
行政院國家科學委員會專題研究計畫 成果報告

電子化企業服務語意分類與檢索

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 97-2218-E-004-001-

執 行 期 間 ： 97年 04 月 01 日至 98年 07 月 31 日

執 行 單 位 ：國立政治大學資訊管理研究所

計 畫主持人：沙吉阿力夫

計畫參與人員：碩士班研究生-兼任助理人員：林俊成

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 99年 04 月 23 日

1

Project Report: E-Business Service Semantic
Classification and Retrieval

Abstract—In this work we propose a two-step, context-based semantic approach to the problem of matching and ranking web services
for possible service composition. We present an analysis of different methods for classifying Web services for possible composition
and supply a context-based semantic matching method for ranking these possibilities. Semantic understanding of Web services may
provide added value by identifying new possibilities for compositions of services. The semantic matching ranking approach is unique
since it provides the Web service designer with an explicit numeric estimation of the extent to which a possible composition “makes
sense.” First, we analyze two common methods for text processing, TF/IDF and context analysis, and two types of service description,
free text and WSDL. Second, we present a method for evaluating the proximity of services for possible compositions. Each Web service
WSDL context descriptor is evaluated according to its proximity to other services’ free text context descriptors. The methods were tested
on a large repository of real-world Web services. The experimental results indicate that context analysis is more useful than TF/IDF.
Furthermore, the method evaluating the proximity of the WSDL description to the textual description of other services provides high
recall and precision results.

Index Terms—Intelligent Web services and semantic Web, internet reasoning services, Web text analysis

F

1 INTRODUCTION

IN recent years, the use of services to compose new
applications from existing modules has gained mo-

mentum. Web services are autonomous units of code,
independently developed and evolved. The Web Service
Description Language - WSDL [1] is used as the de-facto
standard for service providers to describe the interface
of the Web services, i.e., their operations and input
and output parameters. Therefore, Web services lack
homogeneous structure beyond that of their interface.
Heterogeneity stems from different ways to name pa-
rameters, define parameters, and describe internal pro-
cessing. This heterogeneity encumbers straightforward
integration between Web services.

Web service registries such as Universal Description,
Discovery and Integration (UDDI) were created to en-
courage interoperability and adoption of web services.
However, UDDI registries have some major flaws [2].
UDDI registries either are made publicly available and
contain many obsolete entries or require registration. In
either case, a registry only stores a limited description
of the available services.

Semantic Web services were proposed to overcome
interface heterogeneity. Using languages such as Ontol-
ogy Web Language for Services (OWL-S) [3] and WSDL
Semantics (WSDL-S) [4], Web services are extended with
an unambiguous description by relating properties such
as input and output parameters to common concepts and
by defining the execution characteristics of the service.
The concepts are defined in Web ontologies [5], which
serve as the key mechanism to globally define and ref-
erence concepts. Formal languages enable service com-
position, in which a developer uses automatic or semi-
automatic tools to create a integrated business process
from a set of independent Web services.

Service composition in a heterogeneous environment
immediately raises issues of evaluating the accuracy of
the mapping. As an example, consider three real-world
Web services, illustrated in Figure 1. The three services
- distance between zip codes (A), store IT contracts (B),
and translation into any language (C) - share some com-
mon concepts, such as the code concept. However, these
three services originate from very different domains.
Service A is concerned with distance calculation and
uses the zip codes as input, service B defines CurrencyCode
as part of the IT contract information to be stored, and
service C uses a ClientCode as an access key for users.
It is unlikely that any of the services will be combined
into a meaningful composition. This example illustrates
that methods based solely on the concepts mapped to
the services parameters (as in [6]) may yield inaccurate
results.

A. Returns distance in miles or kilometers given 2 zip codes

B. Store IT contracts

C. Translation into and out of any language

<s:element minOccurs="0" maxOccurs="1" name="Zip_Code_1" type="s:string" />

 <s:element minOccurs="0" maxOccurs="1" name="Zip_Code_2" type="s:string" />

…

 <s:element minOccurs="1" maxOccurs="1" name="CalcDistTwoZipsMiResult"

type="s:double" />

 <s:element minOccurs="0" maxOccurs="1" name="PayeName" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="PayePaymentType" type="s:string" />

<s:element minOccurs="1" maxOccurs="1" name="PayeAmount" type="s:double" />

<s:element minOccurs="0" maxOccurs="1" name="CurrencyCode" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="ClientCode" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="UserName" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="Password" type="s:string" />

Fig. 1. Service Tagging is Misleading: an Example

2

We aim at analyzing different methods for automati-
cally identifying possible semantic composition. We ex-
plore two sources for service analysis: WSDL description
files and free textual descriptors, which are commonly
used in service repositories. We investigate two methods
for Web service classification for each type of descrip-
tor, Term Frequency / Inverse Document Frequency
(TF/IDF) [7] and context-based analysis [8], and a base-
line method. We define contexts as a model of a domain
for a given term, which is automatically extracted from
a fragment of text. In this work, contexts are created by
finding related terms from the Web. Unlike ontologies,
which are considered shared models of a domain, we
define contexts as local views of a domain [9]. Therefore,
contexts may be different for two fragments of informa-
tion, even though their domain might be the same. The
definition of context used throughout this paper extends
the definition of context in ubiquitous computing, which
employs context as any information that can be used
to characterize the situation of an entity [10]. In many
fields, context is used to describe the environment in
which a service operates. In our definition, it is used to
describe the related set of linguistic terms of a given text.

In this work we propose a context-based approach
to the problem of matching and ranking semantic Web
services for composition. First, we propose the use of
service classification, a process that matches a service
to a set of concepts, representing its affinity with a
given domain. For example, consider the services in
Figure 1. The context of service A would be a set of
geographical terms (such as address, city, and distance).
Therefore, it would be classified to a set of concepts
taken from a geographical ontology. Service B would be
classified to a business transaction ontology and service
C to a computer systems ontology. Second, we use the
classification and context information to improve the
process of service composition, ruling out compositions
of unrelated services. Given a suggested composition
between a number of services, we analyze the context
overlap between the services. The overlap is used to rank
the probability of the composition.

Our method is particularly relevant to exploratory
composition rather than automatic composition. An ex-
ploratory composition [11] is an iterative process in
which an automatic composer suggests possible options
for the composition and a human user decides regarding
the final composition. Thus, the process is suitable for
situations in which semantic annotations may be incom-
plete and incorrect. Our method can be used to rank
the possible candidate services for composition, which
is resilient to partial annotations.

To evaluate our method, we conducted a set of experi-
ments in which we compared our method to other meth-
ods, including pure TF/IDF and simple string matching.
We used a real-world data set, containing WSDL de-
scription and textual description of public Web services.
Our results show that the Web based context extraction
method analyzing both the WSDL description and the

textual description yields better results than the TF/IDF
method and string matching. In addition, the results
prove the advantage of integrating the analysis of both
the WSDL context descriptor and the service textual
descriptor. Furthermore, to test whether the model can
be used to provide useful recommendations of Web
service compositions, each Web service context extracted
from the WSDL is compared with all other Web ser-
vice contexts extracted from the textual description. The
experiments examine the classification of two points of
view, the analyzed “internal” view, the given WSDL de-
scription, and the “external” view, the text description of
the different services from which we are looking for pos-
sible compositions. The numerical estimation evaluates
what the distance is between the “internal” view and
the “external” view. The results provide high recall and
precision for the Web context extraction based method
compared to other methods. In addition, we show that
the proximity analysis of the context of each Web service
can serve as a useful tool for suggesting Web service
composition.

