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※大學學術追求卓越發展延續計畫執行報告格式  
Explanation for the Form of the Annual/Midterm/Final Report “Program for Promoting 
Academic Excellence of Universities（Phase II）” 
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I  COVER 

II FORM1 BASIC INFORMATION OF THE PROGRAM 

III FORM2 
LIST OF WORKS, EXPENDITURES, MANPOWER, AND MATCHING SUPPORTS FROM THE 

PARTICIPATING INSTITUTES（REALITY）. 

IV FORM3 STATISTICS ON RESEARCH OUTCOMES OF THIS PROGRAM 

V FORM4 EXECUTIVE SUMMARY ON RESEARCH OUTCOMES OF THIS PROGRAM 

VI APPENDIX I MINUTES FROM PROGRAM DISCUSSION MEETINGS 

VII APPENDIX II 

1. PUBLICATION LIST（CONFERENCES, JOURNALS, BOOKS, BOOK CHAPTERS, etc.） 
2. PATENT LIST 
3. INVENTION LIST 
4. LIST OF WORKSHOPS/CONFERENCES HOSTED BY THE PROGRAM 
5. LIST OF PERSONAL ACHIEVEMENTS OF THE PIS 
6. LIST OF TECHNOLOGY TRANSFERS 
7. LIST OF TECHNOLOGY SERVICES 

VIII APPENDIX III LIST OF PUBLICATIONS IN “TOP” JOURNALS AND CONFERENCES 

IX APPENDIX IV SLIDES ON SCIENCE AND TECHNOLOGY BREAKTHROUGHS (TWO SLIDES FOR EACH 
BREAKTHROUGH) 

X APPENDIX V SELF-ASSESSMENT  

 (Add extra lines or columns if needed.) 
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I. COVER 
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匯率預測：估計風險之角色 (3/4) 
 

 Understanding Exchange Rate Predictability: The Role of Estimation Risk (3/4) 
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II. (FORM1)  BASIC INFORMATION OF THE PROGRAM 

Program Title:  匯率預測：估計風險之角色 (3/4) 
             Understanding Exchange Rate Predictability: The Role of Estimation Risk (3/4) 
Serial No.:  NSC 95-2752-H-004 -002 –PAE Affiliation (in English & Chinese) 

Name 郭炳伸 Biing-Shen Kuo Name (in English & Chinese) 

Tel:  (02) 29393091 ext 81029 Tel:  

Fax:  (02) 29387699 Fax:  

Pr
in

ci
pa

l I
nv

es
tig

at
or

 

E-mail  bsku@nccu.edu.tw 

Pr
og

ra
m

 C
oo

rd
in

at
or

 

E-mail  

Expenditures1 (in NT$1,000) Manpower2:Full time/Part time(Person-Months) 
 

Projected Actual Projected Actual 

FY 2006       1052        711          3          3 
   -  - 
  -  - 
  -  - 

Overall       1052        711          3          3 

Serial No. Project Title 
Principal 

Investigator 
Title Affiliation 

Sub-Project 7 

匯率預測：估計風險之角色 
Understanding Exchange Rate 
Predictability: The Role of Estimation 
Risk 

郭炳伸  
Biing-Shen 
Kuo 

教授 
Professor 

國立政治大學

國際貿易學系

National 
Chengchi 
Univ.  

     

     

     

     

Notes: 1,2 Please explain large differences between projected and actual figures. 

 
Program Director/Principle Investigator Signature:  Biing-Shen Kuo                              
 

mailto:bsku@nccu.edu.tw
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III. (FORM 2) LIST OF WORKS, EXPENDITURES, MANPOWER, AND MATCHING SUPPORTS FROM THE PARTICIPATING INSTITUTES（REALITY）. 
 
Serial No.: NSC 95-2752-H-004 -002 -PAE Program Title: 匯率預測：估計風險之角色 Understanding Exchange Rate Predictability: The Role of Estimation Risk  

Expenditures (in NT$1,000) Manpower (person-month) 
Research Item 

(Include sub 

projects) 

Major tasks 

and 

objectives
Salary  

Seminar/ 

Conference-re

lated expenses

Project- related 

expenses 

Cost for 

Hardware & 

Software 

Total 
Principal 

Investigators
Consultants

Research/ 

Teaching 

Personnel

Supporting 

Staff 
Total

Matching Supports from the 

Participating Institutes 

(in English & Chinese) 

 Sub-project 7 

Develop of 

new 

estimators 

and explore 

its 

applications

504 207 0 0 664  1 0 2 0 2  0 

             

             

             

             

             

             

             

             

             

SUM  516 148 0 0 664  1  0  3 0  4  0 
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IV. (FORM 3) STATISTICS ON RESEARCH OUTCOME OF THIS PROGRAM 
 

LISTING TOTAL DOMESTIC INTERNATIONAL SIGNIFICANT1 CITATIONS2 TECHNOLOGY TRANSFER 

JOURNALS             

CONFERENCES            PUBLISHED ARTICLES 

TECHNOLOGY REPORTS             

PENDING        -     
PATENTS 

GRANTED        -     

COPYRIGHTED INVENTIONS ITEM             

ITEM 3  1 2    
WORKSHOPS/CONFERENCES3 

PARTICIPANTS Around 80 Around 40 Around 40    

HOURS         TRAINING COURSES 
（WORKSHOPS/CONFERENCES） PARTICIPANTS         

HONORS/ AWARDS
4         

KEYNOTES GIVEN BY PIS         PERSONAL ACHIEVEMENTS 

EDITOR FOR JOURNALS         

ITEM       

LICENSING FEE       TECHNOLOGY TRANSFERS  

ROYALTY       

  
  
  

  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

INDUSTRY STANDARDS5 ITEM             

ITEM       - - - 
TECHNOLOGICAL SERVICES6 

SERVICE FEE       - - - 
1 Indicate the number of items that are significant. The criterion for “significant” is defined by the PIs of the program. For example, it may refer to Top journals (i.e., those with impact factors in the upper 15%) in the area of research, or 

conferences that are very selective in accepting submitted papers (i.e., at an acceptance rate no greater than 30%). Please specify the criteria in Appendix IV. 
2 Indicate the number of citations. The criterion for “citations” refers to citations by other research teams, i.e., exclude self-citations. 
3 Refers to the workshop and conferences hosted by the program. 
4 Includes Laureate of Nobel Prize, Member of Academia Sinica or equivalent, fellow of major international academic societies, etc. 
5 Refers to industry standards approved by national or international standardization parties that are proposed by PIs of the program. 
6 Refers to research outcomes used to provide technological services, including research and educational programs, to other ministries of the government or professional societies. 
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V. (FORM4)  EXECUTIVE SUMMARY ON RESEARCH OUTCOMES OF THIS PROGRAM 
 

(Please state the followings concisely and clearly) 

1. General Description of the Program: Including Objectives of the Program 

The research attempts to offer econometric explanations to the near random-walk exchange rates. It argues
that previous empirical evidence for or against predictability in exchange rate movements might have been 
considerably flawed by the existence of estimation risk due to the strong persistence in fundamentals. The 
primary goal of the project is in a pursuit of a more reliable inference procedure for the predictability both 
in-sample and out-of-sample by appropriately controlling the estimation risk.   

