國立政治大學統計學系

碩士學位論文

指導教授: 楊素芬博士

最大利潤下規格上限與 EWMA 管制圖之設計 Design of Upper Specification and EWMA Control Chart with Maximal Profit

研究生:蔡佳宏 撰

Zarto Day Chengchi Univer

中華民國一百零一年六月

研究生生活即將結束,這兩年我過得很充實,學到了許多寶貴的知識以及經 驗,讓我成長不少,這一切必須感謝很多人這些日子以來的幫助與支持。

首先最要感謝的是我的指導老師 楊素芬教授。謝謝楊老師這兩年對我的辛 苦栽培,讓我學習到許多統計品管上的知識,更重要的是了解做人處世的道理。 老師嚴格的指導,讓我能更加積極地去面對任何事情。也謝謝老師對我碩士論文 的協助,讓英文不優的我,能順利完成此篇論文。

接著要感謝我的口試委員,曾勝滄教授與 葉小蓁教授;感謝兩位教授在百 忙之中抽出時間閱讀論文以及前來政大擔任口試委員。更要謝謝兩位教授對論文 提出寶貴的建議與想法,讓我能加以改進,使本篇論文更加完善。也要謝謝兩位 教授在口試後所給予的勉勵與祝福。

碩士兩年期間,要感謝我的同學們為我打氣以及給予我的幫助。有大家的陪 伴,讓我能度過許多艱辛的日子。有大家一起玩樂,也讓我更有動力去完成許多 事情。特別要感謝瑋倫和依潔,謝謝你們在研究上給予我的協助,有幸能與你們 討論,讓我解決許多困難的問題。

最後一定要感謝的是我的家人,謝謝你們給我的鼓勵與支持,更要謝謝你們 讓我能無後顧之憂的專心處理課業上的事情。你們永遠是我最大的支柱,往後的 日子我也將更加努力,並且希望能對這個家有所貢獻。

本研究承蒙行政院國家科學委員會,計畫編號NSC100-2118-M-004-003-MY2 補助,謹此致謝。

Chengchi Univer

此項成果使用國家高速網路與計算中心之計算資源,特此感謝。

蔡佳宏 謹致

中華民國一百零一年六月

ABSTRACT

The determination of economic control charts and the determination of specification limits with minimum cost are two different research topics. In this study, we first combine the design of economic control charts and the determination of specification limits to maximize the expected profit per unit time for the smaller the better quality variable following the gamma distribution. Because of the asymmetric distribution, we design the EWMA control chart with asymmetric control limits. We simultaneously determine the economic EWMA control chart and upper specification limit with maximum expected profit per unit time. Then, extend the approach to determine the economic variable sampling interval EWMA control chart and upper specification limit with maximum expected profit per unit time.

In all our numerical examples of the two profit models, the optimum expected profit per unit time under inspection is higher than that of no inspection. The detection ability of the EWMA chart with an appropriate weight is always better than the X-bar probability chart. The detection ability of the VSI EWMA chart is also superior to that of the fixed sampling interval EWMA chart. Sensitivity analyses are provided to determine the significant parameters for the optimal design parameters and the optimal expected profit per unit time.

Keywords: Economic design; Specification; EWMA control chart; VSI control chart; Markov chain; Gamma distribution; Optimization technique

Önar Chengchi Univer

TABLE OF CONTENTS

CHAF	PTER 1.	INTRODUCTION	1
1.1	Research N	Iotivation	1
1.2	Literature I	Review	1
1.3	Research N	Iethod	3
CHAF	PTER 2.	THE SMALLER THE BETTER QUALITY VAR	IABLE
		WITH GAMMA DISTRIBUTION	
2.1	In-control S	Sampling Distribution of X-bar under Gamma Distribution	4
2.2	Out-of-con	trol Sampling Distribution of X-bar under Gamma Distribution	on4
2.3	Constructio	on of the $\text{EWMA}_{X-\text{bar}}$ Control Chart Based on X-bar Sam	pling
	Distributio	n	5
2.4	Calculation	n of Average Run Length for the EWMA _{X-bar} Chart	6
2.5	Determinin	ng Control Limit Coefficient on EWMA _{X-bar} Control Chart u	under
	Different n	and λ	7
2.6	Determinin	ing the Best λ in the EWMA _{X-bar} Chart under Different δ_l , δ_2 a	nd <i>n</i> 11
CHAF	PTER 3.	DERIVATION OF THE PROFIT MODEL WIT	
		PRODUCER INSPECTION	19
3.1	Derivation	of Expected Cycle Time of the Expected Cycle Profit	19
3.2	Derivation	of the Expected Cycle Profit	20
3.3	Determinin	ng Optimum Design Parameters of the Economic EWM	A_{X-bar}
	Control Ch	art	21
3.4	An Examp	le	22
3.5	Sensitivity	Analysis and Comparing the Results with $\lambda = 1$	23
CHAF	PTER 4.		WITH
		PRODUCER INSPECTION	28
4.1	Derivation	of the Expected Cycle Time	28
4.2	Derivation	of the Expected Cycle Profit	28

4.3	Determining	the Optimum Producer Inspection and Design Para	meter of the
	Economic E	WMA _{X-bar} Control Chart	29
4.4	Example and	d Optimum Results Comparison for with and without	out Producer
	Inspection		
4.5	Sensitivity A	Analysis and Comparing the Results of $EWMA_{X-ba}$	r Chart with
	λ=1		
CHAP		DETERMINING THE BEST λ OF THE EWMA _{X-bar} CONTROL CHART UNDER	
	S	SHIFT SCALES IN THE MEAN AND VARIAN	CE37
5.1	Data Descri	ption and Determining the Optimum Producer Ins	pection and
	the Design F	Parameters of the Economic EWMA _{X-bar} Control Cha	art37
5.2	Performance	e Comparison of Six Numerical Examples	63
СНАР		DETERMINING THE OPTIMUM	
		INSPECTION AND THE ECONOMIC VSI	
		CONTROL CHART	
		X-bar Control Chart and ATS Calculation	
		f the Profit Model without Producer Inspection	/
6.3	Derivation o	f the Profit Model with Producer Inspection	67
6.4	Determining	Optimum Parameters of the Economic VSI	EWMA _{X-bar}
	Control Cha	rt with and without producer tolerance	68
6.5	Two Numer	rical Examples and the Results Comparison with	th the FSI
	EWMA _{X-bar}	Control Chart	69
6.6	Sensitivity A	Analysis and the Optimum Results Comparison betw	veen the FSI
	EWMA _{X-bar}	Chart and VSI EWMA _{X-bar} Chart	80
СНАР	TER 7.	SUMMARY	84
REFE	RENCES .		86

LIST OF TABLES

Table 2-1. The solved L_1 and L_2 under various combinations of λ and n for a_1 =1.5, b_1 =2, ARL_0 =370 and g =301
Table 2-2. The solved L_1 and L_2 under various combinations of λ and n for a_1 =24.349, b_1 =0.205, ARL_0 =370 and g =3019
Table 2-3. The solved L_1 and L_2 under various combinations of λ and n for $a_I=1$, $b_I=0.202$, $ARL_0=370$ and $g=301$ 10
Table 2-4. The Value of ARL_1 under Various n and λ at $a_I = 1.5$, $b_I = 2$, $\delta_I = 0.1$, $\delta_2 = 0.05$, $g = 301$ and $ARL_0 = 370$
Table 2-5. The Value of ARL_1 under Various <i>n</i> and λ at $a_1 = 24.349$, $b_1 = 0.205$, $\delta_1 = 0.919$, $\delta_2 = 0.06$, $g = 301$ and $ARL_0 = 370$
Table 2-6. Combination of λ , n , L_1 and L_2 with Minimum ARL_1
Table 2-7. The Value of ARL_{1} under Various <i>n</i> and λ at a_{I} =24.349, b_{I} =0.205, δ_{I} =16.983, δ_{2} =-0.045, <i>g</i> =301 and ARL_{0} =37013
Table 2-8. Combination of λ , n , L_1 and L_2 with Minimum ARL_1
Table 2-9. The Value of ARL_{1} under Various <i>n</i> and λ at a_{1} =24.349, b_{1} =0.205, δ_{1} =-8.741, δ_{2} =0.123, <i>g</i> =301 and ARL_{0} =37014
Table 2-10. Combination of λ , n , L_1 and L_2 with Minimum ARL_1
Table 2-11. The Value of ARL_1 under Various <i>n</i> and λ at $a_1 = 24.349$, $b_1 = 0.205$, $\delta_1 = 9.452$, $\delta_2 = -0.097$, $g = 301$ and $ARL_0 = 370$
Table 2-12. Combination of λ , n , L_1 and L_2 with Minimum ARL_1
Table 2-13. The Value of ARL_l under Various n and λ at $a_l = 1$, $b_l = 0.202$, $\delta_l = 0$, $\delta_2 = 0.077$, $g = 301$ and $ARL_0 = 370$
Table 2-14. Combination of λ , <i>n</i> , <i>L</i> ₁ and <i>L</i> ₂ with Minimum <i>ARL</i> ₁ 16
Table 2-15. The Value of ARL_1 under Various n and λ at $a_1 = 1$, $b_1 = 0.202$, $\delta_1 = 0$, $\delta_2 = 0.442$, $g = 301$ and $ARL_0 = 370$
Table 2-16. Combination of λ , n , L_1 and L_2 with Minimum ARL_1
Table 2-17. The Best λ in Tables 2-4, 2-5,, 2-16
Table 3-1. Optimum Results of Profit Model under Three Different λ
Table 3-2. Level of Parameters 23
Table 3-3. Parameters for Each Experiment 23