The rest of the article is structured as follows. Sec-
tion 2 presents an analysis of the service classification
methods. Section 3 describes the service composition
proximity analysis method. Section 4 discusses the differ-
ences between the different methods. Section 5 presents
experiments with matching Web services based on the
different service analysis methods and experiments with
the composition proximity analysis method. Section 6
describes the related work. Section 7 highlights our main
contribution and presents future work.

2 SERVICE CATEGORIZATION FOR COMPOSI-
TION

2.1 Overview

WSDL

Service

Description

Ontology

Matching

Results

Token

Extraction

Token

Extraction

Web Context

Retrieval

TF/IDF

Ranking

Baseline

Categorization

Fig. 2. The Web Service Categorization Process

3

IN this section, we specify the process of automatically
labeling Web services with semantic concepts for the

sake of categorization. Previous work on Semantic An-
notations for WSDL and XML Schema (SAWSDL) [12]
defined how to add semantic annotations to various
parts of a WSDL document such as input and output
message structures, interfaces, and operations. We aim
at associating an ontology concept to each service. Such
a process does not need to be as fine-grained as semantic
annotation. For example, a service can be mapped to
a whole ontology. Figure 2 depicts the stages of the
categorization process, including the different methods
we evaluated. We assume that each Web service is
described using a textual description, which is part of
the meta-data within UDDI registries, and a WSDL doc-
ument describing the syntactic properties of the service
interface. Figure 3 depicts an example of these two
descriptions. These descriptions serve as the input to the
categorization process.

We examine three methods for the service classifi-
cation analysis: TF/IDF, Web context extraction, and a
baseline for evaluation purposes. The baseline method is
a simple reflection (identity function) of the original bag
of tokens, extracted from the service descriptions to a
bag of tokens representing sets of words. The process
of service analysis, which leads to the construction of
the baseline, is described in Section 2.2. The basic data
structure used by all the methods is a ranked bag of
tokens, which is processed and updated in the different
stages. The results of the service analysis process are
used by the TF/IDF and Web context extraction meth-
ods, as described in Section 2.3 and Section 2.4. After
the different analysis methods were applied, the final
categorization is achieved by matching the bag of tokens
to the concept names of each of the ontologies.

 <s:element name="Calculate">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name="Months" type="s:double" />

 <s:element minOccurs="1" maxOccurs="1" name="RateOfInterest"

type="s:double" />

 <s:element minOccurs="1" maxOccurs="1" name="Amount" type="s:double" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name="CalculateResponse">

WSDL Description

Circle24 Technologies

Mathematics

AutoLoanCalculator

http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

Calculates Equated Monthly Installment (EMI) For the Loan Amount

Textual Description

Fig. 3. An Example: Calculates Equated Monthly Install-
ment for Loan Amount

2.2 Service Analysis
The analysis starts with token extraction, representing
each service, S, using two sets of tokens, called de-
scriptors. Relying on pre-defined WSDL documentation
tags was initially considered for evaluation but found
to be less valuable since often Web service providers
do not include the tags in their service [13]. Each to-
ken is a textual term, extracted by the simple parsing
of the underlying documentation of the service. The
first descriptor represents the WSDL document, formally
put as DS

wsdl = {t1, t2, . . .}. The second descriptor,
DS

desc = {t1, t2, . . .}, represents the textual description
of the service and is supplied by the service provider
in free text. WSDL tokens require special handling,
since meaningful tokens (such as parameter names and
operation names) are usually composed of a sequence
of words, with the first letter of each word capitalized
(e.g., CalcDistTwoZipsMiResult). Therefore, the tokens
are divided into separate tokens. An illustration of the
baseline token list is depicted in Figure 4. These tokens
were extracted from the WSDL document. All elements
classified as name were extracted, including tokens that
might be less relevant. The sequence of words was ex-
panded as previously mentioned using the capital letter
of each word. The tokens are filtered using a list of stop-
words, removing words with no substantive semantics.

In this section we describe the two methods used for
the classification of Web services, TF/IDF and context
extraction. Section 4 provides some intuition regarding
the differences between the methods of TF/IDF and
context extraction, which serves as a motivation for
choosing these two. Nevertheless, this choice is more or
less arbitrary. Other methods of text extraction can be
used, borrowing from the vast literature of Information
Retrieval (IR) [14] and Machine Learning (ML) [15].

2.3 TF/IDF Analysis

Calculate
 Months
 Rate Of Interest
 Amount
 Calculate Response
 Calculate Result
string
 Calculate Soap In
parameters
 Calculate Soap Out
parameters
 Calculate Http Get In
 Months
 Rate Of Interest

Fig. 4. Initial Processing Example of the Equated Monthly
Installment for Loan Amount

TF/IDF is a common mechanism in IR for generating
a robust set of representative keywords from a corpus of
documents. The method can be applied here separately
to the WSDL descriptors and the textual descriptors
since the linguistic characteristics of the two document

4

types are very different. By building an independent
corpus for each document type, irrelevant terms are
more distinct and can be thrown away with a higher con-
fidence. To formally define TF/IDF, we start by defining
freq(ti, Di) as the number of occurrences of the token ti
within the document descriptor Di. We define the term
frequency of each term as:

tf (ti) =
freq(ti, Di)

∣Di∣
We define Dwsdl to be the corpus of WSDL descriptors
and Ddesc to be the corpus of textual descriptions. The
inverse document frequency is calculated as the ratio
between the total number of documents and the number
of documents which contain the term:

idf (ti) = log
∣D∣

∣{Di : ti ∈ Di}∣
Here, D is defined generically, and its actual instantia-
tion is chosen according to the origin of the descriptor.
Finally, the TF/IDF weight of a token, annotated as w(ti),
is calculated as:

w(ti) = tf (ti)× idf 2(ti)

While the common implementation of TF/IDF gives
equal weights to the term frequency and inverse doc-
ument frequency (i.e., w = tf × idf), we chose to give
higher weight to the IDF value. The reason behind this
modification is to normalize the inherent bias of the
TF measure in short documents [16]. While traditional
TF/IDF applications were concerned with verbose docu-
ments (such as books, articles, and human-readable Web
pages), WSDL documents and the textual description of
services are relatively short. Therefore, the frequency of
a word within a document tends to be incidental, and
the document length component of the TF generally has
no impact.

Loan
Payments.cloanpayments
Repaid
Years
Payments
Monthly
Months
Total
Payments.cloanpaymentsbinding
Amount
Rate

Fig. 5. An Example of the TF/IDF High Scored List of the
Equated Monthly Installment for Loan Amount

The token weight is used to induce ranking over
the descriptor’s tokens. We define the ranking using a
precedence relation ⪯tf/idf , which is a partial order over
D, such that tl ⪯tf/idf tk if w(tl) < w(tk). The ranking is
used to filter the tokens according to a threshold which
filters out words with a frequency count higher than the
second standard deviation from the average frequency.

The effectiveness of the threshold was validated by our
experiments. Figure 5 presents the list of tokens which
received a higher weight than the threshold. Several
tokens which appeared in the baseline list (see Figure 4)
were removed due to the filtering process. For instance,
words such as “Body,” “String,” and “Post” received
below-the-threshold TF/IDF weight, due to their high
inverse document frequency.

