisfies the message decreasing property, then $t\left(T_{v} ; M\right) \leq h\left(T_{v}\right)$.

Proof. We prove this by induction on the heights of the rooted trees. The conclusion clearly holds for all rooted trees of height 1 . Suppose it holds for all rooted trees of height less than or equal to k, and let T_{v} be a rooted tree of height $k+1$. Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, Since M satisfies the message decreasing property, by Lemma 8, there exists a transmitting set $B^{\prime}\left(T_{v}\right)$, such that $\Delta_{B^{\prime}\left(T_{v}\right)}=1,\left(m_{1}(w)\right)_{B^{\prime}\left(T_{v}\right)} \subseteq$ $m_{1}\left(w_{f}\right)_{B^{\prime}\left(T_{v}\right)}$ for all $w \in V\left(T_{v}\right), w \neq v$, and $\left|\left(m_{1}(u)\right)_{B^{\prime}\left(T_{v}\right)}\right| \geq$ $|m(v)|-i+1$ for all $u \in L_{i}\left(T_{v}\right), i \geq 1$. Let $m^{\prime}(w)=\left(m_{1}(w)\right)_{B^{\prime}\left(T_{v}\right)}$ for all $w \in V\left(T_{v}\right)$, and let $M_{B^{\prime}\left(T_{v}\right)}=\left\{m^{\prime}(u): u \in V\left(T_{v}\right)\right\}$. Since for each $i, 1 \leq i \leq r, h\left(T_{v_{i}}\right) \leq k$, and the message set $\left.M_{B^{\prime}\left(T_{v}\right)}\right|_{T_{v_{i}}}$ of $T_{v_{i}}$ satisfies the message decreasing property, there exists a k-complete transmitting set $B_{i}\left(T_{v_{i}}\right)$ of $T_{v_{i}}$. Let $B\left(T_{v}\right)=B^{\prime}\left(T_{v}\right) \cup\left\{A_{\overrightarrow{w u}}^{j+1}: A_{\overrightarrow{w u}}^{j} \in\right.$ $B_{i}\left(T_{v_{i}}\right)$ for some $\left.i, 1 \leq i \leq r\right\}$. Then, clearly, $B\left(T_{v}\right)$ is a $(k+1)$ -
complete transmitting set of T_{v}. Hence $t\left(T_{v} ; M\right) \leq k+1$, which complete the induction.

Lemma 10 Given a rooted tree T_{v} with $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, if $M=\left\{m(u): u \in V\left(T_{v}\right)\right\}$ is a massage set on T_{v} which satisfies the k-extended message decreasing property, then there exists a transmitting set $B\left(T_{v}\right)$ of T_{v} such that $\Delta_{B\left(T_{v}\right)}=l \leq k$, and the message set $M_{B\left(T_{v}\right)}$ satisfies the $(k-l)$-extended message decreasing property.

Proof. We prove this by induction on l. The conclusion clearly holds for $l=0$. Suppose it holds for all $0 \leq l<p$. Let $M=$ $\left\{m(u): u \in V\left(T_{v}\right)\right\}$ be a massage set on T_{v} which satisfies the k extended message decreasing property. Choose $a_{w} \in m\left(w_{f}\right) \backslash m(w)$ for each $w \in V\left(T_{v}\right)-\{v\}$ with $m(w) \neq m\left(w_{f}\right)$, and let $B^{\prime}\left(T_{v}\right)=$ $\left\{\left\{a_{w}\right\}_{\overrightarrow{w_{f} w}}^{1}: w \in V\left(T_{v}\right)-\{v\}\right.$ and $\left.m(w) \neq m\left(w_{f}\right)\right\}$. Then, clearly, the message set $M^{\prime}=M_{B^{\prime}\left(T_{v}\right)}$ of T_{v} satisfies the $(k-1)$-extended message decreasing property. By the induction hypothesis, there exists a transmitting set $B^{\prime \prime}\left(T_{v}\right)$ of T_{v} corresponding to M^{\prime}, such that $\Delta_{B^{\prime \prime}\left(T_{v}\right)}=p-1$, and the message set $M_{B^{\prime \prime}\left(T_{v}\right)}^{\prime}$ satisfies the $(k-p)$-extended message decreasing property, If we let $B\left(T_{v}\right)=$ $B^{\prime}\left(T_{v}\right) \cup\left\{A_{\overrightarrow{w u}}^{j+1}: A_{\overrightarrow{w u}}^{j} \in B^{\prime \prime}\left(T_{v}\right)\right\}$, then clearly, $\Delta_{B\left(T_{v}\right)}=p$, and the message set $M_{B\left(T_{v}\right)}$ satisfies the $(k-p)$-extended message decreasing property. Hence the conclusion also holds for $l=p$. By the principle of mathematical induction, the conclusion holds for all $0 \leq l \leq k$.