Table 3-4. Optimum Results in Each Experiment 24
Table 4-1. Optimum Results of Profit Model under Three Different λ
Table 4-2. Merging Tables 3-1 and 4-1 31
Table 4-3. Optimum Result in Each Experiment
Table 5-1. In-control Data with Gamma ($a=25$, $b=0.2$)
Table 5-2. Out-of-control Data with Gamma ($a=26, b=0.25$)38
Table 5-3. The Optimum Results Comparison of Profit Model with Different λ
Table 5-4. Out-of-control Data with Gamma ($a=28$, $b=0.21$)
Table 5-5. The Optimum Results Comparison of Profit Model with Different λ 43
Table 5-6. Out-of-control Data with Gamma (<i>a</i> =42.45, <i>b</i> =0.154)
Table 5-7. The Optimum Results Comparison of Profit Model with Different λ 47
Table 5-8. Out-of-control Data with Gamma (<i>a</i> =15.385, <i>b</i> =0.325)
Table 5-9. The Optimum Results Comparison of Profit Model with Different λ 51
Table 5-10. Out-of-control Data with Gamma (<i>a</i> =15.385, <i>b</i> =0.325)
Table 5-11. The Optimum Results Comparison of Profit Model with Different λ 55
Table 5-12. In-control Service Time Data. 58
Table 5-13. Out-of -control Service Time Data
Table 5-14. The Optimum Results Comparison of Profit Model with Different λ 60
Table 5-15. Comparison of Six Numerical Examples 63
Table 6-1. Comparison of the optimum results of VSI and FSI EWMA _{X-bar} control charts
Table 6-2. Comparison of the optimum results of the VSI and FSI EWMA _{X-bar} charts at λ =0.4
Table 6-3. Region and Sampling Time of Each In-control Statistic (λ =0.4)
Table 6-4. Region and Sampling Time of Each Out-of-control Statistic (λ =0.4)75
Table 6-5. Comparison of the optimum results of the VSI and FSI EWMA _{X-bar} charts at λ =0.1
Table 6-6. Region and Sampling Time of Each In-control Statistic (λ =0.1)
Table 6-7. Region and Sampling Time of Each Out-of-control Statistic (λ =0.1)79
Table 6-8. Optimum Results in Each Experiment 80

LIST OF FIGURES

Figure 2-1. The p.d.f Comparison of Different Gamma Distributions4
Figure 2-2. States between the Control Limits of EWMA _{X-bar} Chart
Figure 2-3. The Value of L_1 under Various <i>n</i> at $ARL_0=370$, $a_1=1.5$, $b_1=2$ and $g=3018$
Figure 2-4. The Value of L_2 under Various <i>n</i> at $ARL_0=370$, $a_I=1.5$, $b_I=2$ and $g=3018$
Figure 2-5. The Value of L_1 under Various <i>n</i> at $ARL_0=370$, $a_1=24.349$, $b_1=0.205$ and $g=301$
Figure 2-6. The Value of L_2 under Various <i>n</i> at $ARL_0=370$, $a_I=24.349$, $b_I=0.205$ and $g=301$
Figure 2-7. The Value of L_1 under Various <i>n</i> at $ARL_0=370$, $a_1=1$, $b_1=0.202$ and $g=301$
Figure 2-8. The Value of L_2 under Various <i>n</i> at $ARL_0=370$, $a_I=1$, $b_I=0.202$ and $g=301$
Figure 3-1. Continuous Process Cycle
Figure 3-2. Response Figure of $\overline{EAP^*}$
Figure 3-3. Response Figure of $\overline{n^*}$
Figure 3-4. Response Figure of $\overline{ARL_1}$
Figure 3-5. Response Figure of $\overline{UCL^*}$
Figure 3-6. Response Figure of $\overline{LCL^*}$
Figure 3-7. Response Figure of Difference of EAP*
Figure 4-1. The Gamma Distribution and Taguchi Loss Function with Inspection28
Figure 4-2. Response Figure of $\overline{\omega^*}$
Figure 4-3. Response Figure of $\overline{EAP^*}$
Figure 4-4. Response Figure of $\overline{n^*}$
Figure 4-5. Response Figure of <i>ARL</i> ₁ 35
Figure 4-6. Response Figure of $\overline{UCL^*}$
Figure 4-7. Response Figure of $\overline{LCL^*}$
Figure 4-8. Response Figure of Difference of EAP*
Figure 5-1. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data40

Figure 5-2. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data40
Figure 5-3. The Economic EWMA _{X-bar} Chart (λ =0.6) with In-control Data40
Figure 5-4. The Economic EWMA _{X-bar} Chart (λ =0.6) with Out-of-control Data41
Figure 5-5. The Economic EWMA _{X-bar} Chart (λ =0.05) with In-control Data41
Figure 5-6. The Economic EWMA _{X-bar} Chart (λ =0.05) with Out-of-control Data41
Figure 5-7. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data
Figure 5-8. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data44
Figure 5-9. The Economic EWMA _{X-bar} Chart (λ =0.5) with In-control Data44
Figure 5-10. The Economic EWMA _{X-bar} Chart (λ =0.5) with Out-of-control Data45
Figure 5-11. The Economic EWMA _{X-bar} Chart (λ =0.05) with In-control Data45
Figure 5-12. The Economic EWMA _{X-bar} Chart (λ =0.05) with Out-of-control Data45
Figure 5-13. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data
Figure 5-14. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data48
Figure 5-15. The Economic EWMA _{X-bar} Chart (λ =0.6) with In-control Data
Figure 5-16. The Economic EWMA _{X-bar} Chart (λ =0.6) with Out-of-control Data49
Figure 5-17. The Economic EWMA _{X-bar} Chart (λ =0.05) with In-control Data
Figure 5-18. The Economic EWMA _{X-bar} Chart (λ =0.05) with Out-of-control Data49
Figure 5-19. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data
Figure 5-20. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data
Figure 5-21. The Economic EWMA _{X-bar} Chart (λ =0.3) with In-control Data
Figure 5-22. The Economic EWMA _{X-bar} Chart (λ =0.3) with Out-of-control Data53
Figure 5-23. The Economic EWMA _{X-bar} Chart (λ =0.05) with In-control Data
Figure 5-24. The Economic EWMA _{X-bar} Chart (λ =0.05) with Out-of-control Data53
Figure 5-25. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data
Figure 5-26. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data
Figure 5-27. The Economic EWMA _{X-bar} Chart (λ =0.2) with In-control Data
Figure 5-28. The Economic EWMA _{X-bar} Chart (λ =0.2) with Out-of-control Data57
Figure 5-29. The Economic EWMA _{X-bar} Chart (λ =0.05) with In-control Data
Figure 5-30. The Economic EWMA _{X-bar} Chart (λ =0.05) with Out-of-control Data57
Figure 5-31. The Economic EWMA _{X-bar} Chart (λ =1) with In-control Data61 VIII

Figure 5-32. The Economic EWMA _{X-bar} Chart (λ =1) with Out-of-control Data61
Figure 5-33. The Economic EWMA _{X-bar} Chart (λ =0.4) with In-control Data
Figure 5-34. The Economic EWMA _{X-bar} Chart (λ =0.4) with Out-of-control Data62
Figure 5-35. The Economic EWMA _{X-bar} Chart (λ =0.1) with In-control Data
Figure 5-36. The Economic EWMA _{X-bar} Chart (λ =0.1) with Out-of-control Data62
Figure 6-1. VSI Control Chart65
Figure 6-2. The Economic FSI EWMA _{X-bar} Chart (λ =0.4) with In-control Data73
Figure 6-3. The Economic FSI EWMA _{X-bar} Chart (λ =0.4) with Out-of-control Data.73
Figure 6-4. The Economic VSI EWMA _{X-bar} Chart (λ =0.4) with In-control Data74
Figure 6-5. The Economic VSI EWMA _{X-bar} Chart (λ =0.4) with Out-of-control Data 75
Figure 6-6. The Economic FSI EWMA _{X-bar} Chart (λ =0.1) with In-control Data77
Figure 6-7. The Economic FSI EWMA _{X-bar} Chart (λ =0.1) with Out-of-control Data.77
Figure 6-8. The Economic VSI EWMA _{X-bar} Chart (λ =0.1) with In-control Data78
Figure 6-9. The Economic VSI EWMA _{X-bar} Chart (λ =0.1) with Out-of-control Data 79
Figure 6-10. Response Figure of $\overline{\omega^*}$
Figure 6-11. Response Figure of $\overline{EAP^*}$
Figure 6-12. Response Figure of <i>ATS</i> ₁ 82
Figure 6-13. Response Figure of $\overline{UWL^*}$
Figure 6-14. Response Figure of $\overline{LWL^*}$
Figure 6-15. Response Figure of Difference of EAP*

CHAPTER 1. INTRODUCTION

1.1 Research Motivation

Control charts are widely used in statistical process control, and their design parameters must be pre-determined for their use, such as sample size, sampling time, and control limits. Economic design of control charts have been widely used to determine these parameters from economic viewpoint. However, to reduce product quality loss, the 100% inspection with specification limits is always performed. To determine the specification limits, a widely use method is to minimize products cost. In the technology industry, like the product's insulation property, its loss of heat is the smaller the better. In the service industry, the service time is also the smaller the better. How to determine their specification limits and control chart to monitor the quality variable with maximum profit is an important issue. In this project, we simultaneously determine the specification limits and the control chart parameters with maximize expected profit per unit time. Most articles on economic design of specification and control charts consider normal distribution of quality variable, but in this article, we consider gamma distribution for the smaller the better quality variable; hence, we determine only an upper specification limit in the gamma distribution. For wide use of different shift scales and because of the asymmetric gamma distribution, we design the asymmetric economic EWMA_{X-bar} control chart and the asymmetric economic VSI EWMA_{X-bar} control chart. Hence, we combine product cost and control chart cost in a profit model and then we maximize this profit per unit time to determine the optimum upper specification limit and the design parameters of the EWMA_{X-bar} control chart and the VSI EWMA_{X-bar} control chart.