2.4 Context Extraction

We define a descriptor ci from domain DOℳ as an
index term used to identify a record of information [17],
which in our case is a Web service. It can consist of a
word, phrase, or alphanumerical term. A weight wi ∈ ℜ
identifies the importance of descriptor ci in relation to
the Web service. For example, we can have a descriptor
c1 = Mortgage and w1 = 36. A descriptor set {⟨ci, wi⟩}i
is defined by a set of pairs, descriptors and weights.
Each descriptor can define a different point of view of
the concept. The descriptor set defines all the different
perspectives and their relevant weights, which identify
the importance of each perspective.

By collecting all the different viewpoints delineated by
the different descriptors we obtain the context. A context
C =

{
{⟨cij , wij⟩}i

}
j

is a set of finite sets of descriptors.
For example, a context C may be a set of words (hence
DOℳ is a set of all possible character combinations)
defining a Web service and the weights can represent
the relevance of a descriptor to the Web service. In
classic IR, ⟨cij , wij⟩ may represent the fact that the word
cij is repeated wij times in the Web service descriptor
document.

The context recognition algorithm was adapted from
[8]. The algorithm can formally be defined as follows:
Let D = {P1, P2, ..., Pm} be a set of textual propositions
representing a Web service, where for all Pi there exists
a collection of descriptor sets forming the context Ci =
{⟨ci1, wi1⟩, ..., ⟨cin, win⟩} so that ist(Ci, Pi) is satisfied.
McCarthy [18] defines a relation ist(C, P), asserting that
a proposition P is true in a context C. In our case the
adopted algorithm uses the corpus of WSDL descriptors,
Dwsdl, and textual description, Ddesc, as propositions Pi,
and the contexts describing the WSDL as descriptors cij
with their associated weight wij . The context recognition
algorithm identifies the outer context C defined by:

ist(C,
m∩
i=1

ist(Ci, Pi)).

The algorithm input is defined as a set of textual
propositions representing a Web service. Each textual
proposition is sent to a Web search engine. The set of de-
scriptors is extracted by clustering the Web pages search
results. The number of textual propositions from which
the same descriptor is extracted identifies the number
of references to the descriptor in the text. Similarly, the
number of Web pages that identify the same descriptor

5

represents the number of references in Internet docu-
ments. A high ranking in only one metric does not
necessarily indicate the importance of the context: for
example, high ranking in only Internet references may
mean that it is an important topic but might not be
relevant to the document. To combine both metrics, the
two values are weighted to contribute equally to final
weight value.

The context recognition algorithm consists of the fol-
lowing major stages: selecting contexts for each text,
ranking the contexts, and declaring the current contexts.
The result of the token extraction is a list of keywords
obtained from the text. The selection of the current
context is based on searching the Internet for relevant
documents according to these keywords and on cluster-
ing the results into possible contexts. The output of the
ranking stage is the current context or a set of highest
ranking contexts. The set of preliminary contexts that
has the top number of references, both in number of
Internet pages and in number of appearances in all the
texts, is declared to be the current context and the weight
is defined by integrating the value of references and
appearances.

The input to the algorithm is a stream, in text for-
mat, of information. The context recognition algorithm
output is a set of contexts that attempts to describe the
current scenario most accurately. The algorithm attempts
to reach results similar to those achieved by a person
when determining the set of contexts that describes
the current scenario (the Web service in our case). For
example, Figure 6 provides the outcome of the Web
context extraction. The figure displays the context which
includes only the highest ranking descriptors that pass
the cutoff to be included in the context.

Loan
Mortgage
Calculator
Software

Fig. 6. An Example of the Web Context

The use of the Internet as a context database instead
of a precalculated frequencies base [19] has several
advantages. The use of the Internet does not require
the constant updating and maintenance of a database,
while the precalculated frequencies base requires the
user to work in a limited predefined knowledge domain.
Also, the Internet can serve as an unlimited knowledge
domain that is continuously being updated. Although
the Internet contains some unreliable Web sites, their
influence can be overcome when a large quantity of Web
sites is analyzed. Last but not least, the multilingual
nature of the Internet makes it a perfect infrastructure
for integrating Web services described in different lan-
guages or cultural perspectives. The context representing
a service can be composed of descriptors represented in
different languages.

An advantage of the Web context extraction approach

over simple token matching methods (TF/IDF and base-
line) is the ability to add new possible contexts, textual
descriptors, of the Web service which do not appear in
the original text. This ability derives from the use of the
Internet as a knowledge base for collecting the possible
descriptors, while other methods limit the descriptors
to keywords appearing in the WSDL. For example, the
Web context extraction described in Figure 6 includes
the descriptor “Mortgage”, which did not appear in the
original WSDL description displayed in Figure 4, and
extends the concept of “Loan” from a financial domain to
other domains, including the business domain (to which
the service actually belongs).

A context can consist of multiple descriptor sets
and can be viewed as a meta-representation of the
Web service. The added-value of having such a meta-
representation is that each descriptor set can belong to
several ontology concepts simultaneously. For example,
a descriptor set {⟨ Calculator, 2⟩} can be shared by many
ontology concepts that have interest in computational
analysis (such as economic forecasting, sales represen-
tatives, simple mathematical analysis, etc.) although it
is not in their main role definition (and hence the low
weight assigned to it). Such overlap of contexts in on-
tology concepts influences the task of Web service com-
position. The appropriate interpretation of a Web service
context that belongs to several ontology concepts is that
the service is relevant to all such concepts. Therefore, it
can be considered for composition with each of the Web
services belonging to the same concepts. This leads to
the possibility of service composition based on different
perspectives of the service use.

2.5 Ontology Matching

The final step of the labeling process is to match the final-
ized semantically extracted token set with the ontological
concepts. Let O1, O2, . . . , On be a set of ontologies, each
representing different domain knowledge. We provide a
simplified representation of an ontology as O ≡ ⟨C,R⟩,
where C = {c1, c2, . . . , cn} is a set of concepts with their
associated relation R.

To evaluate the matching of the concepts with the
service descriptor, we use a simple string-matching func-
tion, denoted by matcℎstr, which returns 1 if two strings
match and 0 otherwise. We define S as the service and
recall that DS is the service descriptor. Also, we define
n to be the size of DS . The overall match between the
ontology and the service is defined as a normalized sum
of the concept matching values:

match(S,Oi) =
1

n

∑
cj∈Oi

∑
ti∈DS

matcℎstr(ti, cj)

To conclude our example, with the baseline and the
TF/IDF analysis, the three services mentioned in Section
1, the distance in miles or kilometers service A, the store
IT contracts service B, and the translation service C, were

6

mapped to the same ontology. With context analysis,
they were matched separately to different ontologies.

Flexibility of mapping context to ontology with respect
to language has been proposed in [20]. Multilinguality
requirements necessitate the adaptation of the ontology
to different languages separately. Avoiding such multiple
efforts is desirable, both for the initial specification of the
ontology and for the ontology evolution. Here, the con-
text can serve as the translation mechanism, according
to which ontological concepts are interpreted in the local
language. Each ontology concept can be represented by
multiple contexts in different languages. To illustrate this
point, consider the English concept loan, representing
a concept in the field of finance. While in English the
concept can be represented with one word, in French
the concept would require two contexts: emprunt (used
when borrowing) and prêt (used when lending). The
use of contexts to also represent the ontological concept
(such as loan) compensates for any under-specification
that may result from the universality of the ontology.