Lemma 11 Given a rooted tree T_{v} together with a message set $M=$ $\left\{m(u): u \in V\left(T_{v}\right)\right\}$ on T_{v}. If M satisfies the k-total message decreasing property and $|m(v)|=n$, then there exists a $\left(k+h\left(T_{v}\right)-1\right)$ complete transmitting set $B\left(T_{v}\right)$ of T_{v} corresponding to M, such that
$\left|\left(m_{k-1+i}(w)\right)_{B\left(T_{v}\right)}\right| \geq \min \{n, n-l(w)+i\}$ and $\left(m_{k-1+i}(w)\right)_{B\left(T_{v}\right)} \subseteq$ $\left(m_{k-1+i}\left(w_{f}\right)\right)_{B\left(T_{v}\right)}$ for all $w \neq v$ in $V\left(T_{v}\right)$ and all $i, 0 \leq i \leq h\left(T_{v}\right)$.

Proof. Since M satisfies the k-extended message decreasing property, by Lemma 10, there exists a transmitting set $B^{\prime}\left(T_{v}\right)$ of T_{v} such that $\Delta_{B^{\prime}\left(T_{v}\right)}=k-1$, and the message set $M_{B^{\prime}\left(T_{v}\right)}$ satisfies the 1-extended message decreasing property. Thus, since M satisfies the k-total message decreasing property and $|m(v)|=n$, the message set M^{\prime} on T_{v}, defined by $M^{\prime}=\left\{m^{\prime}(u): u \in V\left(T_{v}\right)\right\}$, where $m^{\prime}(u)=\left(m_{k-1}(u)\right)_{B^{\prime}\left(T_{v}\right)}$ for all u in $V\left(T_{v}\right)$, satisfies the message decreasing property. Hence by Lemma 9 and its proof, there exists a $h\left(T_{v}\right)$-complete transmitting set $B^{\prime \prime}\left(T_{v}\right)$ of T_{v} corresponding to M^{\prime}, such that for all $w \neq v$ in $V(T)$ and all $i, 0 \leq i \leq$ $h\left(T_{v}\right),\left|\left(m_{i}^{\prime}(w)\right)_{B^{\prime \prime}\left(T_{v}\right)}\right| \geq \min \{n, n-l(w)+i\}$, and $\left(m_{i}^{\prime}(w)\right)_{B^{\prime \prime}\left(T_{v}\right)} \subseteq$ $\left(m_{i}^{\prime}\left(w_{f}\right)\right)_{B^{\prime \prime}\left(T_{v}\right)}$. If we let $B\left(T_{v}\right)=B^{\prime}\left(T_{v}\right) \cup\left\{A_{\overrightarrow{u w}}^{k-1+j}: A_{\overrightarrow{u w}}^{j} \in B^{\prime \prime}\left(T_{v}\right)\right\}$, then clearly, by the definition of $B^{\prime}\left(T_{v}\right)$ and $B^{\prime \prime}\left(T_{v}\right), B\left(T_{v}\right)$ is a $(k+$ $h\left(T_{v}\right)-1$)-complete transmitting set of T_{v} corresponding to M, such that $\left|\left(m_{k-1+i}(w)\right)_{B\left(T_{v}\right)}\right| \geq \min \{n, n-l(w)+i\}$ and $\left(m_{k-1+i}(w)\right)_{B\left(T_{v}\right)} \subseteq$ $\left(m_{k-1+i}\left(w_{f}\right)\right)_{B\left(T_{v}\right)}$ for all $w \neq v$ in $V\left(T_{v}\right)$ and all $i, 0 \leq i \leq h\left(T_{v}\right)$.