To achieve the goal, an averaging estimator that combines information optimally both from the univariate 
time series under study and from cross-sectional time series is developed.   
  Another goal of the project for the current year is to explore another form of averaging, particularly in the 
time series context. This is important because for the studies using time series where the data under 
consideration typically do not have a long span, and the regressions are featured by the presence of serial 
correlated errors of unknown forms. We propose another simple averaging estimatior that is able to attain 
efficency gains without the knowledge of autocorrelation in errors.  

 

Breakthroughs and Major Achievements 

Evidence for the exchange rate predictability in the past literature has been mixed. In contrast, the current
project, after controlling the estimation risks, is able to establish a more uniform evidence for the predictability, 
whether the forecasting horizons are short or long. This is somehow remarkable because to our knowledge, little 
evidence for the exchange rate predictability in the short horizons was found in the literature. 

In addition to establishing evidence for the predictability, two major conclusions emerging from part of the 
research so far can be summarized: 1) the magnitude of the estimation risks is so high that the exchange rate 
predictability can be masked even when it exists in the data; 2) The information about exchange rate movements 
from cross-section is valuable in the ways that it can reduce the estimation risk and thus improve the testing 
power for predictability, if it could be exploited effectively as the averaging estimator does.  

The new averaging estimator proposed from the research this year possesses the optimality in the sense that 
the associated mean squared errors (MSE) are found to be no more than the Gauss-Markov bound 
asymptotically, regardless of the degrees of error dependence. Not only this, to implement the proposed 
averaging estimator can not be simpler than adding ordinary least squared estimator (OLS hereafter) and 
first-differencing estimator (FD in brief) together with respective weights that are determined optimally.  

 

2. Categorized Summary of Research Outcomes. The criteria for top conferences and journals should be given and 

introduced briefly in the beginning of this section. In each research area, please give a brief summary on the 

research outcomes associated with the area. Note that the summaries should be consistent with the statistics 

given in Form3. Please list and number each research outcomes in sorted order in Appendix II, and list all the 

publications in top conferences and journals in Appendix III. 

2.1 The development of an avaraging estimator that combines cross-sectional information :  
   An averaging estimator that is to control potential estimation risks associated with the predictive regression



 9

is developed in the first-year study. The sources of the estimation risks comes from high persistence of predictive 
regressors, and the dependent variable being the overlapping sums of short-horizon change in log exchange rate. 
The former creates bias in small-samples and the latter brings forth remarkable estimation variability in 
long-horizon predictions.    

The considered averaging estimator optimally combines two alternative estimators that differ in their bias and
precision characteristics. By construction, the suggested estimator for the slope coefficients utilizes information 
from cross-sections in a similar way that the panel-based estimators do. The implicit assumption underlying the 
use of information from cross-sections for our estimator, however, is very much different from that for the 
panel-based estimators. In contrast, the panel-based estimators are built on the assumption that the slope 
coefficients are all the same for all the cross-sectional countries. On the other hand, the averaging estimator 
allows for separate slope estimate for each cross-section country as the OLS estimator does, but makes use of the 
cross-sectional information that the OLS estimator does not. Thus both the averaging estimator and the pooled 
estimator are the same to reduce the estimation errors, but differ in the way how the cross-sectional information 
is processed. Yet, our averaging estimator has the advantages of producing more reasonable slope estimates.  
2.2 Risk reduction: simulation analysis 
   We examined to what extent the proposed estimator can improve over the traditional estimator in terms of 
risk reduction through simulations. Under the setup that mimics the reality, we documented that the averaging 
estimator empirically dominates the least-square (LS) estimator, regardless of which simulation scenario is 
considered. Virtually the risk reductions using the averaging estimator can be as large as between 10\% and 
35\%, compared with the LS estimator. More importantly, the risk improvement by the averaging estimator is 
embodied further into power gains in testing. Our simulation shows that the power gains from using the 
averaging estimator, again relative to the LS estimator,  is 10% to 30% or more in many cases. An significant 
implication of the finding is simply that the predictability alternative can now be better detected from the data 
when the test statistics are based on the averaging estimator. 
2.3 A re-examination of the exchange rate predictability 
   We re-investigated the empirical validity of the exchange rate predictability applying the averaging
estimator. The testing strategy basically follows that utilized in the literature where these studies all base their
inference on the bootstrap approach in order to control for small-sample bias for which the asymptotic 
approximation generally fails to correct.  
  We accessed the relative forecast accuracy of the two competing models with Theil's U and DM statistics. It 
should be noted that the problem with estimating the long-run variance precisely when calculating the DM 
statistic often leads to spurious inference. Important messages emerging from the empirical exercises include:  

1) There is now much more significant evidence presented for the dominance of the monetary model over the 
random walk when predicting, after accounting for estimation risks using the considered estimator. With only 
few exceptions, the p-values associated with the averaging estimator for both statistics are smaller, relative to 
those associated with the LS estimator. 

2) It stands out from the results that controlling over the risks uncovers more favorable evidence in supports 
of the monetary model, while there is essentially no evidence for so when leaving the risks unattended. Many 
more instances of this are found from the reported Theil’s U statistic. Particularly, at almost all horizons, the
monetary model is found to be superior to the random walk in terms of predictability for Germany and Japan. 
This contrasts sharply with the previous findings where little evidence for predictability is reported. Considering 
the Theil's U statistic is more robust, this evidence lends quite a good deal of credence to the predictability at
both short- and long-horizons. 
2.4 Asymptotic theory for the averaging estimator combining cross-sectional information  

The use of the averaging estimator in testing for exchange rate predictability brings forth some econometric 
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interesting questions. This entails the development of an asymptotic theory of the averaging estimator. We 
invoke a local-to-unity framework to build the asymptotic theory based on the observation with inherent high 
persistence in the data. We are now able to derive the asymptotic distributions of the averaging estimator under 
the simplified assumptions where regression errors are uncorrelated with predicting variables. The asymptotic 
distribution derived is a mixture normal. The mixture normal collapses into the limit distribution of the
least-square estimator, or that of the panel estimator, when either receives zero weights in forming the averaging 
estimator.  
2.5 The development of a new averaging estimator in the time series context  
    The new averaging estimator to attain more efficiency gains than the Gauss-Markov bound is formed by 
combining OLS with FD. Indeed each of the aforementioned estimators provides some particular information 
regarding the regression parameters of concern for the cases where it works well. OLS performs more 
satisfactorily when the autocorrelation in errors is mild, while FD goes another direction. Since the degree of 
autocorrelation in errors is unknown, determining which estimator to adopt amounts to a bet on two extremes. 
However, our averaging estimator is obtained by optimally combining the two specific estimators, and is found to 
have smaller estimation risks than either of the two estimators that is to combined. Specifically, the averaging 
estimator is obtained by associating both OLS and FD with respective weights. The weights are however 
determined such that the asymptotic MSE for the averaging estimator is minimized. It should be emphasized 
that while consisting of both the estimators that are linear by construction, the averaging estimator is 
nevertheless non-linear. Intuitively it is such the non-linearity nature that the proposed averaging estimator can 
gain more efficiency than the Gauss-Markov bound, defined for the family of linear estimators. Further, our 
simulation results show that the averaging estimator is much preferred when information about the degrees of 
persistence in regression errors is unknown. The numerical evidence concurs on the theoretical predictions of the 
estimator.      