3 SERVICE RANKING FOR COMPOSITION

THE analysis of the ranking of services for possi-
ble composition is based on the advantage that a

Web service can be separated into two descriptions: the
WSDL and a textual description of the Web service in
free text. The Web service WSDL descriptor and the
Web service textual descriptor have different purposes.
One describes ”how” the service should be used and
the other describes ”what” the service does. However,
they both describe the same service from different per-
spectives. If we are looking for possibilities of service
composition, the motivation of the comparison lies in
the investigation of how this service can be expanded in
comparison to what other services can do.

The section analyzes the possible compositions of each
pair of Web services. The goal is to supply a ranking,
a numeric estimation of the complementary relation be-
tween each two Web services. Due to the large number of
possible service combinations, it is impractical to check
all the options manually. The evaluation can provide the
Web service designer with a ranking that will identify
which services should be considered first. The overlap
between each pair of service textual description context
will be analyzed versus other Web services WSDL con-
text. This will form the analysis for each service, which
will allow a two-way context proximity comparison. The
proposed method yields a numeric estimation of the
extent to which a composition should be considered. Fur-
thermore, the method can suggest unique compositions
due to the idea that the Web service analysis is based on
semantic, rather than syntactic, meaning.

Figure 7 displays the process of service ranking based
on context analysis to suggest possibilities of compo-
sition. The process integrates the advantages of both
top ranking methods in the previously described cate-
gorization analysis. The process includes the following

core components: initial analysis, Web context retrieval,
and analysis of possible composition. Similar to the
previous section, when analyzing the possibilities for
Web services composition, we assume that each Web
service is described using a textual description (which
is part of the meta-data within UDDI registries) and
a WSDL document describing the syntactic properties
of the service interface. These two descriptions, as de-
scribed in Figure 3, serve as the input to the analysis
process. The initial processing step is similar to both the
textual service description and the WSDL and includes
token extraction and stop-list words. The second step
includes applying the context extraction method for both
the service textual description and the WSDL, resulting
in a context which is composed of a descriptor set. Both
the WSDL processing and the context extraction are fully
automated. The two descriptors sets for each Web service
are separate inputs for the composition analysis step,
which is the following key component.

Context Overlap

Service Descriptors

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

Service

Description Service

Composition

Ranking

WSDL Di

WSDL

Service Description Di

WSDL D1

WSDL D2

WSDL Dn

Service Description Dn

Service Description D2

Service Description D1

Composition

Analysis

Web Context

Retrieval

Web Context

Retrieval

Token

Extraction

Token

Extraction

Fig. 7. Service Composition Context Analysis Process

To consider a composition of Web services, we an-
alyze the relation of the context of each service to
other services. We analyze the context of each service
in a bi-directional method. Each Web service context is
evaluated according to its proximity to other services
and the proximity of each of the other services to the
current service. Figure 7 on the bottom part displays
an enlargement of the bi-directional service description
context composition analysis. The composition analysis
compares each Web service WSDL descriptor context
with all other Web service textual descriptor contexts.
The output of the process is a ranked list of pairs of Web
services which could be considered for composition.

The results of the mapping of the Web services to onot-
logies in Section 2 serve as a prior stage to the current
process. Previously the Web services were mapped to
ontologies represented by concepts and their relations.
The current stage can select a single concept as input for

7

composition or a set of related concepts. Alternatively,
the process can run on the entire ontology to suggest
possible compositions which were not preconsidered.
However, using the option of the entire ontology in-
creases the chance of composition suggestions of unre-
lated services.

The following sections describe the initial analysis,
followed by a short review of the context extraction pro-
cess described earlier. The last section details the main
component, the context overlap analysis for possibilities
of service composition.

3.1 Initial Analysis
The initial analysis is similar to the process described
in Section 2.2. The analysis starts with token extraction,
representing each service, S, using two sets of tokens,
called descriptors. Each token is a textual term, extracted
by simple parsing of the underlying documentation of
the service. The first descriptor represents the WSDL
document, formally put as Dwsdl = {t1, t2, . . .}. The
second descriptor, Ddesc = {t1, t2, . . .}, represents the
textual description of the service. All WSDL elements
classified as name were extracted as tokens. WSDL tokens
require special handling: the tokens are divided into
separate tokens using the capitalized first letter of each
word. The tokens are filtered using a list of stop-words,
removing words with no substantive semantics. The
result of this stage is the baseline token list depicted in
Figure 4.

3.2 Context Extraction
The next stage includes extracting the context of the
WSDL descriptor and the service textual description
using the method described in Section 2.4. The extraction
process uses the Web as a knowledge base to extract
multiple contexts for the tokens. Extraction is used to
filter out biased tokens, provide a more precise ranking,
and extend the service descriptors. The context recog-
nition algorithm consists of the following major stages:
initial processing, context retrieval, context ranking, and
context selection. The selection of the context is based on
searching the Internet for relevant documents according
to these descriptors and on clustering the results into
possible contexts. The last step includes ranking the de-
scriptors and selecting the top ranking set which defines
the context of the service. The process is performed on
both the WSDL description of the Web service and the
textual description of the Web service. The output of this
step is similar to the results displayed in Figure 6.

3.3 Analysis of Possible Service Composition Using
Context Overlap
To analyze a set of Web services and identify which
services are more likely to be composed, we analyze
the overlap between the services based on their context.
We compare each Web service WSDL descriptor context

with another Web service textual descriptor context, as
described in Figure 7.

Let WS = {D1, D2, ..., Dn} define a set of Web
services descriptions which are analyzed for possible
composition. We denote Context Overlap (CO) as:

CO(Dwsdl
i , Ddesc

j) = ∣{ck�Dwsdl
i

∩
ck�D

desc
j }∣

which defines the number of context descriptors, ck,
of Web service Di WSDL descriptor that overlaps
with context descriptors of Web service Dj textual
descriptor. Similarly, for CO(Dwsdl

j , Ddesc
i) we calculate

the overlap in reversed order. Notice that two different
sets of descriptors are analyzed in both comparisons.
COMP (Di, Dj) computes the composition likelihood,
the proximity, between two given Web services based
on their weighted Context Overlap:

COMP (Di, Dj) =
√

CO(Dwsdl
i , Ddesc

j)
2
+ CO(Dwsdl

j , Ddesc
i)

2

All the Web services pairs in the WS set are evaluated
for composition likelihood. All the Web services pairs,
which are not identical, are evaluated according to their
context descriptor set Di. COMP (WS) computes the
two services from a given set with the highest likelihood
of composition to be:

COMP (WS) =Maxj (Maxi(COMP (Di, Dj)))∀i, j ∣

Di, Dj ∈WS, i ∕= j

The suggested method can identify different services
which yield the same functionality. In this case the de-
veloper might decide to unite the two services to supply
multiple interfaces such as input or output variable
definitions to the same functionality.

This service will calculate load

payments and total to repay. Given

amount, interest rate, and term, this

service will calculate load payments,

and total to repay.

Calculates Equated Monthly Installment (EMI) For the Loan Amount

Simple calculator for adding,

subtracting, multiplying and

dividing two numbers.

Specialist email facility, allows

bulk email and newsletter

sending.

FastQuote is a hosted Web Service

that allows you to integrate stock

price, stock volume, and other

financial intelligence into your

applications, business processes,

and Web sites.