From now on, in convenience, when consider a rooted tree T_{v} with $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, we always assume that $\left|V\left(T_{v_{1}}\right)\right| \geq$ $\left|V\left(T_{v_{2}}\right)\right| \geq \cdots \geq\left|V\left(T_{v_{r}}\right)\right|$, and let $n_{i}=\left|V\left(T_{v_{i}}\right)\right|$ for all $i, 1 \leq i \leq r$, $n=\left|V\left(T_{v}\right)\right|=1+n_{1}+n_{2}+\cdots+n_{r}$. For a rooted tree T_{v} together with a standard message set M, a complete transmitting set $B\left(T_{v}\right)$ of T_{v} is called a good transmitting set if it satisfies the following conditions.
(1) $\Delta_{B\left(T_{v}\right)}=n+h\left(T_{v}\right)-1$.
(2) $\left|\left(m_{i}(v)\right)_{B\left(T_{v}\right)}\right| \geq i+1$ for all $i, 0 \leq i \leq n-1$.
(3) For all $w \neq v$ in $V\left(T_{v}\right)$ and all $i, 0 \leq i \leq h\left(T_{v}\right),\left|\left(m_{n-1+i}(w)\right)_{B\left(T_{v}\right)}\right| \geq$ $\min \{n, n-l(w)+i\}$, and $\left(m_{n-1+i}(w)\right)_{B\left(T_{v}\right)} \subseteq\left(m_{n-1+i}\left(w_{f}\right)\right)_{B\left(T_{v}\right)}$.

Lemma 12 Every rooted tree T_{v} with a standard message set $M=$ $\left\{m(u): u \in V\left(T_{v}\right)\right\}$ has a good transmitting set.

Proof. We prove this by induction on the order k of the rooted tree. The conclusion clearly holds for $k=1,2$. Suppose it holds for all $2 \leq k<n$, and T_{v} be a rooted tree with n vertices. Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. For each $i, 1 \leq i \leq r$, let $T_{v_{i}}^{*}$ be the subtree induced by $V\left(T_{v_{i}}\right) \cup\{v\}$, which is rooted at v. Since each of the rooted subtrees $T_{v_{1}}, T_{v_{2}}^{*}, T_{v_{3}}^{*}, \ldots, T_{v_{r}}^{*}$ has fewer than n vertices, by the induction hypothesis, there is a good transmitting set $B_{1}\left(T_{v_{1}}\right)$ of $T_{v_{1}}$, and for each $i, 2 \leq i \leq r$, there is a good transmitting set $B_{i}\left(T_{v_{i}}^{*}\right)$ of $T_{v_{i}}^{*}$.