3. Program Management: the Mechanism for Promoting Collaboration and Integration among the Institutes Involved

The mini conference held at Academia Sinica in Jan 2007, and Feb 2008 exposed me to the ideas contributed 
by other principle investigators of different sub-projects. Admittedly I learned quite a bit from these team 
partners. Some of the work and results were intriguing. Importantly, I found that there should have more links 
to each other among sub-projects than it used to project.  

The study on the averaging estimator in time series context was presented at the third mini conference in 
August 2008, Academia Sinica. While the research is the only study that falls into the category of econometrtic 
theory, a few important observations and comments regarding the idea of the averaging estimator were made by 
conference participants, probably because of its intuitive appealing.  These observations and comments turn out 
to be the focal points for future research for the year to come. It will be detailed somehow in the following 
section.  
 

4. A Summary of the Post-Program Plan（Including the Detailed Description of Budget and Plan Adjustment of the 

next year）  

There are two potential directions that can be after for future research. The first is to apply the averaging
notion to panel data where the estimation suffers bias and inefficiency due to, again, short span of realizations in 
time horizons, as in typical time series. The lack of efficiency in estimations for typical panel data is well known. 
Worse is the bias problem when dynamic panel data is under study. With lag dependent variables as explanatory 
regressors, the autoregressive coefficients have been long known to be biased downwards, as in the conventional 
auto-regressions. While the averaging may well be applied to the panel context for the purposes of efficiency 
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gains and bias reductions, work along the line will prove to be very challenging and time-demanding, due to the 
the complications arising from the dimensionality of the panel data.   

Another important work is to explore the possible link of the averaging estimators to the family of the GMM 
estimator. This is a very reasonable and interesting inquiry because the averaging estimator is in fact made up of 
the two estimators, OLS and FD, which can be obtained by method of moments, individually. Therefore, the 
averaging estimator in essence should share some common characteristics with the GMM estimator. The GMM 
estimators arise in the over-identification cases where number of the moment conditions exceeds that of the 
parameters to be estimated. Information from various moments is thus combined with the use of an appropriate 
weighting matrix where the respective contribution from each moment is taken into account. The respective 
weight associated with OLS and FD in the averaging estimator proposed depends on the contribution of each 
combined estimator. The two estimators differ from each other by their objective functions. The GMM 
estimators are developed to minimize the squared difference between the true moments and the estimated ones, 
while the averaging estimator is obtained when the associated mean squared error is minimized. It proves 
worthwhile to examine how the two types of the estimators differ in terms of their statistical properties. Of the
properties of major interest is to investigate whether the weighting schemes in the averaging estimator could help 
understand and thus improve the poor small sample performance of the GMM estimators due to ill calculations 
of the corresponding weighting matrix. This subtlety will be one of important focal points for future research.   

 

5. International Cooperation Activities (Optional) 

Prof. Bruce Hansen of University of Wisconsin at Madison has been working on the averaging estimator 
around the same time as the research got started. One of his first papers along the line got published in a recent 
issue of Econometrica and Journal of Econometrics, marking research on the averaging estimator a potential
important direction to move in the future. Possible research collaborations with him in terms of visiting him 
would greatly help improve the exposition of my research.  
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VI. APPENDIX I: MINUTES FROM PROGRAM DISCUSSION MEETINGS 
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VII. APPENDIX II:  
 
1. PUBLICATION LIST（CONFERENCES, JOURNALS, BOOKS, BOOK CHAPTERS, etc.） 

 
DOING JUSTICE TO FUNDAMENTALS IN EXCHANGE RATE FORECASTING: A CONTROL OVER 
ESTIMATION RISKS, PRESENTED IN NORTH AMERICAN SUMMER MEETING OF ECONOMETRIC 
SOCIETY, JUNE 2007, DUKE UNIVERSITY, USA; AND EUROPEAN SUMMER MEETING OF 
ECONOMETRIC SOCIETY, AUGUST 2007, BUDAPEST, HUNGARY.   
 

2. PATENT LIST 
3. INVENTION LIST 
4. LIST OF WORKSHOPS/CONFERENCES HOSTED BY THE PROGRAM 
5. LIST OF PERSONAL ACHIEVEMENTS OF THE PIS 
6. LIST OF TECHNOLOGY TRANSFERS 
7. LIST OF TECHNOLOGY SERVICES 
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VIII. APPENDIX III: LIST OF PUBLICATIONS IN “TOP” JOURNALS AND CONFERENCES 
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IX. APPENDIX IV: SLIDES ON SCIENCE AND TECHNOLOGY BREAKTHROUGHS  
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Program for Promoting Academic Excellence of Universities（Phase II） 
Midterm ASSESSMENT 

PROGRAM/Sub-project TITLE:  AVERAGING TO IMPROVE EFFICIENCY IN TIME SERIES CONTEXT 

 ASSESSMENT SUBJECT 
SCORE 

（1~5, LOW TO HIGH） 

Importance & Innovation of the Program’s Major Tasks 4 

Clarity and Presentation of the Report 3 

Viability of the Program’s Approaches & Methodologies 4 

Principal Investigator’s Competence for Leading the Program 4 

Interface & Integration between Overall & Sub-Project(s) 3 

Interface & Integration among All Sub-Projects 3 
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Manpower & Expenditures 4 

Contribution in Enhancing the Institute’s International Academic Standing 4 
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Impact on Advancing Teaching or on Technology Development 4 

Total Score 33 
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Averaging to Improve Efficiency in Time

Series Regressions

February 17, 2009

Abstract

This paper proposes a simple averaging estimator to increase the efficiency of the
regression coefficient estimates, relative to the usual ordinary least squares (OLS), es-
timator when the error term having nonparametric autocorrelation.

Key words: averaging estimator; time series regression
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1 Introduction

Consider the regression model consisting of stationary time series processes as follows:

Ct = γ + Z>
t β + εt, t = 1, 2, . . . , n, (1)

where γ represents a scalar finite constant, Zt is a (K×1) random vector whose j-th element

is Zt,j, and β is a (K × 1) non-stochastic vector of unknown regression coefficients to be esti-

mated and tested. Adaptive estimation method based on an approximate frequency-domain

generalized least squares (GLS) has been considered by Hannan (1963) for the model in (1)

when εt is a short memory process with nonparametric autocorrelation. The methodology of

Hannan (1963) has been extended by Hannan (1965), Hannan and Terrell (1972, 1973), and

Robinson (1976) to other interesting econometric models. Robinson and Hidalgo (1997) and

Hidalgo and Robinson (2002) further apply the frequency-domain method of Hannan (1963)

to the cases where εt and Zt can be long memory processes.