Fig. 8. Possible Services Identified for Compositions with
Equated Monthly Installment for Loan Amount

The method can be used iteratively to identify the
top n services which could be considered for compo-
sition. Alternatively, a threshold could be used for the
COMP value to define the number of compositions

8

which should be considered. The proposed method does
not perform the composition but rather suggests which
of the Web services should be considered and prioritizes
a list of possible compositions. Although the method
provides the developer with a ranking of which services
should be considered for composition based on semantic
similarity, the developer is still required to resolve the
structural integration related to the Web service struc-
tural or syntactical issues.

The output of the context overlap process to identify
possible compositions is a ranking of which services
should be considered for composition. Figure 8 dis-
plays textual descriptions for some of the high ranking
possible compositions identified by the algorithm for
composition based on semantic meaning. Figure 3 in-
cluded WSDL descriptions of three of the same services
and emphasized the difficulty of identifying composition
based on syntactic meaning.

4 DISCUSSION

THE service categorization, which is part of the ser-
vice description provided by the service provider,

is insufficient in fully specifying the categorization, due
to the provider’s perspective and the terms he uses.
Another problem is that the provider is not aware of
all the existing ontologies and all their concepts when
providing a service. Furthermore, the provider cannot
be forced to supply a detailed description. These textual
descriptions usually contain a bare minimum of informa-
tion which sometimes does not add to the understanding
of the service.

Figure 9 depicts the relationships between the sets
of tokens produced by the different analysis methods,
i.e., TF/IDF and Web context extraction. The larger cir-
cle represents all the tokens extracted from the textual
description and the WSDL document. We define their
union as the baseline set. As the TF/IDF provides a mere
ranking of the original tokens, it is entirely contained in
the baseline set. The TF/IDF high scored set represents all
the tokens which received a higher score than a given
threshold. The tokens which are the result of the context
extraction method are part of the Web-based context set.
The method identifies existing baseline tokens and also
finds new words, based on a core of the baseline tokens.
Therefore, the set overlaps with the baseline set, contain-
ing new tokens which were not part of the baseline.

We now provide some insights regarding the various
elements of the diagram. The shaded part marked “A”
is the overlap of both methods. It contains all tokens
which belong to the Web context set and to the TF/IDF
high scored set. Both TF/IDF and the context analysis
methods decided that these certain keywords are rele-
vant for categorization. In our experiments, about 7%
of the terms in the context analysis belong to this part.
This overlap may serve as evidence of the importance of
these keywords. For example, categorizing a service that
monitors a workflow process yielded a very short token

Web-
based

Context
Tokens

WSDL

Tokens

Textual

Description

Tokens

Baseline

TF/IDF

high

scored

A

B
C

Fig. 9. Token Sets Generated by the Analysis Methods
and Their Inter-Relations

list. However, the token “workflow” appeared in the “A”
set, as it is unique enough to receive high TF/IDF weight
and relevant enough for Web search to be retrieved as
part of several extractions.

The shaded part marked “B” contains those keywords
in the baseline that TF/IDF deems irrelevant, while
the context analysis method believes otherwise. This
part, according to our experiments, constitutes 3% of
the keywords returned by the context analysis. Tokens
such as “message,” “request,” and “response” are typical
members of this set. Since they are frequent words in
the WSDL document, they are sometimes retrieved by
the context extraction algorithm. Thus, this set can be
used as a filter to remove from the context words which
were given a low ranking by TF/IDF and a high ranking
by context.

Part “C” marks the great advantage of the context
analysis over the TF/IDF method. While the latter has
to work within the limits of the baseline dictionary, the
context analysis method goes out to the Web, using it as
an external knowledge source, returning keywords that
are deemed relevant, although they were not originally
specified in the baseline description. 90% of the returned
keywords belong to this region. Some are indeed evalu-
ated as important while others are less so. For example,
the descriptor of a service which handles calculation of
financial derivatives was augmented with words such as
“trading” and “pricing”, which are useful for categorizing
the service under the “finance” domain.

Further investigation of the inter-relationships be-
tween the two methods can be performed. For example,
instead of analyzing the text in parallel, we can start with
TF/IDF, eliminating low score tokens and then process-
ing them with the context analysis method. To get the
best of both worlds, we need to combine these methods
in a way that they will overcome each other’s shortcom-
ings. Therefore, we can combine the tools at our disposal
along three dimensions. One dimension determines the
relevant description (WSDL vs. textual description, in
our case). A second dimension chooses whether to pre-
filter or not (baseline vs. TF/IDF filtering). The third

9

dimension chooses the level of extracted Web context
that is used (no context, context that overlaps with the
TF/IDF set, and pure context). We leave the research into
the inter-relationships in and between these dimensions
open for future study.

The context overlap method can be used to identify
possibilities of Web services composition. The method
not only analyzes whether the two services should be
considered for composition but also supplies a numeric
estimation of the extent to which a composition can be
made in comparison to the other services.

The effort required to analyze all possible combi-
nations for a large quantity of Web services is time
consuming. The numeric estimation of the extent of the
composition allows a Web service engineer to prioritize
the analysis of each possible composition. The ability
of the algorithm to evaluate the composition according
to the context based semantic matching approach that
uses the Web as a knowledge source extends the role
of Web services in new directions. The algorithm thus
integrates two points of view, the “internal” view, the
given WSDL description, and the “external” view, the
text description of the different services from which we
are looking for possible compositions. The numerical
estimation evaluates what the distance is between the
“internal” view and the “external” view.

Previous work presented a model and a set of algo-
rithms to semi-automatically support relationship evolu-
tion in an ontology using contexts [21]. The motivation
for this work stems from the difficulty in supporting on-
tology evolution. An ontology ”bootstrapping” approach
can be developed based on analyzing the Web services
using the different methods for description analysis.
Each method can represent a different perspective of
viewing the Web service. Two methods can be used to
invoke new possible concepts. A third method can be
used to resolve inconsistencies with the current ontology.
An ontology evolution can be performed if all analysis
methods agree on the identification of a new concept
or a relation change between the ontology concepts.
However, this issue remains open for future research.

We conclude this section with a worst case perfor-
mance analysis. The complexity analysis of the TF/IDF
method yields o(mn), where m is the number of WSDL
documents and n is the number of tokens. The complex-
ity of the context Web-based method is o(an) where n
represents the number of input cycles such as each line of
text. The a represents a constant limiting the number of
top ranking results from each cycle of the algorithm. The
context method performance execution time is higher
than that of TF/IDF due to the need to access the Web
search engine for every line of input extracted from the
WSDL. However, since each web service only needs to be
classified once in its lifetime, performance is less crucial
than accuracy.

5 EMPIRICAL ANALYSIS

IN this section we describe our experiments and pro-
vide empirical analysis and comparison of the differ-

ent methods of the classification and possible composi-
tion of services.

5.1 Experimental Setup

5.1.1 Data

The data for the experiments were taken from an exist-
ing benchmark repository provided by researchers from
University College Dublin.1 Our experiments use a set
of 392 Web services, originally divided into 20 different
topics such as: courier services, currency conversion,
communication, business, etc. For each Web service the
repository provided a WSDL document and a short
textual description.