Let $m\left(v_{1}\right)=a_{1}$. For each $j, 1 \leq j \leq n_{1}-1$, choose an element a_{j+1} from $m_{j}\left(v_{1}\right)-\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$ if $a_{1}, a_{2}, \ldots, a_{j}$ are all determined. Let $B_{11}\left(T_{v_{1}}\right)=\left\{A_{\overrightarrow{u w}}^{j} \in B_{1}\left(T_{v_{1}}\right): 1 \leq j \leq n_{1}\right\}$. For all $i, 2 \leq i \leq r$, let $B_{i 1}\left(T_{v_{i}}^{*}\right)=\left\{A_{\overline{u w}}^{j} \in B_{i}\left(T_{v_{i}}^{*}\right): 1 \leq j \leq n_{i}\right\}$, and let M_{i}^{\prime} be the message set on $T_{v_{i}}^{*}$ defined by $\left\{m^{\prime}(w): w \in V\left(T_{v_{i}}^{*}\right)\right\}$, where $m^{\prime}(w)=$ $\left(m_{n_{i}}(w)\right)_{B_{i}\left(T_{v_{i}}^{*}\right)}$ and $m^{\prime}(v)=\left\{a_{1}, a_{2}, \ldots, a_{n_{1}}\right\}$. Since for each $i, 2 \leq$ $i \leq r, B_{i}\left(T_{v_{i}}^{*}\right)$ is a good transmitting set of $T_{v_{i}}^{*}, M_{i}^{\prime}$ is a message set on $T_{v_{i}}^{*}$ which satisfies the n_{1}-extended message decreasing property. By Lemma 10, for each $i, 2 \leq i \leq r$, there exists a transmitting set $B_{i 2}\left(T_{v_{i}}^{*}\right)$ of $T_{v_{i}}^{*}$ corresponding to M_{i}^{\prime} such that $\Delta_{B_{i 2}\left(T_{v_{i}}^{*}\right)}=n_{1}-n_{i}$, and the message set $\left(M_{i}^{\prime}\right)_{B_{i 2}\left(T_{v_{i}}^{*}\right)}$ satisfies the n_{i}-extended message decreasing property. Let $B_{i 2}^{\prime}\left(T_{v_{i}}^{*}\right)=\left\{A_{\overrightarrow{u w}}^{n_{i}+j}: A_{\overrightarrow{u w}}^{j} \in B_{i 2}\left(T_{v_{i}}^{*}\right)\right\}$, and let $B^{\prime}\left(T_{v}\right)$ be the transmitting set of T_{v} corresponding to M defined
by $B^{\prime}\left(T_{v}\right)=B_{11}\left(T_{v_{1}}\right) \cup\left(\cup_{i=2}^{r} B_{i 1}\left(T_{v_{i}}^{*}\right)\right) \cup\left(\cup_{i=2}^{r} B_{i 2}^{\prime}\left(T_{v_{i}}^{*}\right)\right) \cup\left\{\left\{a_{j}\right\}_{\overrightarrow{v_{1} v}}^{j}: 1 \leq\right.$ $\left.j \leq n_{1}\right\}$. If $M^{\prime \prime}$ is the message set on T_{v} defined by $M^{\prime \prime}=\left\{m^{\prime \prime}(w)\right.$: $\left.w \in V\left(T_{v}\right)\right\}$, where $m^{\prime \prime}(w)=\left(m_{n_{1}}(w)\right)_{B^{\prime}\left(T_{v}\right)}$, then, by the definition of $B_{11}\left(T_{v_{1}}\right), B_{i 1}\left(T_{v_{i}}^{*}\right)$ and $B_{i 2}^{\prime}\left(T_{v_{i}}^{*}\right), M^{\prime \prime}$ satisfies the $\left(n-n_{1}\right)$-total message decreasing property and $|m(v)|=n$. Hence by Lemma 11, there exists a $\left(n-n_{1}+h\left(T_{v}\right)-1\right)$-complete transmitting set $B^{\prime \prime}\left(T_{v}\right)$ of T_{v} corresponding to $M^{\prime \prime}$ such that $\left|\left(m_{n-n_{1}-1+i}(w)\right)_{B\left(T_{v}\right)}\right| \geq \min \{n$, $n-l(w)+i\}$ and $\left(m_{n-n_{1}-1+i}(w)\right)_{B\left(T_{v}\right)} \subseteq\left(m_{n-n_{1}-1+i}\left(w_{f}\right)\right)_{B\left(T_{v}\right)}$ for all $w \neq v$ in $V\left(T_{v}\right)$ and all $i, 0 \leq i \leq h\left(T_{v}\right)$.

Now, let $B\left(T_{v}\right)=B^{\prime}\left(T_{v}\right) \cup\left\{A_{\vec{u} \vec{w}}^{n_{1}+j}: A_{\vec{u}}^{j} \in B^{\prime \prime}\left(T_{v}\right)\right\}$. Then, by the definition of $B^{\prime}\left(T_{v}\right)$ and $B^{\prime \prime}\left(T_{v}\right), B\left(T_{v}\right)$ is an α-complete transmitting set of T_{v} corresponding to M, where $\alpha=n_{1}+\left(n-n_{1}+h\left(T_{v}\right)-1\right)=$ $n+h\left(T_{v}\right)-1,\left|\left(m_{i}(v)\right)_{B\left(T_{v}\right)}\right| \geq i+1$ for all $i, 0 \leq i \leq n-1$, and $\left|\left(m_{n-1+i}(w)\right)_{B\left(T_{v}\right)}\right| \geq \min \{n, n-l(w)+i\},\left(m_{n-1+i}(w)\right)_{B\left(T_{v}\right)} \subseteq$ $\left(m_{n-1+i}\left(w_{f}\right)\right)_{B\left(T_{v}\right)}$ for all $w \neq v$ in $V\left(T_{v}\right)$ and all $i, 0 \leq i \leq h\left(T_{v}\right)$. Hence $B\left(T_{v}\right)$ is a good transmitting set of T_{v}, and so the conclusion also holds for $k=n$. By the principle of mathematical induction, every rooted tree T_{v} with a standard message set $M=\{m(u): u \in$ $\left.V\left(T_{v}\right)\right\}$ has a good transmitting set.