1.2 Literature Review

Economic design of control charts have been widely used to determine control chart parameters from economic viewpoint. Duncan (1956) first proposed the concept of an economic design for the X-bar control chart. He considered a process that does not shut down when the assignable cause is searched, and developed a process cost model that includes the cost of sampling and finding the assignable cause when it exists or when none exists. He also demonstrated how to determine control chart parameters. Montgomery (1980) presented a review and literature survey in the economic design of control charts. Panagos, Heikes, and Montgomery (1985) described two continuous and discontinuous manufacturing process models, where the

continuous process model is consistent with that developed by Duncan. They showed that the wrong choice of a process model would have a potentially serious economic result.

Control charts typically take a fixed number of samples with a fixed sampling time and plot them on the control chart with a fixed control limit. To improve control chart performance, the adaptive control chart has been developed such as variable sampling interval control chart. Reynolds et al. (1988) proposed the VSI X-bar control chart. Bai and Lee (1998) considered the economic design of the VSI X-bar control chart. They preferred to use only two sampling interval lengths with two sub-regions between the two control limits.

The EWMA chart is widely used for detecting small process shifts. Roberts (1959) first introduced the exponentially weighted moving average chart. Crowder (1987) and Saccucci and Lucas (1990) discussed the *ARL* calculation of the EWMA control chart. Montgomery et al. (1995) presented a statistically constrained economic design of the EWMA control chart. They minimized the cost model, subject to statistical constraints on average run length or average time to signal, to determine the design parameters of the EWMA control chart. Chou et al. (2006) proposed an economic design of VSI EWMA charts. They considered two sampling interval lengths and derived the cost model to determine the parameters of VSI EWMA control charts using the genetic algorithm.

To reduce product quality loss, the 100% inspection with specification limits is necessary. Kapur (1988) considered three types of quality characteristics; the smaller the better, the larger the better, and the nominal the best and used three types of loss function to evaluate the loss of three types of quality characteristics with normal distribution. Phillips and Cho (1998a) used the truncated quadratic loss function on the smaller the better quality characteristic, which follows gamma distribution. Phillips and Cho (1998b) used linear empirical loss function and quadratic empirical loss function for the quality variable, which follows normal distribution. Feng and Kapur (2006) considered asymmetric quadratic loss function and asymmetric piecewise linear loss function for the quality variable with normal distribution. These four articles minimize the expected cost per product to determine the specification limits. Hong et al. (2006) considered the larger the better quality characteristics of normal distribution. They used two types of profit models, unconformable items that are reprocessed and unconformable items that are sold at a discount price, to maximize the profit model to determine the optimum process mean and specification limit. Hong and Cho (2007) considered several available markets with different price structures. They derived the model of expected profit per item and maximized it to determine the process mean and tolerance. They also investigated the effects of measurement errors on the process mean and tolerance.

1.3 Research Method

This study simultaneously determines the upper specification limit and the design parameters of EWMA_{X-bar} control chart with maximal profit. In Chapter 2, we consider the smaller the better quality variable with in-control and out-of-control gamma distributions. To measure the performance of the proposed EWMA_{X-bar} chart, we let in-control average run length (ARL₀) equal to 370 by using the Markov chain approach and then find the best reference value of λ , which is a weight of EWMA_{X-bar} statistic, and factors of control limits of EWMA_{X-bar} chart to minimizing out-of-control average run length (ARL_1) . In Chapter 3, we derive the profit model per unit time with only EWMA_{X-bar} chart but without producer tolerance. We then give an example to determine the optimum design parameters of the EWMA_{X-bar} chart by maximizing the expected profit per unit time and present a sensitivity analysis to find the significant parameters. We also compare the performance of EWMA_{X-bar} chart with $\lambda = 1$ which is equivalent to the X-bar probability chart. In Chapter 4, we derive the profit model per unit time with EWMA_{X-bar} chart and producer tolerance. We give an example to determine the optimum upper specification limit and the design parameters of the EWMA_{X-bar} chart by maximizing the expected profit per unit time and compare the performance to EWMA_{X-bar} chart without producer tolerance. Finally, we present a sensitivity analysis and compare the performance to EWMA_{X-bar} chart with $\lambda=1$. In Chapter 5, we determine the best λ in the EWMA_{X-bar} chart under six different shift scales by maximizing the expected profit per unit time and conclude the better λ for different shift scales in the mean and variance. In Chapter 6, we consider the VSI EWMA_{X-bar} chart and calculate average time to signal (ATS) to measure the performance of this chart. We also derive the profit model and then give two examples to determine the upper specification limit and the design parameters of the VSI EWMA_{X-bar} chart by maximizing the expected profit per unit time and conducting sensitivity analysis. We also compare the performance with the FSI EWMA_{X-bar} chart. Finally, we summarize the results in Chapter 7. In this study, we use the R program to perform all calculations, including using the "uniroot" command to solve the one-dimensional root and using the "DEoptim" command to find the global optimum value of the expected profit per unit time using the differential evolution algorithm. We also use the R program to plot all of the figures.

CHAPTER 2. THE SMALLER THE BETTER QUALITY VARIABLE WITH GAMMA DISTRIBUTION

2.1 In-control Sampling Distribution of X-bar under Gamma Distribution

Construct the EWMA_{X-bar} control chart based on the sample mean, in this section, we need to derive the X-bar distribution.

We take the in-control gamma distribution as follows:

$$X_{I} \sim \Gamma(a_{I}, b_{I}), E(X_{I}) = a_{I}b_{I}, Var(X_{I}) = a_{I}b_{I}^{2}$$

$$f_{I}(x) = \frac{1}{\Gamma(a_{I})(b_{I})^{a_{I}}} x^{(a_{I}-1)} e^{\frac{x}{b_{I}}}, \ 0 < x < \infty \ a_{I}, b_{I} > 0$$
(2-1)

We choose sample size *n*, s.t. $\overline{X}_I = \frac{1}{n} \sum_{i=1}^n X_{I,i}$, where $X_{I,i} \sim \Gamma(a_I, b_I)$, i = 1, 2, ..., n,

and then obtain the distribution of \overline{X}_{I} as follows:

$$\overline{X}_{I} = \frac{1}{n} \sum_{i=1}^{n} X_{I,i} \sim \frac{1}{n} \sum_{i=1}^{n} \Gamma(a_{I}, b_{I}) \equiv \sum_{i=1}^{n} \Gamma\left(a_{I}, \frac{b_{I}}{n}\right) \equiv \Gamma\left(na_{I}, \frac{b_{I}}{n}\right)$$

and $E(\overline{X}_{I}) = a_{I}b_{I}$, $Var(\overline{X}_{I}) = \frac{a_{I}b_{I}}{n}$

2.2 Out-of-control Sampling Distribution of X-bar under Gamma Distribution

To choose out-of-control distribution, we first compare different gamma distributions.

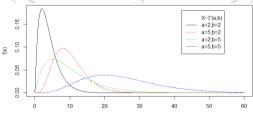


Figure 2-1. The p.d.f Comparison of Different Gamma Distributions

According to Figure 2-1, if a or b increases, the p.d.f. shifts right and both mean and variance of the distribution increase. Because the considered quality variable is the smaller the better, we assume that both a and b of the out-of-control distribution are bigger than those of the in-control distribution. We assume the out-of-control gamma distribution as follows:

$$a_{o} = a_{I} + \delta_{1}, b_{o} = b_{I} + \delta_{2}, \ \delta_{1}, \delta_{2} > 0$$

$$X_{o} \sim \Gamma(a_{o}, b_{o}), E(X_{o}) = a_{o}b_{o}, Var(X_{o}) = a_{o}b_{o}^{2}$$

$$f_{o}(x) = \frac{1}{\Gamma(a_{o})(b_{o})^{a_{o}}} x^{(a_{o}-1)} e^{\frac{x}{b_{o}}}, \ 0 < x < \infty \ a_{o}, b_{o} > 0$$
(2-2)

We choose sample size *n*, s.t. $\overline{X}_{o} = \frac{1}{n} \sum_{i=1}^{n} X_{o,i}$, where $X_{o,i} \sim \Gamma(a_{o}, b_{o})$, i = 1, 2, ..., n

and then obtain $\overline{X}_o \sim \Gamma(na_o, \frac{b_o}{n}), E(\overline{X}_o) = a_o b_o, Var(\overline{X}_I) = \frac{a_o b_o^2}{n}.$

Because a and b both exist in the mean and variance, when the mean changes, the variance also changes. Hence, the EWMA_{X-bar} control chart detects both mean and variance.