The ontologies used for comparison were selected to
represent three topics described in Figure 10. The sets of
ontologies were selected as possible topics into which
the Web services could be classified. The additional
constraint on selecting the sets of ontologies was that
there exist multiple ontologies rich enough to represent
each of the topics. The first set of ontologies was selected
as general ontologies and is supposed to encompass
a representation of everything in the world. This set
included the SUMO and the Mid-Level-Ontology. The
second set of ontologies was on Web Finance and in-
cluded the Finance the Web and Economy ontologies.
Both these sets of ontologies were taken from the OWLS-
TC [22] ontology repository. The last set of ontologies
included a collection of existing ontologies collected via
Web search to represent the domain of Entertainment.
These ontologies include the Music, Game, Home Envi-
ronment, and Device ontologies.

The next step included a manual classification of all
the Web services into the three possible topics. Each

World

SUMO

Mid-Level-Ontology

Web Finance

Finance the Web

Economy

Entertainment

Music
Game

Home Environment
Device

Fig. 10. Ontology Sets

Web service could belong to more than one topic. Ac-
cording to the classification, there were 392 web services
belonging to the World, 167 to the Finance, and only 27
belonging to the Entertainment ontology set.

1. http://moguntia.ucd.ie/repository/ws2003.html

10

5.1.2 Classification Methods

The experiments examined four different methods for
service classification, as described in Section 2. The ser-
vice classification methods included:

1) WSDL Context The Context Extraction algorithm
described in Section 2.4 was applied to the name
labels of each Web service. Each descriptor of the
Web service context was used as a token.

2) WSDL TF/IDF Each word in the document was
checked for term frequency and inverse document
frequency (TF/IDF) as described in Section 2.3. The
set of highest ranking weighted value words was
used.

3) Description Context The Context Extraction algo-
rithm was applied to the textual description of the
Web services. Each descriptor of the Web service
context was used as a token.

The first set of experiments compared the three meth-
ods and a baseline, which included the original token
list extracted from the service descriptors. The actual
comparison was based on mapping the output of each of
the methods to the set of ontologies, using the ontology
string matching method described in Section 2.5.

The second set of experiments analyzed the service
composition ranking. The analysis measured the overlap
between the WSDL Context and Description Context of
each of the services. The results were compared to the
overlap of the token list extracted from services using
the baseline and the TF/IDF methods. The comparison
was based on the method for evaluating overlap and
composition described in Section 3.3.

5.2 Web Services Classification Results

In our first experiment we analyze the usefulness of
going beyond the baseline bag of tokens. Figure 11
compares the recall and precision of the methods of
classification. The results are displayed according to each
of the ontology sets. The X-label describes each of the
methods and the Y-label describes the level of recall and
precision.

The first World ontology set is supposed to encom-
pass all possible web services. The baseline method
achieved only 91.58% recall. The lowest classification
for the World set was 90.05% from the TF/IDF method.
The results indicate that the WSDL document does not
have enough information defined as name tokens to be
self descriptive. The result of 94.90% was achieved by
the WSDL Context method, which can be attributed
to the external tokens added to the baseline method.
Furthermore, the WSDL description based on free text
description of the service achieved 98.98% recall. The
WSDL descriptor results emphasize even further the
need for external description in addition to the basic web
service descriptive language. The precision in this case
is 100% in all methods since all of the services belong to
the World topic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline WSDL Context WSDL TF/IDF Descriptor Context

World

Recall

Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline WSDL Context WSDL TF/IDF Descriptor Context

Web Finance

Recall

Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline WSDL Context WSDL TF/IDF Descriptor Context

Entertainment

Recall

Precision

Fig. 11. Precision and Recall of All Methods

The Web Finance classification precision shows a
slight advantage again to the WSDL Context method
of 45.17%, followed closely by the WSDL Descriptor
Context precision of 44.54%, over the baseline 43.14%
and the TF/IDF 39.24% methods. However, in this case
there is a drop in the recall of the WSDL Context to
86.83% versus the higher recall result of the baseline
90.42%. The lower recall result of the TF/IDF 37.13%
can be explained due to the limited number of general
recurring tokens. In this case, the retrieval achieved the
same high results as the baseline 90.42%. Examination of
the recall results between the baseline and the TF/IDF
points to the high recall based on terms with high
frequency which are not topic specific. The high retrieval
rate and higher precision in both context based methods
in this case again indicate the importance of the external
Web description.

The Entertainment classification achieved very low
precision rates. This could be attributed to the Music
ontology, which was relatively big and diversified, and
as a result many of the web services were identified
mistakenly as relevant. The baseline achieved higher
recall results 88.89% than the WSDL context 85.19% and
TF/IDF 70.37%. Again we can see the importance of
the external description of the WSDL, which outper-
formed the other methods, achieving 100.00% recall and

11

8.21% precision. The precision results of the baseline and
WSDL Context were almost identical, 6.65% and 6.63%
respectively, followed by the TF/IDF precision of 5.85%.

Precision can be improved by pre-processing the on-
tologies themselves. TF/IDF can be applied to filter out
common concepts by using the corpus of ontologies.
Thus, generic concepts, such as market, can be replaced
with more precise concepts, such as stock-market and fish-
market. Classification can be improved, by relying only
on truly identifying tokens.

Figure 12 displays the recall and precision, partitioned
into topics, of the best performing methods WSDL
Context and Descriptor Context. The graph analyzes
the advantages and disadvantages of each descriptor
according to topics. The results are presented on a X-Y
method comparison graph, where classification accord-
ing to the WSDL Context method is given on the X-axis
and classification according to the Descriptor Context is
given on the Y-axis. All 20 original classification topics
are displayed in the legend. The top graph presents the
average recall of the three ontology sets for the different
topics and the bottom represents the average precision
of the ontology sets for the topics.

We see that low WSDL Context and high Descriptor
Context recall results were achieved by Graphics, Math-
ematics, Developers, and Converter topics. This could
be attributed to the lack of matching ontology sets that
could fit the proper topics. Database-Provider obtained
the opposite results with high WSDL Context and low
Descriptor Context recall. The result is due to the low
quality description accompanying these web services.
The Communication topic received relatively lower re-
sults in both methods, although not the lowest results.
The results suggest that the Communication topic is
more diverse and thus harder to classify.

Analysis of the precision graph indicates that low
WSDL Context and Descriptor Context results were
achieved by Converter, News, CountryInfo, Mathemat-
ics, and Developers. The Converter, Mathematics, and
Developers low precision and low recall results can be
attributed to the service descriptor as being too broad
and lacking specific matching ontology. However, for
News and CountryInfo, which have high recall and low
precision results, it can be inferred that the Economy
and Music sets of ontologies do not define these topics
conclusively enough. Notice also that the precision of the
topics is mostly aligned with the central diagonal which
shows similar results for both methods in most topics.

The results indicate that two main issues impact the
WSDL and textual description results:

1) The quality of the textual description associated
with the web service. This indicates that the web
service WSDL by itself is not enough to classify a
Web service. The results emphasize the importance
of adding sufficient descriptors to the WSDL when
supplying the service for public use.

2) The ability to select proper ontology sets which
classify correctly the web services is of secondary

WSDL Context

D
e

sc
ri

p
to

r
C

o
n

te
x

t

WSDL Context

D
e

sc
ri

p
to

r
C

o
n

te
x

t

Fig. 12. Precision vs. Recall According to Each Topic

importance. To increase the recall and precision
results a small set of ontologies should be selected.
The ontology size itself also plays a role since a
larger ontology has a greater chance of lowering
the precision.