Theorem 13 For any tree T with $|V(T)|=n \geq 2$.

$$
t(T)=n+\operatorname{rad}(T)-1
$$

Proof. Choose a vertex v in the center, and consider the rooted tree T_{v}. By lemma 12, there exists a $\left(n+h\left(T_{v}\right)-1\right)$-complete transmitting set $B\left(T_{v}\right)$ of T_{v}. Hence $t(T) \leq \Delta_{B\left(T_{v}\right)}=n+h\left(T_{v}\right)-1$. Since v is a vertex in the center, $h\left(T_{v}\right)=\operatorname{rad}(T)$, thus $t(T) \leq n+\operatorname{rad}(T)-1$. To prove the lower bound, consider a vertex w in $V\left(T_{v}\right)$ with $d(v, w)=$ $\operatorname{rad}(T)$, and let T_{u} be a rooted subtree of T_{v} containing w which
is rooted at a vertex u in $N(v)$. Then, by Lemma $4, t(T) \geq n+$ $d(u, w)=n+\operatorname{rad}(T)-1$. Hence $t(T)=n+\operatorname{rad}(T)-1$ for any tree T with $|V(T)|=n \geq 2$.

Corollary $14 t\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$ for all $n \geq 2$.
Combining Lemma 1 and Theorem 13, we have
Theorem 15 For any graph G with $|V(G)| \geq 2, t(G) \leq|V(G)|+$ $\operatorname{rad}(G)-1$.

If $u v$ is a cut-edge of G, then we use $\alpha(u, v)$ to denote the number $\min \left\{\max _{w \in V\left(G_{1}\right)} d_{G_{1}}(u, w), \max _{w \in V\left(G_{2}\right)} d_{G_{2}}(v, w)\right\}$, where G_{1}, G_{2} are components of $G-u v$ containing u, v, respectively. By lemma 4 and Lemma 12, we have

Theorem 16 If G is a graph with cut-edges, then $t(G)=|V(G)|+$ $\max \{\alpha(u, v): u v$ is a cut-edge of $G\}-1$.

4 Complete bipartite graphs

We study the transmission number of complete bipartite graphs in this section. For convenience, when consider the complete bipartite graph $K_{m, n}, m \geq n$, we always assume that $V\left(K_{m, n}\right)=\left\{v_{i}: 0 \leq i \leq\right.$ $m+n-1\}, E\left(K_{m, n}\right)=\left\{v_{i} v_{j}: 0 \leq i \leq m-1, m \leq j \leq m+n-1\right\}$, and $m\left(v_{i}\right)=\{i\}$ for all $i, 0 \leq i \leq m+n-1$.

Theorem $17 t\left(K_{m, n}\right)=\left\lceil\frac{(m+n)(m+n-1)}{m n}\right\rceil$ for all $m \geq n \geq 1$.
Proof. Let $d=\operatorname{gcd}(m, n)$ (the greatest common divisor of m, n), let $m-1=n q+r$, where $0 \leq r \leq n-1$, and let $r^{\prime}=[m r]_{n}$. Let

$$
\begin{aligned}
B^{1}\left(K_{m, n}\right) & =\left\{\{j\} \frac{1}{\overrightarrow{v_{j} v_{m+i}}}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\} \\
B^{2}\left(K_{m, n}\right) & =\left\{\{m+i\}_{\overrightarrow{v_{m+i} v_{j}}}^{2}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\}
\end{aligned}
$$

and for all $l, 3 \leq l \leq q+2$, let

$$
B^{l}\left(K_{m, n}\right)=\left\{\left\{[(l-3) n+j+i+1]_{m}\right\}_{v_{m+i} v_{j}}^{l}: 0 \leq j \leq m-1,0 \leq i \leq n-1\right\} .
$$

Consider the following cases:
Case 1. $m r+n(n-1) \leq m n$.
In this case, let

$$
\begin{aligned}
& B^{q+3}\left(K_{m, n}\right) \\
= & \left\{\left\{\left[n q+i+\left\lfloor\frac{i}{m}\right\rfloor+1\right] m\right\} \frac{q+3}{v_{m+\left[i+\left\lfloor\frac{i d}{m n}\right\rfloor\right]_{n}}^{v_{[i] m}}}: 0 \leq i \leq m r-1\right\} \\
\cup & \left\{\left\{m+\left[r^{\prime}+i+\left\lfloor\frac{r d}{n}\right\rfloor+\left\lfloor\frac{i}{n}\right\rfloor+1\right]_{n}\right\}_{\overline{\left.v_{[i]}\right]^{\prime} v_{m+\left[r^{\prime}+i+\left\lfloor\frac{r d}{n}\right\rfloor\right] n}^{q+3}}}^{\left.q+0 \leq i \leq n^{2}-n-1\right\},}\right.
\end{aligned}
$$