2.3 Construction of the EWMA_{X-bar} Control Chart Based on X-bar Sampling Distribution

The EWMA_{X-bar} statistic is based on the X-bar sampling distribution. It is

expressed as $Z_{t} = \lambda \overline{X}_{t} + (1 - \lambda) Z_{t-1}, t = 1, 2, ..., 0 < \lambda \le 1$ where $\overline{X}_{t} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ (at time t), λ is a weight of the EWMA_{X-bar} statistic. Let $Z_0 = E(\overline{X}_i) = a_I b_I$, then $E(Z_i) = a_I b_I$ and $Var(Z_i) \cong \frac{\lambda}{2 - \lambda} \frac{a_I b_I^2}{n}$, as $t \to \infty$, when

 \overline{X}_{t} is the in-control distribution.

As $t \rightarrow \infty$, the approximate control limits of the EWMA_{X-bar} control chart is

$$UCL = E(Z_t) + L_1 \sqrt{Var(Z_t)} = a_I b_I + L_1 \sqrt{\frac{\lambda}{2 - \lambda} \frac{a_I b_I^2}{n}}$$
$$CL = E(Z_t) = a_I b_I$$

$$LCL = E(Z_t) - L_2 \sqrt{Var(Z_t)} = a_1 b_1 - L_2 \sqrt{\frac{\lambda}{2 - \lambda} \frac{a_1 b_1^2}{n}}$$

where UCL is upper control limit, LCL is lower control limit, CL is central limit, L_1 is the coefficient of UCL and L_2 is the coefficient of LCL.

2.4 Calculation of Average Run Length for the EWMA_{X-bar} Chart

We used the Markov chain to calculate *ARL*, referring to Saccucci and Lucas (1990).

The procedure is as follows:

- Step1. Divide the interval between the upper and lower control limits into g=2m+1, the number of states, sub-intervals of width 2δ , where $\delta = \frac{UCL LCL}{2g}$.
- Step2. Define state $j=(S_j \delta, S_j + \delta)$, j=-m,...-1,0,1,...,m, and S_j as the

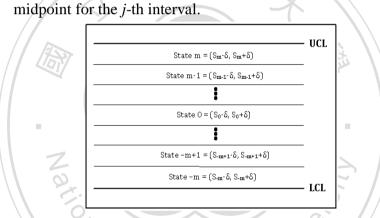


Figure 2-2. States between the Control Limits of EWMA_{X-bar} Chart

Step3. The statistic $Z_{t,j}$ is in transient state *j* at time *t*, if $S_j - \delta < Z_{t,j} \le S_j + \delta$ for $-m \le j \le m$

Step4. The transition probability matrix for the transient state is

$$R = [p_{t-1,t}(jk)], j, k=-m,..., -1, 0, 1,..., m$$

where
$$p_{t-1,t}(jk) = P(S_k - \delta < Z_{t,k} \le S_k + \delta | S_j - \delta < Z_{t-1,j} \le S_j + \delta)$$

$$= P(S_k - \delta < Z_{t,k} \le S_k + \delta | Z_{t-1,j} = S_j)$$

$$= P(S_k - \delta < \lambda \overline{X}_{t,k} + (1 - \lambda)Z_{t-1,k} \le S_k + \delta | Z_{t-1,j} = S_j)$$

$$= P(\frac{(S_k - \delta) - (1 - \lambda)S_j}{\lambda} < \overline{X}_t \le \frac{(S_k + \delta) - (1 - \lambda)S_j}{\lambda})$$

Step5. Assume that the process begins from state 0; thus, $p_{zs} = (0,0,...,0,1,0,...,0,0)$.

Step6.

(1) Calculate zero-state ARL_0

$$ARL_{0} = p_{zs}^{T} (I - R_{I})^{-1} \vec{1}$$
(2-3)

where R_I is the transition probability matrix calculated by in-control gamma distribution, I is the g*g dimension identity matrix and $\overline{1}$ is the g*I dimension vector with all components are 1.

(2) Calculate zero-state ARL_1

$$ARL_{1} = p_{zs}^{T} (I - R_{o})^{-1} \overline{1}$$
(2-4)

where R_O is the transition probability matrix calculated by out-of-control gamma distribution, I is the g*g dimension identity matrix and $\vec{1}$ is the g*I dimension vector with all components are 1.

2.5 Determining Control Limit Coefficient on EWMA_{X-bar} Control Chart under Different n and λ

We determine the control limit coefficient by using the following step:

- Step1. Determine the UCL coefficient (L_1) of the EWMA_{X-bar} control chart. With *n*, a_I , b_I , and λ , let LCL=0 and ARL₀=740 to solve L_1 using the routine "uniroot" in the R program. Hence, UCL is determined.
- Step2. Determine the *LCL* coefficient (L_2) of the EWMA_{X-bar} control chart. With *UCL*, let *ARL*₀=370 to solve L_2 by using the routine "uniroot" in the R program. Hence, the economic EWMA_{X-bar} control chart is constructed.

We then obtain a combination (λ, L_1, L_2) for given n, a_I, b_I , and λ with $ARL_0=370$.

	v_{l-2} , ARL_{0-3} / v and $g=501$																	
λ (L_1,L_2) λ	2		3		4		5		6		7		8		9		10	
0.05	2.666	2.300	2.623	2.346	2.597	2.373	2.580	2.392	2.567	2.406	2.557	2.417	2.549	2.425	2.542	2.433	2.537	2.439
0.1	3.075	2.339	3.001	2.407	2.957	2.449	2.927	2.477	2.905	2.498	2.888	2.515	2.874	2.528	2.863	2.539	2.853	2.549
0.2	3.506	2.280	3.383	2.379	3.310	2.441	3.260	2.484	3.224	2.516	3.195	2.541	3.172	2.561	3.153	2.578	3.138	2.592
0.3	3.785	2.185	3.622	2.308	3.526	2.384	3.460	2.438	3.411	2.478	3.374	2.509	3.344	2.535	3.319	2.557	3.298	2.575
0.4	3.996	2.087	3.801	2.228	3.685	2.316	3.606	2.378	3.548	2.425	3.503	2.462	3.466	2.493	3.436	2.518	3.411	2.539
0.5	4.165	1.991	3.943	2.147	3.811	2.245	3.721	2.315	3.654	2.368	3.603	2.410	3.561	2.444	3.527	2.473	3.498	2.497
0.6	4.300	1.899	4.057	2.067	3.912	2.175	3.813	2.252	3.739	2.310	3.682	2.356	3.637	2.394	3.599	2.426	3.567	2.453
0.7	4.404	1.811	4.146	1.991	3.990	2.108	3.884	2.191	3.806	2.254	3.745	2.304	3.696	2.346	3.655	2.380	3.620	2.410
0.8	4.480	1.728	4.210	1.920	4.048	2.045	3.937	2.135	3.855	2.203	3.791	2.257	3.739	2.302	3.696	2.339	3.660	2.371
0.9	4.527	1.653	4.250	1.859	4.084	1.993	3.969	2.090	3.885	2.163	3.819	2.221	3.766	2.268	3.722	2.308	3.685	2.342

Table 2-1. The solved L_1 and L_2 under various combinations of λ and n for $a_1=1.5$,

b_I=2, *ARL*₀=370 and *g*=301

We plot L_1 or L_2 at various *n*, which is shown in Figs. 2-3 and 2-4, respectively.

The value of L_1 decrease and L_2 almost increase as *n* increase or λ decrease.

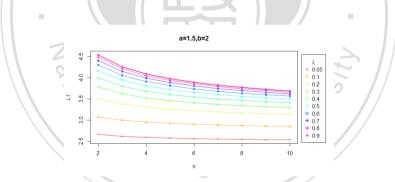


Figure 2-3. The Value of L_1 under Various *n* at $ARL_0=370$, $a_1=1.5$, $b_1=2$ and g=301

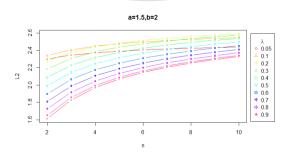


Figure 2-4. The Value of L_2 under Various *n* at $ARL_0=370$, $a_I=1.5$, $b_I=2$ and g=301

	<i>V</i> ₁ =0.203, <i>I</i> (<i>L</i> ₀ =370 and g=301																	
λ (L_1, L_2) λ	2		3		4		5		6		7		8		9		10	
0.05	2.496	2.483	2.491	2.488	2.491	2.488	2.494	2.486	2.497	2.482	2.502	2.478	2.507	2.473	2.512	2.468	2.518	2.462
0.1	2.775	2.626	2.758	2.643	2.749	2.653	2.743	2.659	2.739	2.662	2.737	2.665	2.735	2.667	2.734	2.668	2.734	2.669
0.2	3.007	2.713	2.978	2.741	2.961	2.758	2.949	2.770	2.941	2.778	2.934	2.784	2.929	2.789	2.925	2.794	2.921	2.797
0.3	3.126	2.729	3.088	2.766	3.065	2.787	3.049	2.802	3.038	2.813	3.029	2.822	3.022	2.829	3.016	2.834	3.011	2.839
0.4	3.205	2.722	3.158	2.765	3.130	2.791	3.112	2.809	3.098	2.822	3.087	2.833	3.078	2.841	3.071	2.848	3.065	2.854
0.5	3.262	2.705	3.208	2.755	3.176	2.784	3.155	2.805	3.139	2.820	3.127	2.832	3.117	2.841	3.108	2.849	3.101	2.856
0.6	3.305	2.684	3.246	2.739	3.211	2.772	3.187	2.795	3.169	2.812	3.155	2.825	3.144	2.835	3.135	2.844	3.127	2.852
0.7	3.338	2.663	3.274	2.722	3.236	2.758	3.210	2.783	3.191	2.801	3.176	2.816	3.164	2.827	3.154	2.837	3.146	2.845
0.8	3.363	2.643	3.295	2.707	3.255	2.746	3.227	2.772	3.207	2.791	3.191	2.807	3.179	2.819	3.168	2.829	3.159	2.838
0.9	3.378	2.628	3.308	2.695	3.266	2.736	3.238	2.763	3.217	2.784	3.201	2.800	3.188	2.813	3.177	2.823	3.168	2.832

Table 2-2. The solved L_1 and L_2 under various combinations of λ and *n* for a_1 =24.349,

*b*₁=0.205, *ARL*₀=370 and *g*=301

We plot L_1 or L_2 at various n, which is shown in Figs. 2-5 and 2-6, respectively.