5.3 Ranking Web Services for Composition Results

The Web services composition analysis used the set of
392 Web services previously described in Section 5.1.1.

12

Similar to the previous experiments, for each Web service
the repository provided a WSDL document and a short
textual description. The purpose was to analyze the
quality of the possible composition according to the
context overlap method described in Section 3.3. The
analysis of the set of Web services and the identification
of which services would be more likely to be com-
posed are performed by analyzing the overlap between
the services based on their context. We compare each
Web service WSDL descriptor context with another Web
service textual descriptor context. This integrates the
advantages of both of the top ranking methods, WSDL
Context and Description Context.

The performance of the integrated context method was
compared to that of the Baseline and TF/IDF methods.
For the Baseline and the TF/IDF methods the overlap
method was used to analyze the precision. For the
TF/IDF the list of terms which result after processing
the algorithm was analyzed for overlap.

The top ranking pairs for composition of each of the
methods were compared. To analyze the recall and the
precision for each of the methods, the top ranking pairs
were hand-labeled as relevant or irrelevant. An ideal
result for a recall versus precision graph would be a
horizontal curve with high precision value; a bad result
has a horizontal curve with a low precision value. The
recall-precision curve is considered by the IR community
the most informative graph showing the effectiveness of
the results.

Figure 13 displays the results of the Context Overlap,
TF/IDF Overlap, and Baseline Overlap precision for the
top ranking Web services identified as composition pairs.
The horizontal X-axis displays the total number of Web
services pairs considered. The vertical axis displays the
precision value for each composition analysis method.

Fig. 13. Precision of Service Matching According to
Contextual Ranking

The results indicate that the Context Overlap achieved
a precision level of 100% when the number of top ranked

Web services pairs considered was 14, 24, and 37. When
the set of the top ranked Web services is 54, the preci-
sion drops to 96.29%. The precision went down slightly
more to 94.32% when 88 top ranking Web services were
analyzed. Finally, for 151 Web service compositions the
precision reached 88.08%.

When comparing the Context Overlap to the Baseline
Overlap results, a difference of almost 30% is maintained
in the precision throughout the graph. The initial top
ranking 14 results for the Baseline achieved 71.43%,
slowly dropping to 58.94% for 151 service pairs. The
TF/IDF graph displays a fluctuating behavior, starting
from 57.14% at 14 pairs, reaching a peak of 70.83% at 24
pairs, and dropping twice and ending with a precision
value of 59.33% at 151 pairs. The TF/IDF fluctuation dis-
plays worse results than does the Baseline. This suggests
that the frequency of the words in the original text does
not improve the identification of possible compositions
of Web services. However, the high precision results
achieved by the Context Overlap display the importance
of using the Web as an external knowledge source.

In the example displayed in Figure 8 the Web service
which Calculates Equated Monthly Installment (EMI) For
the Loan Amount located in the center is identified for
composition with the two top services of Calculate load
payments and total to repay and Simple calculator for the
Context Overlap of 37 Web services. Similarly, the com-
position of the EMI service is identified for composition
with the Specialist email facility and FastQuote for Context
Overlap of the top 151 Web services composition.

Figure 14 displays the recall versus the precision of
all three methods. In the graph the X-axis represents the
recall and the Y-axis the precision.

The graph shows that the Context Overlap methods
supply the highest recall precision values throughout the
graph. As the recall increases over 50%, the precision
drops from 100% in the beginning and ranges between
53% and 78%. The TF/IDF precision drops from the
beginning much faster and when the recall increases, the
precision drops to 14%. The Baseline method displays
low recall-precision during most of the values.

The graph displays the advantage of the integrated
context method in comparing the WSDL description to
the textual description of all other services. The inte-
grated context method dominates, in both recall and
precision, both the TF/IDF and the Baseline methods.

6 RELATED WORK

THE field of Web service composition is very active.
However, most approaches require clear and formal

semantic annotations to formal ontologies [23], [6], [4],
[22]. As most services which are currently active in the
World Wide Web do not contain any semantic anno-
tations, finding methods that enable composition with-
out semantic annotation is a necessity. Initial work has
been done in discovering services directly by querying
syntactic Web services through their WSDL documenta-
tion ([24] and [25]). Our work provides an analysis of

13

Fig. 14. Recall vs. Precision Overlap Comparison

different ways for extracting information from syntactic
Web services and using this information in the context
of composition, rather than Web service discovery.

The field of automatic annotation of syntactic Web
services contains several works relevant to our research.
Patil et al. [26] presented a combined approach towards
automatic semantic annotation of Web services. The ap-
proach relies on several matchers (string matcher, struc-
tural matcher, and synonym finder), which are combined
using a simple aggregation function. Duo et al. [27]
present a similar method, which also aggregates results
from several matchers.

Oldham et al. [28] showed that using a simple machine
learning technique, namely Naı̈ve Bayesian Classifier,
improves the precision of service annotation. Machine
learning is also used in a tool called Assam [13], which
uses existing annotation of semantic Web services to
improve new annotations. While machine learning effec-
tively improves the efficiency of the semantic annotation,
the corpus size used for learning is small, as WSDL
documents contain very little text. Our approach is com-
plementary to machine learning methods, as it suggests
and provides further information, in the form of textual
descriptions and Web context. This information can be
used by learning methods to improve annotations.

Another relevant field is search engines for syntactic
Web services. Works by Platzer and Dustdar [2] and
Woogle by Dong et al. [29] present search engines for
WSDL documents. The search engines use a multitude of
information retrieval techniques, including vector space
representation, TF/IDF, and text clustering. The main
drawback of applying these techniques to WSDL is the
relatively short content of a WSDL document, which
limits the precision and recall of the search engine. Our
work explores methods for overcoming this problem by
using Web context and service descriptions.

More recently, several works suggested to use infor-
mation about the Web service composition to provide

a better annotation process. Bowers and Ludäscher [30]
proposed to explore the relation between input and
output parameters of the same operation to infer the
semantics from the parameters. If the semantics of the
input parameter is known, and the logic of the operation
is known, then the semantics of the output parameter can
be inferred automatically. Belhajjame et al. [31] suggest
to use information about the composition (the term
workflow is used in their work) in which the service
is used. The composition structure reveals operational
constraints between parameters of different operations
and can be used to support or disqualify annotations.

The aforementioned works by Bowers and Ludäscher
and Belhajjame et al. show the potential of using external
information for improving annotations. Our work shares
a similar vision, arguing for the utilization of external in-
formation. However, our intention is to produce domain
specific semantic annotation rather than operational se-
mantics. Therefore, we use the Web and public ontolo-
gies as information resources, rather than the workflow
or procedural description of the Web services.

Context-based semantic matching for Web services
composition has become a focus of interest. An initial
prior work describes a context mediator that facilitates
semantic interoperability between heterogeneous infor-
mation systems [32]. A recent work presents a context-
based mediation approach [33] which was used to
solve semantic heterogeneities between composed Web
services. However, these approaches require that the
context definition be manually tailored, as opposed to
automatically generated, for each set of services.

An initial analysis of different methods for mapping
Web services to ontologies based on text processing us-
ing the Web as an external source was presented in [34].
The analysis was performed on a small set of services
which is currently extended. The initial analysis yielded
different results due to the limited data sources used. In
addition, the present paper proposes a method for rank-
ing each possible composition, allowing developers to
prioritize the work involved in the service composition.