and let $B\left(K_{m, n}\right)=\cup_{i=1}^{q+3} B^{i}\left(K_{m, n}\right)$.
Case 2. $m r+n(n-1)>m n$.
In this case, let
$B^{q+3}\left(K_{m, n}\right)=\left\{\left\{[q n+j+i+1]_{m}\right\}_{\overline{v_{m+i}}{ }^{q+3}}^{q_{j}}: 0 \leq j \leq m-1,0 \leq i \leq r-1\right\}$,
$B^{q+4}\left(K_{m, n}\right)=\left\{\left\{m+[j+i+1]_{n}\right\} \frac{q+4}{\bar{v}_{j} v_{m+i}}: 0 \leq j \leq n-2,0 \leq i \leq n-1\right\}$,
and let $B\left(K_{m, n}\right)=\cup_{i=1}^{q+4} B^{i}\left(K_{m, n}\right)$.
It is easy to verify that for each of the two cases above, $B\left(K_{m, n}\right)$ is a complete transmitting set of $K_{m, n}$. Since $\left|\left\{A_{\overrightarrow{u v}}^{i}: A_{\vec{u} v}^{i} \in B\left(K_{m, n}\right)\right\}\right|=$ $m n$ for all $i, 1 \leq i \leq q+2$, and $\left|\left\{A_{\overrightarrow{u v}}^{q+3}: A_{\overrightarrow{u v}}^{q+3} \in B\left(K_{m, n}\right)\right\}\right|+\mid\left\{A_{\overrightarrow{u v}}^{q+4}:\right.$ $\left.A_{\vec{u} \vec{v}}^{q+4} \in B\left(K_{m, n}\right)\right\} \mid \geq m n+1$ when $m r+n(n-1)>m n$, by Lemma $3, B\left(K_{m, n}\right)$ is an optimal transmitting set of $K_{m, n}$, and $t\left(K_{m, n}\right)=\left\lceil\frac{(m+n)(m+n-1)}{m n}\right\rceil$ in either case.

5 Double loop network

A double-loop network $\overrightarrow{D_{n}}(a, b)$ with n being positive integer, $0<$ $a<n, 0<b<n$, and $a \neq b$ can be viewed as a directed graph
with n vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}$ and $2 n$ directed edges of the form $\overrightarrow{v_{i} v_{[i+a]_{n}}}$ and $\overrightarrow{v_{i} v_{[i+b]_{n}}}$, referred to as a-links and b-links. The underlying graph of the directed graph $\overrightarrow{D_{n}}(a ; b)$ is denoted $D_{n}(a, b)$. We study the transmission number of $D_{n}(1, b)$ in this section. Note that $D_{n}(1, b) \simeq D_{n}(1, n-b)$ for all $b, 2 \leq b \leq n-2$. Hence, when consider the graph $D_{n}(1, b)$, we always assume that $2 \leq b \leq\left\lfloor\frac{n}{2}\right\rfloor$.

For convenience, when consider the standard message set $M=$ $\left\{m\left(v_{i}\right): 0 \leq i \leq n-1\right\}$ of $D_{n}(1, b)$, we always assume that $m\left(v_{i}\right)=$ $\{i\}$ for all $i, 0 \leq i \leq n-1$. A message set $M=\left\{m\left(v_{i}\right): 0 \leq\right.$ $i \leq n-1\}$ on $D_{n}(1, b)$ is said to satisfy the \bar{p}-condition if $m\left(v_{i}\right)=$ $\{0,1,2, \ldots, n-1\} \backslash\left\{[i+1]_{n},[i+2]_{n}, \ldots,[i+p]_{n}\right\}$ for all $i, 0 \leq i \leq n-1$.

Lemma 18 If M is a message set on $D_{n}(1, b)$ which satisfies the p-condition, where $0 \leq p \leq 2 b-3$, then $t\left(D_{n}(1, b) ; M\right) \leq\left\lceil\frac{p}{2}\right\rceil$.