The value of L_1 decrease and L_2 almost increase as *n* increase or λ decrease.

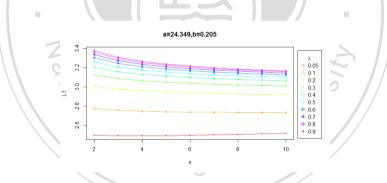


Figure 2-5. The Value of L_1 under Various *n* at $ARL_0=370$, $a_1=24.349$, $b_1=0.205$ and

g=301

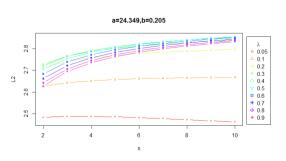


Figure 2-6. The Value of L_2 under Various *n* at $ARL_0=370$, $a_I=24.349$, $b_I=0.205$ and g=301

	<i>b</i> [-0.202, <i>M</i> (2)-3/0 and g-301																	
λ (L_1, L_2)	2	2		3	2	1	1	5	(5	, ,	7	8	3	()	1	0
0.05	2.718	2.246	2.666	2.300	2.635	2.333	2.613	2.356	2.597	2.373	2.585	2.386	2.575	2.397	2.567	2.406	2.560	2.413
0.1	3.165	2.259	3.075	2.339	3.021	2.389	2.985	2.423	2.957	2.449	2.936	2.468	2.919	2.485	2.905	2.498	2.893	2.510
0.2	3.657	2.163	3.506	2.280	3.416	2.352	3.355	2.403	3.310	2.441	3.275	2.471	3.247	2.495	3.224	2.516	3.204	2.533
0.3	3.984	2.044	3.785	2.185	3.666	2.274	3.585	2.337	3.526	2.384	3.479	2.422	3.442	2.452	3.411	2.478	3.385	2.500
0.4	4.234	1.928	3.996	2.087	3.854	2.189	3.757	2.261	3.685	2.316	3.630	2.360	3.585	2.395	3.548	2.425	3.517	2.451
0.5	4.434	1.818	4.165	1.991	4.003	2.104	3.893	2.184	3.811	2.245	3.748	2.294	3.697	2.334	3.654	2.368	3.619	2.397
0.6	4.594	1.714	4.300	1.899	4.123	2.020	4.001	2.108	3.912	2.175	3.842	2.229	3.786	2.273	3.739	2.310	3.700	2.342
0.7	4.717	1.616	4.404	1.811	4.216	1.941	4.086	2.035	3.990	2.108	3.916	2.166	3.856	2.214	3.806	2.254	3.764	2.289
0.8	4.806	1.523	4.480	1.728	4.283	1.866	4.148	1.967	4.048	2.045	3.970	2.108	3.907	2.159	3.855	2.203	3.810	2.241
0.9	4.860	1.437	4.527	1.653	4.325	1.801	4.186	1.909	4.084	1.993	4.003	2.061	3.939	2.116	3.885	2.163	3.839	2.203

Table 2-3. The solved L_1 and L_2 under various combinations of λ and n for $a_1=1$,

 $b_I = 0.202$, $ARL_0 = 370$ and g = 301

We plot L_1 or L_2 at various *n*, which is shown in Figs. 2-7 and 2-8, respectively.

The value of L_1 decrease and L_2 almost increase as *n* increase or λ decrease.

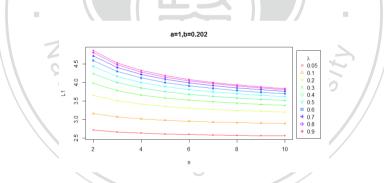


Figure 2-7. The Value of L_1 under Various *n* at $ARL_0=370$, $a_1=1$, $b_1=0.202$ and g=301

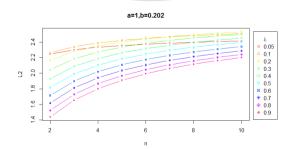


Figure 2-8. The Value of L_2 under Various *n* at $ARL_0=370$, $a_I=1$, $b_I=0.202$ and g=301

2.6 Determining the Best λ in the EWMA_{X-bar} Chart under Different δ_1 , δ_2 and *n*

We use L_1 and L_2 in Table 2-1, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-4 at $a_1=1.5$, $b_1=2$, $\delta_1=0.1$, $\delta_2=0.05$, and g=301.

			0		0				
$\begin{array}{c} n \\ ARL_{I} \\ \lambda \end{array}$	2	3	4	5	6	7	8	9	10
0.05	134.33	102.74	83.83	71.23	62.22	55.46	50.18	45.96	42.49
0.1	173.51	133.99	108.98	91.77	79.25	69.75	62.31	56.33	51.43
0.2	228.61	184.38	153.69	131.23	114.14	100.73	89.95	81.12	73.76
0.3	265.27	222.07	190.04	165.42	145.97	130.24	117.28	106.44	97.25
0.4	291.10	250.95	219.65	194.64	174.24	157.33	143.07	130.93	120.47
0.5	309.69	273.30	243.80	219.45	199.06	181.78	166.92	154.06	142.82
0.6	323.11	290.50	263.27	240.26	220.54	203.48	188.59	175.50	163.88
0.7	332.53	303.46	278.69	257.32	238.71	222.34	207.83	194.89	183.28
0.8	338.65	312.69	290.33	270.79	253.54	238.16	224.36	211.91	200.61
0.9	341.63	318.19	298.07	280.41	264.68	250.56	237.74	226.05	215.36

Table 2-4. The Value of ARL_1 under Various *n* and λ at $a_1=1.5$, $b_1=2$, $\delta_1=0.1$, $\delta_2=0.05$, g=301 and $ARL_0=370$

According to Table 2-4, to minimize ARL_1 , 0.05 is the best λ for n=2,...,10.

We use L_1 and L_2 in Table 2-2, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-5 at $a_I=24.349$, $b_I=0.205$, $\delta_I=0.919$, $\delta_2=0.06$, and g=301.

			-	-						
	ARL_{I}	2	3	4	5	6	7	8	9	10
	0.05	4.23	3.47	3.03	2.74	2.52	2.35	2.23	2.13	2.06
F	0.1	3.56	2.89	2.52	2.28	2.12	2.00	1.91	1.83	1.76
ſ	0.2	3.07	2.45	2.12	1.91	1.75	1.63	1.52	1.43	1.34
	0.3	2.89	2.25	1.92	1.70	1.54	1.42	1.32	1.24	1.18
ſ	0.4	2.85	2.15	1.80	1.58	1.43	1.31	1.23	1.16	1.11
	0.5	2.89	2.11	1.73	1.51	1.36	1.25	1.17	1.12	1.08
	0.6	3.01	2.12	1.70	1.47	1.32	1.21	1.14	1.10	1.06
	0.7	3.23	2.17	1.71	1.45	1.30	1.20	1.13	1.08	1.05
ĺ	0.8	3.54	2.27	1.74	1.46	1.29	1.19	1.12	1.08	1.05
	0.9	3.97	2.44	1.81	1.49	1.30	1.19	1.12	1.07	1.05

Table 2-5. The Value of ARL_1 under Various *n* and λ at a_1 =24.349, b_1 =0.205, δ_1 =0.919, δ_2 =0.06, g=301 and ARL_0 =370

According to Table 2-5, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-6.

- 1 - 1

				<i>,</i> 1			
п	2	3	h4er	105ch	6		7
λ	0.4	0.5	0.6	0.7	0.8	0.8	0.9
L_1	3.205	3.208	3.211	3.21	3.207	3.191	3.201
L_2	2.722	2.755	2.772	2.783	2.791	2.807	2.8
п	8	3	9		10		
λ	0.8	0.9	0.9	0.7	0.8	0.9	
L_1	3.179	3.188	3.177	3.146	3.159	3.168	
-		0.000					\ \

Table 2-6. Combination of λ , *n*, *L*₁ and *L*₂ with Minimum *ARL*₁

We use L_1 and L_2 in Table 2-2, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-7 at $a_I=24.349$, $b_I=0.205$, $\delta_I=16.983$, $\delta_2=-0.045$, and g=301.