7 CONCLUSIONS

THE ability to compose Web services based on WSDL
and free text descriptions can potentially simplify

the implementation of business processes. Our approach
extends the scope of Web service utilization, by provid-
ing users with usable methods to investigate and access
large scale service repositories. Rather than asking users
to manually annotate their services with formal concepts,
our method harnesses the information contained in the
Web for establishing rich context for user queries.

Our experiments prove the inherent problems of ana-
lyzing WSDL documents. Their short length and lim-
ited vocabulary pose serious challenges for labeling
and categorizing services. The weak performance of the
TF/IDF measure, which works successfully on more
verbose texts, shows that relying on the service text alone

14

will not yield adequate results. The proposed method
has several limitations that will be addressed in future
research. These limitations include explicit handling of
multilingual service description, analyzing implications
of selecting specific Web sites for context extraction,
and analyzing implications of different Web context
extraction methods. Additional directions of research
include an analysis of other options of context overlap
for possible compositions, such as context overlap based
only on textual description overlap, and the matching of
textual description to WSDL, the reverse operation to the
one in the current research.

REFERENCES
[1] E. Christensen, F. Curbera, G. Meredith, and S. Weer-

awarana, “WSDL web services description language,”
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, W3C,
W3C Candidate Recommendation, 2001.

[2] C. Platzer and S. Dustdar, “A vector space search engine for Web
services,” in Proceedings of the Third European Conference on Web
Services (ECOWS05), 2005.

[3] A. Ankolekar, D. Martin, Z. Zeng, J. Hobbs, K. Sycara, B. Burstein,
M. Paolucci, O. Lassila, S. Mcilraith, S. Narayanan, and P. Payne,
“DAML-S: Semantic markup for web services,” in Proceedings of
the International Semantic Web Workshop (SWWS), July 2001.

[4] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T. Schmidt,
A. Sheth, and K. Verma, “WSDL-S web service semantics,”
http://www.w3.org/Submission/WSDL-S/, W3C, W3C Candi-
date Recommendation, 2005.

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L. Stein, “OWL web ontology lan-
guage reference,” http://www.w3.org/TR/owl-ref/, W3C, W3C
Candidate Recommendation, 2004.

[6] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in Proceedings of the Inter-
national Semantic Web Conference, 2002.

[7] G. Salton and M. McGill, Eds., Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[8] A. Segev, M. Leshno, and M. Zviran, “Context recognition using
internet as a knowledge base,” Journal of Intelligent Information
Systems, vol. 29, no. 3, pp. 305–327, 2007.

[9] A. Segev and A. Gal, “Putting things in context:a topological
approach to mapping contexts to ontologies,” Journal of Data
Semantics (JoDS), vol. IX, 2007.

[10] A. K. Dey, Providing Architectural Support for Building Context-
Aware Applications. PhD thesis, Georgia Institute of Technology,
2000.

[11] J. Rao, D. Dimitrov, P. Hofmann, and N. Sadeh, “A mixed initia-
tive approach to semantic web service discovery and composition:
Sap’s guided procedures framework,” in ICWS ’06: Proceedings of
the IEEE International Conference on Web Services. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 401–410.

[12] J. Farrell and H. Lausen, “Semantic annotations for wsdl and xml
schema SAWSDL,” http://www.w3.org/TR/2007/REC-sawsdl-
20070828/, W3C, W3C Candidate Recommendation, 2007.

[13] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A tool for
semi-automatically annotating semantic web services,” in Inter-
national Semantic Web Conference, 2004, pp. 320–334.

[14] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. London:
Butterworths, 1979.

[15] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[16] S. Robertson, “Understanding inverse document frequency: on

theoretical arguments for idf,” Journal of Documentation, vol. 60,
no. 5, pp. 503–520, 2004.

[17] C. Mooers, Encyclopedia of Library and Information Science. Marcel
Dekker, 1972, vol. 7, ch. Descriptors, pp. 31–45.

[18] J. McCarthy, “Notes on formalizing context,” In Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence,
1993.

[19] R. Chau and C. Yeh, “A multilingual text mining approach to web
cross-lingual text retrieval,” Knowledge-Based Systems, vol. 17, pp.
219–227, 2001.

[20] A. Segev and A. Gal, “Multilingual ontology-based knowledge
management,” Decision Support Systems, vol. 45, pp. 567–584, 2008.

[21] A. Segev and A. Gal, “Ontology verification using contexts,” in
Proceedings of ECAI-Workshop on Contexts and Ontologies: Theory,
Practice and Applications, 2006.

[22] M. Klusch, B. Fries, M. Khalid, and K. Sycara, “Owls-mx: Hybrid
semantic web service retrieval,” in Proceedings of 1st Intl. AAAI Fall
Symposium on Agents and the Semantic Web. AAAI Press, 2005.

[23] S. C. Oh, “Effective web-service composition in diverse and large-
scale service networks,” Ph.D. dissertation, University Park, PA,
USA, 2006, adviser-Soundar R. Kumara.

[24] G. A. Vouros, F. Dimitrokallis, and K. Kotis, “Look ma, no
hands: Supporting the semantic discovery of services without
ontologies.” in SMRR, ser. CEUR Workshop Proceedings, R. L.
Hernandez, T. D. Noia, and I. Toma, Eds., vol. 416. CEUR-
WS.org, 2008.

[25] E. Toch, A. Gal, and D. Dori, “Automatically grounding
semantically-enriched conceptual models to concrete web ser-
vices,” in ER, ser. Lecture Notes in Computer Science, L. Del-
cambre, C. Kop, H. Mayr, J. Mylopoulos, and O. Pastor, Eds., vol.
3716. Springer, 2005, pp. 304–319.

[26] A. Patil, S. Oundhakar, A. Sheth, and K. Verma, “Meteor-s web
service annotation framework,” in WWW ’04: Proceedings of the
13th international conference on World Wide Web. New York, NY,
USA: ACM Press, 2004, pp. 553–562.

[27] Z. Duo, L. Juan-Zi, and X. Bin, “Web service annotation using on-
tology mapping,” in SOSE ’05: Proceedings of the IEEE International
Workshop. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 243–250.

[28] N. Oldham, C. Thomas, A. P. Sheth, and K. Verma, “Meteor-s
web service annotation framework with machine learning classi-
fication,” in SWSWPC, 2004, pp. 137–146.

[29] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Simlarity search for web services.” pp. 372–383, 2004.

[30] S. Bowers and B. LudŁscher, “Towards automatic generation of
semantic types in scientific workflows,” in In Proceedings of the
International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS), WISE 2005 Workshop Proceedings, LNCS, 2005, pp.
207–216.

[31] K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A.
Goble, “Automatic annotation of web services based on workflow
definitions,” ACM Trans. Web, vol. 2, no. 2, pp. 1–34, 2008.

[32] E. Sciore, M. Siegel, and A. Rosenthal, “Using semantic values
to facilitate interoperability among heterogeneous information
systems,” ACM Transactions on Database Systems, vol. 19, no. 2,
pp. 254–290, 1994.

[33] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg,
and S. Dustdar, “A context-based mediation approach to compose
semantic web services,” ACM Transactions on Internet Technology,
vol. 8, no. 1, p. 4, 2007.

[34] A. Gal, A. Segev, and E. Toch, “Semantic methods for service
categorization - an empirical study,” in Proceedings International
Workshop on Semantic Data and Service Integration (SDSI 2007), 2007.