Proof. To prove this, we only need to show that there exists a $\left\lceil\frac{p}{2}\right\rceil$-complete transmitting set of $D_{n}(1, b)$ corresponding to M. We prove this by induction on p. The conclusion clearly holds for $p=0$. For $p=1$, let $B\left(D_{n}(1, b)\right)=\left\{\left\{[i+2]_{n}\right\} \frac{1}{v_{i} v_{[i+1]_{n}}}: 0 \leq i \leq n-1\right\}$. Then clearly, $B\left(D_{n}(1, b)\right)$ is a 1-complete transmitting set of $D_{n}(1, b)$ corresponding to M. Suppose the conclusion holds for all $1 \leq p<$ $k \leq 2 b-3$, and M is a message set on $D_{n}(1, b)$ which satisfies the k-condition. Let

$$
\begin{aligned}
B^{\prime}\left(D_{n}(1, b)\right) & =\left\{\left\{[i+k+1]_{n}\right\} \frac{1}{v_{i} v_{[i+1]_{n}}}: 0 \leq i \leq n-1\right\} \\
& \cup\left\{\left\{[i+k+b-1]_{n}\right\}_{\overrightarrow{v_{i} v_{[i+b] n}}}^{1}: 0 \leq i \leq n-1\right\},
\end{aligned}
$$

and let $\left.M^{\prime}=\left\{m^{\prime}\left(v_{i}\right): 0 \leq i \leq n-1\right)\right\}$, where $m^{\prime}\left(v_{i}\right)=\left(m_{1}\left(v_{i}\right)\right)_{B^{\prime}\left(D_{n}(1, b)\right)}$. Then, it is easy to see that M^{\prime} is a message set on $D_{n}(1, b)$ which satisfies the $(k-2)$-condition. By the induction hypothesis, there
exists a $\left\lceil\frac{k-2}{2}\right\rceil$-complete transmitting set $B^{\prime \prime}\left(D_{n}(1, b)\right)$ of $D_{n}(1, b)$ corresponding to M^{\prime}. If we let $B\left(D_{n}(1, b)\right)=B^{\prime}\left(D_{n}(1, b)\right) \cup\left\{A_{\bar{v}_{i} v_{j}}^{l+1}\right.$: $\left.A_{\overrightarrow{v_{i} v_{j}}}^{l} \in B^{\prime \prime}\left(D_{n}(1, b)\right)\right\}$, then, clearly, $B\left(D_{n}(1, b)\right)$ is a $\left\lceil\frac{k}{2}\right\rceil$-complete transmitting set of $D_{n}(1, b)$ corresponding to M. Hence the conclusion also holds for $p=k$. By the principle of mathematical induction, the conclusion holds for all $p, 0 \leq p \leq 2 b-3$.

Theorem $19 t\left(D_{n}(1, b)\right)=\left\lceil\frac{n-1}{2}\right\rceil$ for all $n \geq 5,2 \leq b \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Let $n-1=(2 b-2) q+r$, where $0 \leq r \leq 2 b-3$, and let $j_{b}=[j-1]_{b-1}+\left\lfloor\frac{j-1}{b-1}\right\rfloor(2 b-2)$ for all positive integer j. For each i, $0 \leq i \leq n-1$, let

$$
\begin{aligned}
B^{i}\left(D_{n}(1, b)\right)= & \left\{\{i\}_{\overline{v_{\left[i+j_{b l n}\right.} v_{\left[i+j_{b}+1\right] n}}}: 1 \leq j \leq(b-1) q\right\} \\
& \cup\left\{\{i\}_{\overline{v_{\left[i+j_{b}\right] n}} v_{\left[i+j_{b}+b\right] n}}^{j}: 1 \leq j \leq(b-1) q\right\},
\end{aligned}
$$

and let $B^{\prime}\left(D_{n}(1, b)\right)=\cup_{i=0}^{n-1} B^{i}\left(D_{n}(1, b)\right)$. By the definition of $B^{i}\left(D_{n}(1, b)\right)$, it is easy to see that all the vertex $v_{j}, j \in\left\{i,[i+1]_{n},[i+2]_{n}, \ldots,[i+\right.$ $\left.(2 b-2) q]_{n}\right\}$, owns the message i after the i th transmission step under the transmitting set $B^{\prime}\left(D_{n}(1, b)\right)$. Thus $\left(m_{(b-1) q}\left(v_{i}\right)\right)_{B^{\prime}\left(D_{n}(1, b)\right)}=$ $\left\{i,[i+r+1]_{n},[i+r+2]_{n}, \ldots,[i+r+(2 b-2) q]_{n}\right\}=\{0,1,2, \ldots, n-$ $1\} \backslash\left\{[i+1]_{n},[i+2]_{n}, \ldots,[i+r]_{n}\right\}$ for all $i, 0 \leq i \leq n-1$.