λ	2	3	4	5	6	7	8	9	10
0.05	4.42	3.63	3.17	2.87	2.64	2.45	2.29	2.17	2.09
0.1	3.72	3.02	2.62	2.36	2.18	2.07	1.99	1.93	1.88
0.2	3.22	2.55	2.21	2.00	1.85	1.73	1.62	1.51	1.41
0.3	3.07	2.36	2.01	1.79	1.62	1.49	1.37	1.27	1.19
0.4	3.08	2.27	1.88	1.65	1.47	1.34	1.24	1.16	1.10
0.5	3.22	2.24	1.81	1.56	1.38	1.26	1.17	1.11	1.06
0.6	3.51	2.28	1.78	1.51	1.33	1.21	1.13	1.08	1.05
0.7	3.98	2.40	1.80	1.49	1.30	1.19	1.11	1.07	1.04
0.8	4.73	2.61	1.86	1.50	1.30	1.18	1.10	1.06	1.03
0.9	5.85	2.96	1.98	1.54	1.31	1.18	1.10	1.06	1.03

Table 2-7. The Value of ARL_1 under Various *n* and λ at a_1 =24.349, b_1 =0.205, δ_1 =16.983, δ_2 =-0.045, g=301 and ARL_0 =370

According to Table 2-7, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-8.

п	2	3	41	eŋa	chie	5		7
λ	0.3	0.5	0.6	0.7	0.7	0.8	0.8	0.9
L_l	3.126	3.208	3.211	3.21	3.191	3.207	3.191	3.201
L_2	2.729	2.755	2.772	2.783	2.801	2.791	2.807	2.8
п	8	8	()	1	0		I
$\frac{n}{\lambda}$	0.8	8 0.9	0.8	0.9	1 0.8	0 0.9		

Table 2-8. Combination of λ , n, L_1 and L_2 with Minimum ARL_1

We use L_1 and L_2 in Table 2-2, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-9 at $a_I=24.349$, $b_I=0.205$, $\delta_I=-8.741$, $\delta_2=0.123$, and g=301.

λ n ARL_1 λ	2	3	4	5	6	7	8	9	10
0.05	68.69	57.75	50.29	44.84	40.66	37.35	34.65	32.40	30.50
0.1	64.82	55.51	48.76	43.62	39.58	36.30	33.60	31.32	29.38
0.2	60.84	53.73	48.18	43.71	40.04	36.98	34.37	32.12	30.18
0.3	58.58	52.85	48.17	44.27	40.96	38.12	35.66	33.51	31.60
0.4	57.15	52.38	48.36	44.92	41.93	39.32	37.02	34.96	33.13
0.5	56.21	52.17	48.68	45.63	42.93	40.53	38.38	36.44	34.68
0.6	55.61	52.15	49.11	46.39	43.96	41.76	39.76	37.94	36.27
0.7	55.23	52.26	49.60	47.20	45.00	43.00	41.16	39.46	37.89
0.8	54.98	52.46	50.15	48.02	46.06	44.25	42.57	41.00	39.54
0.9	54.83	52.70	50.71	48.86	47.12	45.50	43.98	42.54	41.20

Table 2-9. The Value of *ARL*₁ under Various *n* and λ at *a*₁=24.349, *b*₁=0.205, δ_1 =-8.741, δ_2 =0.123, *g*=301 and *ARL*₀=370

According to Table 2-9, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-10.

					, 1				-
n	2	3	4	nser	106C	7	8	9	10
λ	0.9	0.6	0.3	0.1	0.1	0.1	0.1	0.1	0.1
L_1	3.378	3.246	3.065	2.494	2.497	2.502	2.507	2.512	2.518
L_2	2.628	2.739	2.787	2.486	2.482	2.478	2.473	2.468	2.462

Table 2-10. Combination of λ , *n*, *L*₁ and *L*₂ with Minimum *ARL*₁

We use L_1 and L_2 in Table 2-2, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-11 at $a_1=24.349$, $b_1=0.205$, $\delta_1=9.452$, $\delta_2=-0.097$, and g=301.

ARL_{I}	2	3	4	5	6	7	8	9	10
0.05	5.26	4.29	3.73	3.34	3.09	2.95	2.80	2.62	2.42
0.1	4.38	3.53	3.09	2.79	2.52	2.30	2.14	2.06	2.02
0.2	3.70	2.94	2.50	2.23	2.08	2.01	1.96	1.90	1.82
0.3	3.44	2.65	2.27	2.06	1.94	1.83	1.70	1.56	1.43
0.4	3.35	2.52	2.14	1.93	1.75	1.59	1.44	1.30	1.20
0.5	3.41	2.47	2.05	1.79	1.58	1.41	1.27	1.17	1.10
0.6	3.62	2.46	1.97	1.67	1.45	1.30	1.18	1.11	1.06
0.7	4.04	2.52	1.92	1.58	1.37	1.22	1.13	1.07	1.04
0.8	4.83	2.69	1.92	1.54	1.32	1.18	1.10	1.05	1.03
0.9	6.33	3.05	2.00	1.53	1.29	1.16	1.08	1.04	1.02

Table 2-11. The Value of *ARL*₁ under Various *n* and λ at *a*₁=24.349, *b*₁=0.205, δ_1 =9.452, δ_2 =-0.097, *g*=301 and *ARL*₀=370

According to Table 2-11, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-12.

n	2	3	4	1 Ch	eŋa	C 6	7	8	9	10
λ	0.4	0.6	0.7	0.8	0.9	0.9	0.9	0.9	0.9	0.9
L_{l}	3.205	3.246	3.236	3.255	3.238	3.217	3.201	3.188	3.177	3.168
L_2	2.722	2.739	2.758	2.746	2.763	2.784	2.8	2.813	2.823	2.832

Table 2-12. Combination of λ , n, L_1 and L_2 with Minimum ARL_1

We use L_1 and L_2 in Table 2-3, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-13 at $a_1=1$, $b_1=0.202$, $\delta_1=0$, $\delta_2=0.077$, and g=301.

		Ľ	$D_2 = 0.07$	r, g=301	and m	$L_0 - 570$			
ARL ₁	2	3	4	5	6	7	8	9	10
0.05	24.93	18.87	15.60	13.52	12.06	10.97	10.12	9.44	8.87
0.1	27.11	19.52	15.58	13.15	11.49	10.29	9.37	8.64	8.05
0.2	34.26	23.62	18.08	14.72	12.48	10.89	9.70	8.78	8.05
0.3	42.05	28.87	21.78	17.43	14.52	12.45	10.92	9.74	8.80
0.4	49.62	34.51	26.06	20.75	17.15	14.57	12.65	11.17	10.00
0.5	56.67	40.21	30.64	24.47	20.21	17.12	14.79	12.99	11.56
0.6	63.06	45.76	35.34	28.44	23.58	20.00	17.28	15.15	13.45
0.7	68.68	51.00	39.99	32.52	27.16	23.15	20.06	17.61	15.64
0.8	73.50	55.80	44.46	36.58	30.83	26.45	23.03	20.30	18.07
0.9	77.43	60.02	48.58	40.48	34.45	29.80	26.12	23.14	20.70

Table 2-13. The Value of ARL_1 under Various *n* and λ at $a_1=1$, $b_1=0.202$, $\delta_1=0$, $\delta_2=0.077$, g=301 and $ARL_0=370$

According to Table 2-13, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-14.

п	2	3	4	5	6	7	8	9	1	0
λ	0.05	0.05	0.1	0.1	0.1 ₀	C0.1	0.1	0.1	0.1	0.2
L_1	2.718	2.666	3.021	2.985	2.957	2.936	2.919	2.905	2.983	3.204
L_2	2.246	2.3	2.389	2.423	2.449	2.468	2.485	2.498	2.51	2.533

Table 2-14. Combination of λ , n, L_1 and L_2 with Minimum ARL_1

We use L_1 and L_2 in Table 2-3, to ensure that $ARL_0=370$, The ARL_1 under various λ and *n* are illustrated in Table 2-15 at $a_1=1$, $b_1=0.202$, $\delta_1=0$, $\delta_2=0.442$, and g=301.

		o_2 -	0.442,	g-301	and m	$L_0 - J$	0		
$\begin{array}{c} & n \\ ARL_{1} \\ \lambda \end{array}$	2	3	4	5	6	7	8	9	10
0.05	3.76	3.05	2.65	2.38	2.19	2.05	1.94	1.84	1.76
0.1	3.31	2.64	2.28	2.04	1.88	1.75	1.65	1.56	1.49
0.2	3.04	2.37	2.01	1.79	1.63	1.52	1.43	1.36	1.30
0.3	3.02	2.29	1.92	1.69	1.54	1.43	1.34	1.28	1.23
0.4	3.10	2.29	1.89	1.66	1.50	1.39	1.30	1.24	1.19
0.5	3.23	2.34	1.91	1.65	1.49	1.37	1.29	1.22	1.17
0.6	3.40	2.42	1.94	1.67	1.49	1.37	1.28	1.22	1.17
0.7	3.60	2.52	2.00	1.70	1.51	1.38	1.29	1.22	1.17
0.8	3.82	2.65	2.08	1.75	1.54	1.40	1.30	1.23	1.17
0.9	4.05	2.79	2.17	1.81	1.58	1.43	1.32	1.24	1.18

Table 2-15. The Value of ARL_1 under Various *n* and λ at $a_1=1$, $b_1=0.202$, $\delta_1=0$, $\delta_2=0.442$, g=301 and $ARL_0=370$

According to Table 2-15, we find the best combination of λ and *n* with minimum *ARL*₁. They are summarized in Table 2-16.

n	2		39/	4	5		5		7
λ	0.3	0.3	0.4	0.4	0.5	0.5	0.6	0.5	0.6
L_l	3.984	3.785	3.996	3.854	3.893	3.811	3.912	3.748	3.842
L_2	2.044	2.185	2.087	2.189	2.184	2.245	2.175	2.294	2.229
n	8		9			1	0	I	
$\frac{n}{\lambda}$	8 0.6	0.5	9 0.6	0.7	0.5	1 0.6	0 0.7	0.8	
n λ L_1	-	0.5 3.654	-	0.7 3.806	0.5 3.619		-	0.8 3.81	