The most well-known time-domain method for the model in (1) surely is the usual ordinary

least squares (OLS) estimator. The OLS estimator basically cannot achieve Gauss-Markov

bound when ε is not an independently identically distributed (i.i.d.) process. Thus, GLS-

type method has been proposed to increase the efficiency of the regression coefficient estimate

when εt admits a specific parametric form. For example, the Cochrane and Orcutt (1949) es-

timator requires εt as an autoregressive process of order 1, or AR(1). Some authors, including

Maeshiro (1976), Chipman (1979), and Krämer (1982) and references therein, suggest that

the first-differenced (FD) estimator can be an approximation to the GLS estimator when es-

timating the coefficient of the linear trend. When εt having nonparametric autocorrelation,

however, we do not have a clear understanding about the relative performance of the OLS

and FD estimators in estimating β. In this paper we thus fill the gap of literature by sug-

gesting a time-domain semiparametric Stein-like (SPSL) estimator advocated in Judge and

Mittelhammer (2004) to increase the efficiency of the regression coefficient estimate relative

to both the OLS and FD estimators for the model in (1) where Zt and εt are stationary

processes admitting nonparametric autorrelation.

The proposed SPSL estimator is a linear combination of the OLS and the FD estimator.

The SPSL estimator is risk superior to the OLS and FD estimator in MSE under suitable

regularity conditions outlined in Judge and Mittelhammer (2004). The simulations reveal

2



that the finite sample power performance of the proposed shrinkage estimator are 99% more

powerful than that of OLS and FD estimator, respectively, when the sample is 100?. When

sample size increase, the percentages become ?.

2 Main statistics

With a sample of size n and define ST1:T2 as the sample mean of the random variable St from

t = T1 to t = T2, the usual OLS estimator for the model in (1) is:

β̂n,OLS =

[
n∑

t=1

(Zt − Z1:n)Z>
t

]−1 n∑
t=1

(
Zt − Z1:n

)
Ct. (2)

Define 4 = 1 − L, where L is the usual lag operator (Lxt = xt−1), the FD estimator for

the model in (1) is computed as:

β̂n,FD =

[
n∑

t=2

(
4Zt −4Z2:n

)
4Z>

t

]−1 n∑
t=2

(
4Zt −4Z2:n

)
4Ct. (3)

We compute the shrinkage estimator as follows:

β̂ = ŵ β̂2:n,OLS + (1 − ŵ)β̂n,FD, (4)

where

β̂2:n,OLS =

[
n∑

t=2

(Zt − Z2:n)Z>
t

]−1 n∑
t=2

(
Zt − Z2:n

)
Ct, (5)

and ŵ is the weight estimated from the data. The choice of observations used for estimation

is to ensure that the sample sizes used for the OLS and FD estimators are compatible. The

theoretical foundation of calculating ŵ will be discussed later.

Similar to the arguments in Judge and Mittelhammer (2004, p. 480), the proposed SPSL

estimator, β̂, can reduce the estimation risks for the time series regression model in (1),

because it has a smaller expected quadratic risk than the OLS estimator. Following Judge

and MIttelhammer (2004), we note that, whenever the OLS and FD estimators are not

perfectly correlated, the optimal weighted linear combination estimator β̂ in (4) will, under

quadratic loss, be superior to the OLS estimator. The estimator β̂ is in the general form of

the Stein rule family of estimators, where shrinkage of the base estimator, OLS, is toward

the alterative estimator, FD. The estimator is drawn toward the alternative estimator when

the variance of the OLS estimator is higher, and drawn toward the OLS estimator when the

3



FD estimator has a higher variance. The combined-models formulation is similar in spirit to

the Bayesian model-averaging method of Hoeting, et al. (1999, 2002). The difference is that

the Bayesian model-average methods are not optimized with respect to any particular loss

function.

We now discuss the asymptotic properties of the shrinkage estimator. Note that

 β̂2:n,OLS

β̂n,FD

 = Q̂n

 n−1
n∑

t=2

(
Zt − Z2:n

)
Ct

n−1
n∑

t=2

(
4Zt −4Z2:n

)
4Ct

 , (6)

where

Q̂n =


[
n−1

n∑
t=2

(Zt − Z2:n)Z>
t

]−1

0

0
[
n−1

n∑
t=2

(
4Zt −4Z2:n

)
4Z>

t

]−1

 . (7)

It follows that n1/2(β̂2:n,OLS − β)

n1/2(β̂n,FD − β)

 = Q̂n

 n−1/2
n∑

t=2

(
Zt − Z2:n

)
εt

n−1/2
n∑

t=2

(
4Zt −4Z2:n

)
4εt

 = Q̂nŶn. (8)

We observe that

Q̂n − Q
p−→ 0, (9)

where Q in (9) is O(1) and uniformly positive definite under suitable regularity conditions.

Under suitable regularity conditions, we can show that Ŷn in (8) is asymptotically dis-

tributed as:

Ŷn ⇒ N

 0

0

 ,

 V11 V12

V >
12 V22

 , (10)

where ⇒ stands for weak convergence. It follows that we have n1/2(β̂2:n,OLS − β)

n1/2(β̂n,FD − β)

 ⇒ N

 0

0

 ,

 VOLS Σ

Σ> VFD

 . (11)

Combining the results in (11) and (2.5) of Judge and Mittelhammer (2004), we compute the

weighting constant as:

w = 1 − tr(VOLS) − tr(Σ)

tr(VOLS) + tr(VFD) − 2 tr(Σ)
. (12)

ŵ is calculated based on the results in (12). As a consequence, the shrinkage estimator β̂ is

asymptotically distributed as:

n1/2(β̂ − β) ⇒ N
(
0, w2VOLS + (1 − w)2VFD + w(1 − w)(Σ + Σ>)

)
. (13)
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The results in (13) can be used to construct a t-ratio statistic for testing the value of β in

(1) based on the asymptotic properties of the shrinkage estimator β̂ in (13).

3 Monte Carlo experiment

This section focuses on the finite sample performance of the shrinkage estimator β̂ as com-

pared to the OLS and FD counterparts for the regression model with stationary regressor

and errors. Without loss of generality, only one regressor is considered in the experiment,

i.e., we assume K = 1 throughout this section. Moreover, γ = 0 is assumed throughout this

section.

We focus on the cases where εt and Zt are both generated as AR(1) processes:

(1 − φεL)εt = vt, (1 − φZL)Zt = wt, (14)

such that vt and wt both are zero-mean normally i.i.d. white noise processes with:

E(v2
t ) = σ2

v , E(w2
t ) = σ2

w. (15)

The value of σ2
v and σ2

w in (41) are chosen to ensure the variance of εt and Zt are both equal

to 1. The values of φε and φZ ranges from 0.1 to 0.9.