Now, if we let $m^{\prime}\left(v_{i}\right)=\left(m_{(b-1) q}\left(v_{i}\right)\right)_{B^{\prime}\left(D_{n}(1, b)\right)}$ for all $i, 0 \leq i \leq$ $n-1$, and let $\left.M^{\prime}=\left\{m^{\prime}\left(v_{i}\right): 0 \leq i \leq n-1\right)\right\}$, then the message set M^{\prime} on $D_{n}(1, b)$ satisfies the r-condition. Hence by Lemma 18, there exists a $\left\lceil\frac{r}{2}\right\rceil$-complete transmitting set $B^{\prime \prime}\left(D_{n}(1, b)\right)$ of $D_{n}(1, b)$ corresponding to M^{\prime}. If we let $B\left(D_{n}(1, b)\right)=B^{\prime}\left(D_{n}(1, b)\right) \cup\left\{A_{\overrightarrow{v_{i} v_{j}}}^{l+(b-1) q}\right.$: $\left.A_{\overrightarrow{v_{i} v_{j}}}^{l} \in B^{\prime \prime}\left(D_{n}(1, b)\right)\right\}$, then, $B\left(D_{n}(1, b)\right)$ is a complete transmitting set of $D_{n}(1, b)$ corresponding to M with $\Delta_{B\left(D_{n}(1, b)\right)}=(b-1) q+\left\lceil\frac{r}{2}\right\rceil=$ $(b-1) q+\left\lceil\frac{n-(2 b-2) q-1}{2}\right\rceil=\left\lceil\frac{n-1}{2}\right\rceil$. Hence $t\left(D_{n}(1, b)\right) \leq\left\lceil\frac{n-1}{2}\right\rceil$. Since
$\left|E\left(D_{n}(1, b)\right)\right|=2 n$, by Lemma 2, we also have $t\left(D_{n}(1, b)\right) \geq\left\lceil\frac{n-1}{2}\right\rceil$. Thus $t\left(D_{n}(1, b)\right)=\left\lceil\frac{n-1}{2}\right\rceil$ for all $n \geq 5,2 \leq b \leq\left\lfloor\frac{n}{2}\right\rfloor$.

References

[1] C. W. Chang, D. Kuo and C. H. Li, "Generalized broadcasting and gossiping problem of graphs". preprint.
[2] M. L. Chia, D. Kuo and M. F. Tung, The multiple originator broadcasting problem in graphs, Disc. Appl. Math. 155 (2007) 1188-1199.
[3] P. Chinn, S. Hedetniemi and S. Mitchell, "Multiple-message broadcasting in complete graphs". In Proc. Tenth SE Conf. on Combinatorics, Graph Theory and Computing. Utilitas Mathematica, Winnipeg, 1979, pp. 251-260.
[4] E. J. Cockayne and A. Thomason, "Optimal multi-message broadcasting in complete graphs". In Proc. Eleventh SE Conf. on Combinatorics, Graph Theory and Computing. Utilitas Mathematica, Winnipeg, 1980, pp. 181-199.
[5] A. Farley, "Broadcast time in communication networks". SIAM J. Appl. Math. 39 (1980) 385-390.
[6] A. Farley and S. Hedetniemi, "Broadcasting in grid graphs." In Proc. Ninth SE Conf. on Combinatorics, Graph Theory and Computing. Utilitas Mathematica, Winnipeg, 1987.
[7] A. Farley and A. Proskurowski, "Broadcasting in trees with multiple originators." SIAM J. Alg. Disc. Methods. 2 (1981) 381-386.
[8] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
[9] S. M. Hedetniemi and S. T. Hedetniemi, "Broadcasting by decomposing trees into paths of bounded length". Technical Report CS-TR-79-16, University of Oregon, 1979.
[10] S. M. Hedetniemi, S. T. Hedetniemi and A. L. Liestman, "A Survey of gossiping and broadcasting in communication networks", Networks 18 (1988), 319-349.
[11] P. J. Slater, E. Cockayne and S. T. Hedetniemi, "Information dissemination in trees." SIAM J. Comput. 10 (1981) 692-701.