Table 2-16. Combination of λ , n, L_1 and L_2 with Minimum ARL_1

We summarize all the best λ under various *n* in Tables 2-4, 2-5,..., 2-16 as follows:

				mean	s.d.					n				
a_I	b_I	δ_{1}	δ_2	shift	shift	2	3	4	5	6	7	8	9	10
				scale	scale				T	he best	λ			
1.5	2	0.1	0.05	0.114	1.058	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
24.349	0.205	0.919	0.06	1.685	1.317	0.4	0.5	0.6	0.7	0.8	0.8, 0.9	0.8, 0.9	0.9	0.7, 0.8, 0.9
24.349	0.205	16.983	-0.045	1.603	1.017	0.3	0.5	0.6	0.7	0.7, 0.8	0.8, 0.9	0.8, 0.9	0.8, 0.9	0.8, 0.9
24.349	0.205	-8.741	0.123	0.126	1.281	0.9	0.6	0.3	0.1	0.1	0.1	0.1	0.1	0.1
24.349	0.205	9.452	-0.097	-1.326	0.621	0.4	0.6	0.7, 0.8	0.9	0.9	0.9	0.9	0.9	0.9
1	0.202	0	0.077	0.381	1.381	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1, 0.2
1	0.202	0	0.442	2.188	3.188	0.3	0.3, 0.4	0.4	0.5	0.5, 0.6	0.5, 0.6	0.6	0.5, 0.6, 0.7	0.5, 0.6, 0.7, 0.8

Table 2-17. The Best λ in Tables 2-4, 2-5,..., 2-16.

In Table 2-17, the value of the mean shift scale and the value of the s.d. shift scale are calculated as follow:

mean shift scale =
$$\frac{a_o b_o - a_I b_I}{\sqrt{a_I b_I^2}}$$
 and s.d. shift scale = $\frac{\sqrt{a_o b_o^2}}{\sqrt{a_I b_I^2}}$

According to Table 2-17, *n* significantly affects the value of the best λ when both the mean shift scale and the s.d. shift scale have a large value. In addition, the larger the mean shift scale or s.d. shift scale, the larger the value of the best λ .

CHAPTER 3. DERIVATION OF THE PROFIT MODEL WITHOUT PRODUCER INSPECTION

3.1 Derivation of Expected Cycle Time

In Sections 3.1 and 3.2, we derive the profit model, referring to Panagos, Heikes, and Montgomery (1985).

We begin with the following assumptions:

- (1) The process has a single assignable cause. The time until occurrences of the assignable cause is the exponential distribution with θ mean per unit time.
- (2) The process starts in the in-control state.
- (3) When the assignable cause occurs, both parameters of gamma distribution *a* and *b* shift to $a+\delta_1$ and $b+\delta_2$, respectively.
- (4) For every *h* unit time, a sample size *n* is taken, and its average is plotted on the EWMA_{X-bar} control chart.
- (5) The manufacturing continues when the assignable cause is searched.

Similar to Figure 3-1, the cycle starts in the in-control state, and then the assignable cause occurs, becoming an out-of-control state, an $EWMA_{X-bar}$ statistic falls outside the control limits, the result is tested and interpreted, and an assignable cause is then found and repaired.

Because the time until an assignable cause occurrence is the exponential distribution with θ mean per unit time, the expected time of the in-control state is $1/\theta$. The expected time of shift occurrence in the sampling time *h* is $\tau \cong \frac{h}{2} - \frac{\theta h^2}{12}$. The expected time of the out-of-control state is $h/(1-\beta)$, where $1-\beta$ is the power of the control chart. The time to test and interpret the results is equal to e^*n and the time to find and repair an assignable cause is equal to *D*.

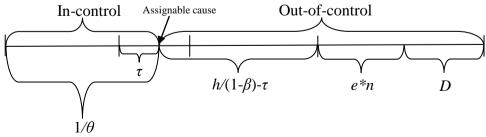


Figure 3-1. Continuous Process Cycle.

Because we use the EWMA_{X-bar} control chart, we calculate α and β as follows:

$$\alpha = \frac{1}{ARL_0} \tag{3-1}$$

$$\beta = 1 - \frac{1}{ARL_1} \tag{3-2}$$

where ARL₀ and ARL₁ are calculated using Equations 2-3 and 2-4, respectively.

Hence, the expected cycle time is

$$ET = \frac{1}{\theta} + h(ARL_1 - \frac{1}{2} + \frac{\theta h}{12}) + en + D$$
(3-3)

3.2 Derivation of the Expected Cycle Profit

The quality variable, which we consider, is the smaller the better; therefore, we use the quadratic Taguchi loss function, as follows:

$$L = k_c X^2 \tag{3-4}$$

where X > 0 is the quality variable and k_c is the coefficient of loss function.

If the producer decides not to inspect products, then the expected cost per unit item using the quadratic Taguchi loss function is

$$E(L) = k_c \left[E(X)^2 + Var(X) \right]$$
(3-5)

Hence, in the in-control state, the expected cost per unit item is

$$\ell_{I} = k_{c} \left[E(X_{I})^{2} + Var(X_{I}) \right] = k_{c} \left(a_{I}^{2} b_{I}^{2} + a_{I} b_{I}^{2} \right)$$
(3-6)

and, in the out-of-control state, the expected cost per unit item is

$$\ell_{o} = k_{c} \left[E(X_{o})^{2} + Var(X_{o}) \right] = k_{c} \left[(a_{I} + \delta_{1})^{2} (b_{I} + \delta_{2})^{2} + (a_{I} + \delta_{1}) (b_{I} + \delta_{2})^{2} \right]$$
(3-7)

Assume that the sale price for conformable product is P_C , but the sale price for unconformable product is P_U , and $P_C > P_U$. We let the sale price for product without inspection is

$$P_W = P_C * P(X_I < USL) + P_U * P(X_I > USL)$$
(3-8)

Hence, in the in-control state, the expected net profit per unit time is

$$EP_I = (P_W - \ell_I) * R \tag{3-9}$$

where R is the number of products per unit time.

Similarly, in the out-of-control state, the expected net profit per unit time is $EP_o = (P_w - \ell_o) * R$ (3-10)

We include the cost of investigating a false alarm which is *T*, the cost of taking a sample, is s_0+s_1*n , and the cost of finding and repairing an assignable cause which is *W*.

Hence, the expected cycle profit is

$$EP = EP_{I} \frac{1}{\theta} - \frac{T}{\theta h A R L_{0}} + EP_{O} \left[h (A R L_{1} - \frac{1}{2} + \frac{\theta h}{12}) + en + D \right] - \frac{(s_{0} + s_{1}n)ET}{h} - W \quad (3-11)$$

Therefore, the expected profit per unit time is

$$EAP = \frac{EP}{ET}$$
(3-12)

3.3 Determining Optimum Design Parameters of the Economic EWMA_{X-bar} Control Chart

The procedure to determine n^* , h^* , and (λ, L_1, L_2) of the economic EWMA_{X-bar} control chart without producer inspection is as follows:

bengchi

Step1. Let n=2.

- Step2. Determine the UCL coefficient (L_1) of the EWMA_{X-bar} control chart. With *a*, *b*, and λ , let LCL=0 and ARL₀=740 to solve L_1 by using the routine "uniroot" in the R program. Hence, UCL is determined.
- Step3. Determine the *LCL* coefficient (L_2) of the EWMA_{X-bar} control chart. With *UCL*, let *ARL*₀=370 to solve L_2 using the routine "uniroot" in the R program. Hence, the economic EWMA_{X-bar} control chart is constructed.

Step4. We use the routine "DEoptim" of the R program for global optimization by differential evolution to maximize *EAP*, subject to $0.5 \le h \le 8$. Hence, h^* is determined. If EAP(n+1) is greater than EAP(n), then we choose EAP(n+1) to become EAP^* .

Step5. Let n=n+1, $3 \le n \le 25$. Proceed to Step2.

3.4 An Example

For the gamma distribution parameters, we let $a_I = 1.5$, $b_I = 2$, $\delta_I = 0.1$, and $\delta_2 = 0.05$ which are same as that in Table 2-4. For cycle time and profit parameters, we let $\theta = 0.01$, e = 0.05, D = 20, T = 250, $s_0 = 5$, $s_1 = 0.1$, and W = 500. We let $P_C = 300$, $P_U = 150$, and R = 200. We also set USL=8.66; thus, $P_W = 294.875$.

According to Table 2-4, with minimize ARL_1 , λ =0.05 at n=2,3,...,10. Because it takes a significant time to conduct optimization by the differential evolution, we choose λ =0.05, 0.5 and 1 and g=101, where the EWMA_{X-bar} chart with λ =1 is the same as the X-bar probability chart. We compare the optimum results for profit model with λ =1, 0.5, and 0.05 as follows:

λ	1	0.5	0.05
L_{l}	3.438	3.303	2.604
L_2	2.571	2.668	2.387
<i>n</i> *	25	25	25
h^*	0.5	eng 0.5	0.5
EAP*	26621.1	27246.47	27738.33
ARL_1	135.66	63.02	22.94
UCL*	4.684	3.934	3.204
LCL*	1.741	2.245	2.813

Table 3-1. Optimum Results of Profit Model under Three Different λ

According to Table 3-1, n^* and h^* are the same in three types of optimum results, but we have the largest EAP^* , the smallest ARL_1 , and the narrowest chart when we use the economic EWMA_{X-bar} chart with λ =0.05. The table shows that λ affects the optimum result significantly. Therefore, we suggest that the producer use the economic EWMA_{X-bar} chart with λ =0.05 and take 25 samples every 0.5 unit time to obtain 27738.3 profits per unit time.