In the context of stochastic regressor framework, we generate 5,000 replciation of Zt and

εt based on the following model:

C l
t = β1Z

l
t + εl

t, t = 1, 2, . . . , n, l = 1, 2, . . . , 5000, (16)

where l denotes the l-th replication of the data. β1 can be 1 or 0.9 for investigating the

empirical powers of the shrinkage estimator given that the null hypothesis for β1 is always

tested as:

H0 : β1 = β0 = 1. (17)

We adopt the the long-run variance estimator of Robinson (1998) to implement the shrink-

age estimator and conduct inference for the OLS, FD, and shrinkage estimators, because it

does not involve the difficult choices of kernel function, bandwidth parameter, or lag length

of AR model typically used in the literature. Particularly, V11 in (10) can be estimated with

V̂11:

V̂11 =
(n−1)−1∑

i=−(n−1)+1

(
ĉi,OLS × d̂i,OLS

)
, (18)
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where

ĉi,OLS = (n − 1)−1
∑

2≤t,t+i≤n

et et+i, d̂i,OLS = (n − 1)−1
∑

2≤t,t+i≤n

(Zt − Z2:n)(Zt+i − Z2:n)>,

(19)

and et are the residuals from the OLS estimation:

Ct − C2:n = (Zt − Z2:n)>β̂2:n,OLS + et, t = 2, 3, . . . , n. (20)

Similarly, V22 can be estimated with V̂22:

V̂22 =
(n−1)−1∑

i=−(n−1)+1

(
ĉi,FD × d̂i,FD

)
, (21)

where 
ĉi,FD = (n − 1)−1 ∑

2≤t,t+i≤n
et,FD et+i,FD,

d̂i,FD = (n − 1)−1 ∑
2≤t,t+i≤n

(4Zt − 4Z2:n)(4Zt+i −4Z2:n)>,
(22)

and et,FD are the residuals from the FD estimation:

4Ct −4C2:n =
(
4Zt −4Z2:n

)>
β̂n,FD + et,FD, t = 2, 3, . . . , n. (23)

In a similar vein, V12 in (10) can be estimated with V̂12:

V̂12 =
(n−1)−1∑

i=−(n−1)+1

(
ĉi × d̂i

)
, (24)

such that 
ĉi = (n − 1)−1 ∑

2≤t,t+i≤n
et et+i,FD,

d̂i = (n − 1)−1 ∑
2≤t,t+i≤n

(Zt − Z2:n)(4Zt+i −4Z2:n)>,
(25)

Table 1 contain the RMSE of the OLS, FD, and shrinkage estimators in estimating the

regression coefficient β. The results shows that, for a given value of φZ , the performance of the

OLS estimator deteriorates with the increasing value of φε. This is what we expect because

we note that the OLS estimator achieve the Gauss-Markov bound when the error term is a

Gaussian white noise. On the other hand, the efficiency of the FD estimator improves with

the increasing value of φε. This corresponds to the findings in Chipman (1979) and Krämer

(1982) that the FD estimator is an approximation to the generalized least squares (GLS)

estimator when estimating the coefficient of the linear trend.

6



For ease of comparison, we define RMSEξ as the RMSE of the estimator ξ in estimating

β of the model in (6), and compare the finite sample relative efficiency of OLS estimator to

its shrinkage counterpart as:

relative efficiency of OLS to shrinkage estimator in estimating β =
RMSEOLS

RMSE
β̂

. (26)

The shrinkage estimator is more efficient than the OLS counterpart in estimating β if we find

the ratio in (16) is greater than 1.

Table 2 shows that the shrinkage estimator performs much better than the OLS estimator

for the 81 cases considered in Table 2, especially when φε is larger. Indeed, we only find 10 out

of 81 cases where the OLS can beat the shrinkage estimators when T = 100 . Even within

these 10 cases, the relative efficiency of the OLS estimator as compared to the shrinkage

estimator are very much close to each other, because the ratio are very close to 1. Moreover,

we also find the relative performance of shrinkage estimator as compared to the OLS ones

improves when the sample increases. For example, we now observe 9 out of 81 cases that

the OLS estimator can beat the shrinkage estimator when n = 200. Moreover, there are

only 3 cases that the shrinkage estimator is inferior to the OLS estimator as the sample size

increases to be 400, and the ratios from these 3 cases are very close to 1.

Table 3 shows that the shrinkage estimator also performs much better than the FD esti-

mator when φε is not close to the boundary of 0.9. Indeed, we only find 18 out of 81 cases

where the FD can beat the shrinkage estimators when T = 100. Even within these 18 cases,

the relative efficiency of the OLS estimator as compared to the shrinkage estimator are very

much close to each other. Again, we find the relative performance of shrinkage estimator as

compared to the OLS counterpart improves with an increasing sample size. For example, we

observe only 10 out of 81 cases that the FD estimator outperform the shrinkage one when

T = 200, the ratio are more close to 1 as compared to the case T = 100.

4 Conclusion
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Table 1. RMSE from Estimating the Regression Coefficient β: n = 100

φZ

φε Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 0.104 0.104 0.106 0.105 0.108 0.111 0.114 0.118 0.129
FD 0.122 0.128 0.132 0.139 0.152 0.166 0.191 0.229 0.312
β̂ 0.105 0.105 0.107 0.105 0.109 0.113 0.116 0.120 0.131

0.2 OLS 0.103 0.108 0.108 0.112 0.112 0.115 0.120 0.129 0.144
FD 0.112 0.119 0.124 0.130 0.140 0.158 0.178 0.213 0.299
β̂ 0.101 0.105 0.106 0.109 0.111 0.115 0.119 0.128 0.146

0.3 OLS 0.105 0.107 0.111 0.114 0.119 0.123 0.130 0.137 0.154
FD 0.102 0.109 0.113 0.121 0.131 0.145 0.164 0.197 0.274
β̂ 0.097 0.099 0.102 0.107 0.112 0.117 0.125 0.134 0.151

0.4 OLS 0.107 0.109 0.115 0.120 0.123 0.130 0.138 0.148 0.167
FD 0.095 0.098 0.104 0.114 0.120 0.135 0.154 0.183 0.253
β̂ 0.092 0.094 0.099 0.105 0.109 0.116 0.126 0.138 0.160

0.5 OLS 0.107 0.111 0.116 0.121 0.128 0.139 0.146 0.160 0.179
FD 0.084 0.089 0.094 0.099 0.109 0.120 0.137 0.166 0.234
β̂ 0.083 0.087 0.091 0.095 0.103 0.111 0.121 0.138 0.165

0.6 OLS 0.105 0.112 0.119 0.127 0.135 0.146 0.160 0.177 0.202
FD 0.074 0.078 0.083 0.090 0.096 0.108 0.123 0.147 0.208
β̂ 0.073 0.077 0.081 0.088 0.094 0.104 0.117 0.134 0.169

0.7 OLS 0.106 0.112 0.120 0.133 0.141 0.154 0.169 0.189 0.230
FD 0.062 0.066 0.071 0.077 0.083 0.091 0.104 0.128 0.178
β̂ 0.062 0.065 0.071 0.077 0.082 0.090 0.103 0.123 0.163

0.8 OLS 0.105 0.114 0.125 0.132 0.152 0.164 0.184 0.213 0.261
FD 0.050 0.053 0.058 0.061 0.067 0.073 0.086 0.104 0.147
β̂ 0.050 0.053 0.058 0.061 0.067 0.074 0.086 0.105 0.148

0.9 OLS 0.103 0.112 0.121 0.135 0.150 0.166 0.191 0.228 0.292
FD 0.035 0.037 0.039 0.042 0.045 0.052 0.061 0.072 0.103
β̂ 0.035 0.037 0.039 0.042 0.046 0.053 0.061 0.074 0.109

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1. β̂ is the shrinkage estimator defined in (4).
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Table 2. Relative Efficiency of OLS Estimator to the Shrinkage Counterpart

from Estimating the Regression Coefficient β

φZ

φε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 0.9927 0.9883 0.9927 0.9951 0.9875 0.9850 0.9883 0.9806 0.9853
0.2 1.0225 1.0225 1.0183 1.0201 1.0115 1.0031 1.0011 1.0034 0.9896
0.3 1.0851 1.0784 1.0812 1.0651 1.0592 1.0530 1.0428 1.0258 1.0200
0.4 1.1600 1.1549 1.1638 1.1399 1.1323 1.1271 1.0951 1.0754 1.0445
0.5 1.2903 1.2760 1.2732 1.2810 1.2463 1.2536 1.2088 1.1616 1.0894
0.6 1.4337 1.4530 1.4653 1.4416 1.4432 1.4012 1.3669 1.3200 1.1929
0.7 1.7015 1.7163 1.7066 1.7347 1.7184 1.7189 1.6359 1.5386 1.4060
0.8 2.0998 2.1511 2.1567 2.1750 2.2528 2.2238 2.1449 2.0226 1.7683
0.9 2.9363 3.0215 3.1114 3.1987 3.2812 3.1448 3.1218 3.0856 2.6802

n = 200

0.1 0.9988 0.9964 0.9983 1.0019 0.9965 0.9927 0.9993 0.9944 0.9950
0.2 1.0437 1.0298 1.0283 1.0202 1.0231 1.0200 1.0202 1.0051 0.9990
0.3 1.0900 1.0861 1.0933 1.0746 1.0658 1.0646 1.0515 1.0339 1.0095
0.4 1.1756 1.1680 1.1728 1.1604 1.1461 1.1402 1.1080 1.0811 1.0449
0.5 1.2875 1.2978 1.2954 1.2829 1.2725 1.2300 1.2179 1.1665 1.0916
0.6 1.4653 1.4743 1.4977 1.4716 1.4655 1.4293 1.3958 1.3167 1.2072
0.7 1.6822 1.7379 1.7563 1.7862 1.7523 1.7258 1.6646 1.5688 1.3979
0.8 2.1147 2.2099 2.2650 2.2325 2.2573 2.2542 2.2389 2.1143 1.8576
0.9 3.0284 3.1638 3.2378 3.3515 3.3323 3.3569 3.3152 3.3012 2.9232

n = 400

0.1 1.0040 1.0039 1.0051 1.0031 1.0016 0.9999 0.9998 1.0009 0.9984
0.2 1.0371 1.0379 1.0329 1.0283 1.0270 1.0247 1.0140 1.0145 1.0015
0.3 1.0905 1.0954 1.0891 1.0824 1.0757 1.0794 1.0557 1.0331 1.0241
0.4 1.1620 1.1803 1.1767 1.1758 1.1650 1.1569 1.1240 1.1032 1.0520
0.5 1.3104 1.3126 1.3058 1.2833 1.2833 1.2558 1.2285 1.1557 1.1012
0.6 1.4536 1.4726 1.4863 1.5035 1.4795 1.4403 1.4123 1.3148 1.2021
0.7 1.7533 1.7560 1.7767 1.7674 1.7785 1.7382 1.6775 1.5760 1.3966
0.8 2.1574 2.2205 2.3092 2.2825 2.2976 2.2803 2.2484 2.0852 1.8654
0.9 3.0666 3.1960 3.2935 3.4127 3.4700 3.5189 3.4484 3.3625 3.0185

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1.
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Table 3. Relative Efficiency of FD Estimator to the Shrinkage Counterpart

from Estimating the Regression Coefficient β

φZ

φε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 1.1604 1.2109 1.2357 1.3193 1.3872 1.4704 1.6506 1.9038 2.3840
0.2 1.1093 1.1298 1.1718 1.1904 1.2684 1.3722 1.4948 1.6626 2.0467
0.3 1.0562 1.0946 1.1015 1.1307 1.1749 1.2377 1.3102 1.4724 1.8097
0.4 1.0334 1.0439 1.0538 1.0864 1.1056 1.1694 1.2283 1.3312 1.5780
0.5 1.0119 1.0221 1.0310 1.0470 1.0629 1.0815 1.1299 1.2060 1.4210
0.6 1.0071 1.0067 1.0165 1.0243 1.0267 1.0362 1.0532 1.1012 1.2281
0.7 0.9990 1.0031 1.0063 1.0002 1.0097 1.0127 1.0102 1.0450 1.0899
0.8 0.9984 0.9977 0.9967 0.9993 0.9953 0.9958 1.0014 0.9887 0.9916
0.9 0.9984 0.9962 0.9976 0.9966 0.9920 0.9930 0.9936 0.9791 0.9476

n = 200

0.1 1.1657 1.2067 1.2718 1.3342 1.4258 1.5191 1.7158 1.9365 2.5396
0.2 1.1080 1.1590 1.1801 1.2145 1.2657 1.3631 1.4989 1.6791 2.2373
0.3 1.0684 1.0911 1.1115 1.1383 1.1982 1.2629 1.3544 1.5557 2.0074
0.4 1.0333 1.0579 1.0618 1.0900 1.1254 1.1583 1.2372 1.3816 1.6644
0.5 1.0182 1.0280 1.0360 1.0568 1.0761 1.1048 1.1557 1.2148 1.4661
0.6 1.0113 1.0124 1.0198 1.0231 1.0330 1.0516 1.0695 1.1328 1.2534
0.7 1.0036 1.0025 1.0063 1.0038 1.0119 1.0266 1.0290 1.0614 1.1265
0.8 1.0010 1.0007 0.9987 1.0024 1.0034 1.0052 0.9989 1.0102 1.0415
0.9 0.9985 1.0003 0.9992 0.9991 0.9970 0.9986 0.9969 0.9992 0.9864

n = 400

0.1 1.1759 1.1997 1.2670 1.3370 1.4171 1.5464 1.7130 1.9882 2.6262
0.2 1.1208 1.1496 1.1904 1.2567 1.2944 1.3799 1.5254 1.7701 2.3178
0.3 1.0741 1.0928 1.1180 1.1636 1.2055 1.2606 1.3819 1.5705 2.0247
0.4 1.0470 1.0543 1.0703 1.0997 1.1176 1.1679 1.2432 1.4070 1.7281
0.5 1.0217 1.0339 1.0368 1.0606 1.0651 1.1143 1.1525 1.2538 1.4761
0.6 1.0060 1.0130 1.0239 1.0225 1.0340 1.0552 1.0851 1.1608 1.3101
0.7 1.0023 1.0077 1.0115 1.0100 1.0138 1.0231 1.0389 1.0636 1.1613
0.8 1.0018 1.0032 0.9989 1.0052 1.0064 1.0039 1.0158 1.0177 1.0582
0.9 1.0001 0.9999 0.9997 0.9993 1.0002 0.9990 0.9995 1.0016 1.0038

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1.
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Table 4. Rejection Percentages of the Shrinkage Estimator under the Null

φZ

φε n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 100 7.02 6.88 6.96 6.44 6.96 7.44 8.00 8.04 10.66
200 6.12 6.02 5.70 6.02 5.88 6.36 6.32 6.82 8.24
400 5.14 6.04 5.54 5.40 5.66 5.88 5.86 6.22 7.34

0.2 100 6.60 7.26 6.60 6.46 7.06 7.10 7.70 8.66 11.24
200 5.60 5.44 5.88 6.22 6.66 6.18 6.88 6.68 7.94
400 5.32 5.58 5.26 5.32 5.96 5.24 6.02 6.28 6.98

0.3 100 6.86 6.38 6.38 6.60 7.06 7.28 7.96 8.48 9.80
200 5.98 5.40 5.54 6.10 5.84 6.26 6.66 7.12 7.84
400 5.10 5.16 5.28 5.08 4.94 5.54 5.64 6.20 7.00

0.4 100 7.08 6.50 6.60 6.62 6.58 6.78 8.06 9.00 11.06
200 5.82 6.10 6.08 5.54 5.76 6.38 6.22 6.90 8.16
400 5.22 5.02 5.22 5.22 5.28 5.32 5.76 5.80 6.48

0.5 100 6.38 6.20 6.74 6.02 7.04 6.76 7.48 8.26 10.48
200 5.84 5.88 5.74 5.60 5.40 6.28 5.92 7.04 8.36
400 4.82 4.66 5.58 5.14 5.58 5.40 6.06 6.18 6.56

0.6 100 5.58 6.30 6.32 6.50 6.40 6.76 7.78 8.38 10.48
200 5.24 5.34 5.52 5.56 5.62 5.60 6.18 6.84 8.62
400 5.82 5.26 5.32 5.08 5.16 5.56 4.98 5.78 6.74

0.7 100 6.02 5.54 5.88 6.82 5.84 5.88 6.78 7.80 10.30
200 5.60 5.66 5.78 5.94 5.80 5.30 6.32 6.66 8.20
400 5.00 5.12 5.08 5.72 5.32 5.74 5.80 5.78 5.98

0.8 100 6.20 6.00 6.52 5.94 6.10 5.88 6.16 7.36 9.78
200 5.58 5.12 5.36 5.84 5.78 5.16 5.72 5.44 6.78
400 5.36 5.38 5.12 5.26 5.48 5.42 5.24 5.86 5.84

0.9 100 5.78 5.76 5.76 5.62 5.60 6.32 6.84 6.64 8.68
200 5.84 5.50 5.86 5.80 5.94 5.64 5.92 5.86 6.48
400 5.42 5.36 5.30 5.32 4.88 5.16 5.44 4.88 5.66

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1. β̂ is the shrinkage estimator defined in (4).
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Table 5. Rejection Percentages of the OLS Estimator under the Null

φZ

φε n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 100 6.48 5.84 6.26 5.52 6.44 6.42 7.14 7.38 9.96
200 5.46 5.50 5.34 5.70 5.88 5.92 6.18 6.46 7.88
400 5.08 5.68 5.18 5.24 5.72 5.78 5.70 6.08 7.34

0.2 100 5.64 6.34 6.04 6.32 6.40 6.62 7.34 8.32 10.46
200 5.64 5.04 5.66 5.86 6.28 5.88 6.70 6.68 7.76
400 5.02 5.32 4.74 4.96 6.12 5.22 5.52 6.12 6.80

0.3 100 6.12 5.82 6.24 6.04 6.86 6.94 7.66 8.32 9.76
200 5.88 5.22 5.32 5.78 5.90 6.04 6.50 7.10 7.48
400 5.22 5.12 5.02 5.24 5.06 5.88 5.36 5.86 6.74

0.4 100 6.86 5.76 6.52 6.42 6.52 6.72 7.58 8.94 11.24
200 5.84 5.66 6.42 5.50 5.72 6.70 6.32 6.90 8.20
400 4.50 5.04 5.30 4.78 5.52 5.56 5.62 5.88 6.68

0.5 100 6.44 6.10 5.96 6.18 6.46 7.02 7.78 8.76 10.24
200 5.82 5.96 5.52 5.42 5.40 6.24 6.26 7.38 8.56
400 5.56 4.88 5.68 5.46 5.52 5.48 6.50 6.28 6.76

0.6 100 5.28 5.84 6.66 6.38 6.72 7.82 8.80 9.46 10.98
200 5.40 5.56 5.76 5.76 6.36 5.56 6.86 7.04 8.78
400 5.36 5.74 4.94 5.60 5.70 5.60 5.74 5.64 7.24

0.7 100 5.82 5.60 5.96 7.48 7.04 7.58 8.08 9.30 12.00
200 5.32 5.36 5.52 6.66 6.36 5.92 7.32 7.42 9.84
400 5.42 5.40 5.46 5.54 5.32 5.72 5.84 6.22 6.86

0.8 100 5.86 5.10 6.74 6.18 7.56 7.60 8.40 10.60 13.78
200 5.30 5.76 5.38 6.00 5.90 6.36 7.32 7.96 10.04
400 5.12 5.38 5.78 4.82 5.42 6.12 5.48 6.90 7.02

0.9 100 5.20 5.62 5.68 6.96 7.26 7.38 8.80 11.00 14.90
200 4.78 5.08 5.58 5.78 5.90 6.48 6.94 8.32 10.86
400 4.70 5.16 5.34 5.28 4.96 5.90 6.04 6.50 8.22

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1. β̂ is the shrinkage estimator defined in (4).
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Table 6. Rejection Percentages of the FD Estimator under the Null

φZ

φε n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 100 6.64 6.28 6.20 5.40 6.16 6.12 6.18 5.56 5.46
200 6.02 6.02 5.44 5.26 5.92 5.58 5.58 5.08 4.74
400 5.38 4.80 5.66 5.30 5.34 5.22 5.18 5.36 5.16

0.2 100 6.26 6.46 5.80 5.44 5.86 6.46 5.98 5.62 6.28
200 5.70 5.62 5.50 6.02 4.96 5.46 5.78 4.28 5.32
400 5.62 5.32 5.14 5.24 5.38 5.08 5.38 5.14 5.20

0.3 100 5.88 6.44 6.00 5.86 6.28 5.62 5.34 5.92 5.32
200 6.06 5.26 5.08 5.34 5.06 5.22 5.48 5.48 5.54
400 5.20 4.98 5.30 5.44 4.98 5.20 5.32 5.80 4.92

0.4 100 6.44 6.14 5.96 6.46 5.60 6.56 6.02 5.74 5.74
200 5.76 6.22 5.72 5.18 5.78 5.34 5.26 5.42 4.84
400 5.30 5.18 4.96 5.12 4.72 4.58 4.70 5.10 5.08

0.5 100 5.96 5.64 5.84 5.66 5.64 5.52 5.32 5.64 5.30
200 5.44 5.42 5.38 5.60 5.32 5.68 5.52 5.20 5.60
400 4.82 4.68 5.26 5.12 5.32 4.78 5.38 5.24 5.12

0.6 100 5.36 5.78 6.02 5.96 5.68 5.82 6.08 5.66 5.74
200 5.22 5.36 5.74 5.62 5.28 5.34 5.50 5.56 5.04
400 5.50 5.20 5.22 4.72 4.94 5.18 4.76 5.52 5.04

0.7 100 6.06 5.28 5.86 6.36 5.54 5.20 5.36 6.20 5.42
200 5.52 5.64 5.46 5.62 5.26 5.22 5.96 5.40 5.46
400 5.10 5.14 4.90 5.80 5.12 5.62 5.34 5.40 5.24

0.8 100 6.24 5.96 6.14 5.62 5.98 5.34 5.66 5.52 6.14
200 5.50 5.28 5.22 5.78 5.74 4.94 5.12 5.18 5.10
400 5.38 5.56 5.04 5.30 5.42 5.34 4.90 5.30 4.82

0.9 100 5.70 5.58 5.58 5.54 5.36 6.12 6.70 5.86 5.68
200 5.68 5.48 5.64 5.64 5.78 5.72 5.52 5.38 5.52
400 5.48 5.36 5.44 5.20 4.74 5.26 5.20 5.18 5.24

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 1. β̂ is the shrinkage estimator defined in (4).
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Table 7. Emprical Power Performance of Three Estimator: n = 200

φZ

φε Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 29.36 27.68 28.96 28.44 28.42 28.10 27.66 27.76 29.02
FD 23.56 20.94 19.44 18.94 17.24 14.98 12.60 9.14 7.72
β̂ 29.98 29.02 29.64 29.48 29.22 28.86 28.38 28.30 29.24

0.2 OLS 28.66 28.38 27.18 26.48 26.80 25.38 25.74 24.54 24.60
FD 24.72 23.80 22.20 20.46 18.76 15.70 13.38 10.38 7.94
β̂ 30.74 30.62 28.64 29.30 28.24 26.48 26.48 25.58 25.36

0.3 OLS 28.72 26.62 26.42 25.12 24.60 23.58 23.04 22.96 22.76
FD 30.10 27.70 24.18 22.06 20.54 17.20 14.44 11.32 8.86
β̂ 33.62 31.80 29.94 29.32 27.76 26.74 24.72 23.82 23.26

0.4 OLS 28.86 26.92 25.80 23.88 23.80 21.32 20.32 19.68 20.10
FD 34.92 31.76 27.72 25.06 23.48 19.40 15.82 12.68 8.84
β̂ 37.38 34.94 32.18 30.10 29.60 26.28 23.16 21.70 21.66

0.5 OLS 29.48 26.58 26.02 22.06 21.14 19.50 19.46 19.28 18.78
FD 40.70 37.56 35.56 30.30 26.54 22.56 18.56 13.80 10.00
β̂ 42.90 39.86 38.12 33.14 30.44 27.68 24.84 23.18 20.76

0.6 OLS 28.30 26.10 23.98 22.34 20.70 18.54 18.12 17.24 17.14
FD 51.12 45.40 41.98 36.52 32.22 26.98 21.44 17.02 10.88
β̂ 52.64 46.96 43.68 40.02 35.18 30.42 26.22 23.14 18.92

0.7 OLS 28.62 26.32 23.28 21.18 20.04 17.58 16.74 15.56 15.60
FD 63.16 59.12 52.12 47.18 43.14 34.92 28.52 21.18 12.72
β̂ 63.60 59.58 53.46 48.38 44.70 37.80 30.98 24.80 19.00

0.8 OLS 29.54 26.42 23.84 21.52 18.28 16.80 16.20 15.00 14.80
FD 81.52 78.10 71.24 67.04 57.90 48.72 39.06 27.80 17.02
β̂ 81.78 77.90 71.80 67.54 58.66 49.28 40.88 30.64 20.86

0.9 OLS 33.54 29.70 26.54 22.28 19.32 16.86 15.88 14.78 14.78
FD 98.18 97.22 94.74 91.14 87.20 78.24 68.30 50.32 29.22
β̂ 98.16 97.22 94.74 91.02 87.06 78.36 68.34 50.86 31.12

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 0.9. β̂ is the shrinkage estimator defined in (4).
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Table 8. Emprical Power Performance of Three Estimator: n = 400

φZ

φε Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 50.36 50.90 49.90 48.82 48.72 46.98 46.46 46.96 46.58
FD 39.36 36.76 34.60 30.86 27.54 24.02 18.60 15.04 9.76
β̂ 51.82 51.94 50.76 49.90 49.48 47.84 47.28 47.58 47.04

0.2 OLS 51.26 49.40 47.70 46.04 44.72 43.10 42.30 40.62 40.52
FD 45.04 42.04 37.58 34.50 30.72 25.82 22.36 16.38 11.12
β̂ 54.34 53.08 50.42 48.84 48.22 45.58 44.14 41.76 41.26

0.3 OLS 48.56 48.56 45.40 42.88 40.50 39.96 37.82 36.62 35.00
FD 50.94 47.80 42.46 38.52 33.50 28.82 23.56 18.10 11.60
β̂ 57.30 55.84 51.90 49.52 46.08 44.50 41.76 39.20 36.38

0.4 OLS 48.82 45.12 44.58 41.60 37.00 35.64 32.58 33.20 30.26
FD 58.74 52.80 48.46 45.34 38.04 32.32 26.78 20.14 13.04
β̂ 62.40 58.24 55.92 53.20 46.44 44.22 38.82 37.32 32.28

0.5 OLS 47.62 45.52 40.56 38.20 35.28 32.48 29.78 28.04 26.66
FD 66.78 62.92 57.44 52.74 46.14 39.26 31.84 24.20 13.80
β̂ 69.44 66.00 60.86 58.06 52.48 46.84 41.46 36.20 30.10

0.6 OLS 48.14 43.38 39.70 35.92 33.14 29.40 26.16 24.48 21.58
FD 78.54 72.40 68.66 62.86 57.08 46.24 37.78 28.64 16.44
β̂ 79.66 73.80 71.06 65.20 60.40 50.70 44.58 36.62 27.68

0.7 OLS 47.60 42.58 38.46 34.02 29.92 26.00 23.94 21.22 18.72
FD 89.62 86.28 81.32 76.10 67.50 59.58 49.20 35.32 20.72
β̂ 89.96 87.06 82.08 77.22 69.20 62.36 52.32 40.40 28.72

0.8 OLS 46.02 41.84 37.76 33.78 27.62 24.96 21.86 17.80 17.54
FD 98.02 96.54 94.54 91.58 85.84 77.22 66.34 48.30 29.16
β̂ 98.06 96.70 94.66 91.96 85.90 77.44 67.66 51.50 33.90

0.9 OLS 48.78 44.32 38.14 31.92 28.00 22.62 19.26 15.96 14.38
FD 100.00 99.96 99.94 99.54 99.30 97.42 92.30 79.22 50.80
β̂ 100.00 99.96 99.94 99.56 99.26 97.44 92.24 78.90 52.10

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and β1 = 0.9. β̂ is the shrinkage estimator defined in (4).
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Table 9. Empirical Power Performance of the Shrinkage Estimator

relative to both the OLS and FD Counterparts

φZ

φε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 200

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000

n = 400

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Notes: The results are based on the findings in Tables 7 and 8. The value of each entry
equals 1 when the power of the shrinkage estimator is better than that of the OLS and that
of the FD estimators at the same time. Otherwide, it equals 0.
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