3.5 Sensitivity Analysis and Comparing the Results with $\lambda = 1$

In sensitivity analysis, we choose two levels of parameters in orthogonal arrays $L_{20}(2^{19})$, which is designed by Plackett and Burman (1946), as follows:

	k_c, A, IC, R	δ_{l}	δ_2	θ	е	D	s_0	<i>s</i> ₁	W	Т	P_C, P_U
level 1	10,600,0.1,200	6.5	0.03	0.05	0.5	20	5	1	500	250	500,200
level 2	5,100,0.05,1000	3.5	-0.01	0.01	0.05	3	0.5	0.1	50	35	300,150

Table 3-2. Level of Parameters

Exp.	k_c, A, IC, R	δ_{l}	δ_2	θ	е	D	<i>S</i> 0	<i>s</i> ₁	W	Т	P_C, P_U
1	10,600,0.1,200	6.5	0.03	0.05	0.05	3	5	1	50	250	500,200
2	10,600,0.1,200	6.5	0.03	0.01	0.05	20	5	0.1	500	250	300,150
3	10,600,0.1,200	6.5	-0.01	0.05	0.5	3	0.5	0.1	50	250	300,150
4	10,600,0.1,200	6.5	-0.01	0.01	0.5	20	0.5	1	500	35	300,150
5	10,600,0.1,200	6.5	-0.01	0.01	0.05	3	5	0.1	500	35	500,200
6	10,600,0.1,200	3.5	0.03	0.05	0.5	20	0.5	0.1	500	250	300,150
7	10,600,0.1,200	3.5	0.03	0.05	0.05	3	0.5	0.1	500	35	500,200
8	10,600,0.1,200	3.5	0.03	0.01	0.5	20	5	1	50	35	500,200
9	10,600,0.1,200	3.5	-0.01	0.05	0.5	3	5	1	50	35	300,150
10	10,600,0.1,200	3.5	-0.01	0.01	0.05	20	0.5	1	50	250	500,200
11	5,100,0.05,1000	6.5	0.03	0.05	0.5	3	0.5	1	500	35	500,200
12	5,100,0.05,1000	6.5	0.03	0.01	0.5	20	0.5	0.1	50	35	500,200
13	5,100,0.05,1000	6.5	0.03	0.01	0.05	3	0.5	1	50	250	300,150
14	5,100,0.05,1000	6.5	-0.01	0.05	0.5	20	5	0.1	50	250	500,200
15	5,100,0.05,1000	6.5	-0.01	0.05	0.05	20	5	1	500	35	300,150
16	5,100,0.05,1000	3.5	0.03	0.05	0.05	20	5	0.1	50	35	300,150
17	5,100,0.05,1000	3.5	0.03	0.01	0.5	3	5	1	500	250	300,150
18	5,100,0.05,1000	3.5	-0.01	0.05	0.05	20	0.5	1	500	250	500,200
19	5,100,0.05,1000	3.5	-0.01	0.01	0.5	3	5	0.1	500	250	500,200
20	5,100,0.05,1000	3.5	-0.01	0.01	0.05	3	0.5	0.1	50	35	300,150

Table 3-3. Parameters for Each Experiment

In Table 3-4, we let $a_I = 25$ and $b_I = 0.2$ to maximize *EAP* and determine optimum n^* and h^* at each experiment, subject to $2 \le n \le 25$ and $0.5 \le h \le 8$. The optimum results are solved as follows:

	Optimum res	sults for	r pro	ofit r	nodel w	Optimum results for profit model with λ =0.05							
Exp.	EAP*	ARL_1	n*	h^*	UCL*	LCL*	EAP*	ARL ₁	n^*	h^*	UCL*	LCL*	
1	39491.38	1.09	5	0.5	6.449	3.764	38425.31	2.06	6	0.5	5.185	4.852	
2	-1643.75	1.09	5	0.5	6.449	3.764	-1850.61	2.06	6	0.5	5.185	4.852	
3	1699.77	4.51	6	0.5	6.314	3.864	2114.75	6.07	3	0.5	5.249	4.784	
4	3568.72	4.51	6	0.5	6.314	3.864	3676.62	6.07	3	0.5	5.249	4.784	
5	47096.10	1.45	14	0.5	5.840	4.236	46958.37	2.72	15	0.5	5.109	4.902	
6	-11767.50	2.29	4	0.5	6.634	3.632	-11836.72	4.64	2	0.5	5.298	4.732	
7	42136.44	1.19	8	0.5	6.128	4.006	41358.06	2.21	10	0.5	5.143	4.885	
8	41089.50	2.29	4	0.5	6.634	3.632	41050.95	4.64	2	0.5	5.298	4.732	
9	3892.49	10.99	18	0.5	5.737	4.322	4772.07	11.46	6	0.5	5.185	4.852	
10	46241.96	6.47	25	0.5	5.621	4.421	46298.41	5.67	18	0.5	5.092	4.904	
11	341940.72	2.38	2	0.5	7.390	3.142	340013.93	3.24	2	0.5	5.298	4.732	
12	344515.55	2.38	2	0.5	7.390	3.142	344106.96	3.24	2	0.5	5.298	4.732	
13	160898.13	1.09	5	0.5	6.449	3.764	160196.33	2.06	6	0.5	5.185	4.852	
14	339392.19	4.51	6	0.5	6.314	3.864	339790.00	6.07	3	0.5	5.249	4.784	
15	137503.35	1.45	14	0.5	5.840	4.236	137066.81	2.82	14	0.5	5.115	4.900	
16	118678.91	1.19	8	0.5	6.128	4.006	118010.50	2.21	10	0.5	5.143	4.885	
17	160562.21	2.29	4	0.5	6.634	3.632	160422.99	4.64	2	0.5	5.298	4.732	
18	357863.35	6.47	25	0.5	5.621	4.421	358052.43	5.50	19	0.5	5.087	4.902	
19	366626.34	10.99	18	0.5	5.737	4.322	367588.80	10.45	\mathcal{J}	0.5	5.172	4.863	
20	164254.35	6.47	25	0.5	5.621	4.421	164405.92	5.39	20	0.5	5.082	4.899	

Table 3-4. Optimum Results in Each Experiment

According to Table 3-4, at Experiment 3, 4, 9, 10, 14, 18, 19, and 20 the profit model with λ =0.05 has larger *EAP** than the profit model with λ =1. We find δ_1 =3.5 and δ_2 =-0.01 are very small shift at Experiment 9, 10, 18, 19, and 20. The δ_1 =6.5, δ_2 =-0.01 and *e*=0.5 are small shift, but *e* is large at Experiments 3, 4, and 14.

At Experiment 10, 18, and 20, the profit model with λ =0.05 has larger *EAP** and smaller *ARL*₁ than the profit model with λ =1. For these three experiments with larger *EAP**, we find δ_1 =3.5 and δ_2 =-0.01 are very small, also *e*=0.05 and *s*₀=0.5, are small.

We use the optimum results for profit model with λ =0.05 in Table 3-4 to plot the response figures (from Figure 3-2. to 3-7.) and determine the parameters that affects optimum value significantly.

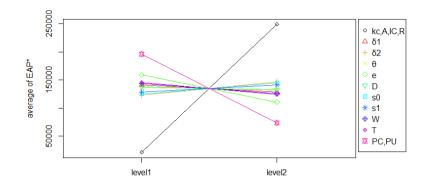


Figure 3-2. Response Figure of $\overline{EAP^*}$

According to Figure 3-2, (k_c, A, IC, R) and (P_C, P_U) are the most significant. The smaller the (k_c, A, IC, R) , the larger the EAP^* , and the larger the (P_C, P_U) , the larger the EAP^* . The smaller the cost, the larger the profit is, and the larger the selling price, the larger the profit is.

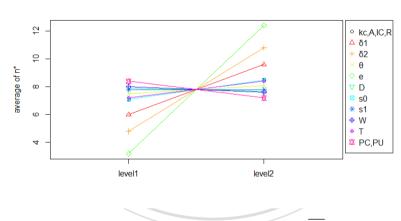


Figure 3-3. Response Figure of $\overline{n^*}$

According to Figure 3-3, δ_1 , δ_2 , and *e* are the most significant. The smaller the δ_1 , δ_2 or *e*, the larger the n^* is. The smaller shift in products necessitates more samples for testing. The term e^*n causes the parameter *e* to affect the optimum value n^* significantly.

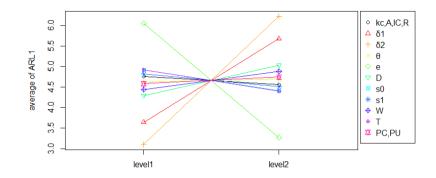


Figure 3-4. Response Figure of $\overline{ARL_1}$

According to Figure 3-4, δ_1 , δ_2 , and *e* are the most significant. The larger the δ_1 or δ_2 , the smaller the *ARL*₁ is, and also the smaller the *e*, the smaller the *ARL*₁ is. A larger shift results in larger power; hence, the smaller the *ARL*₁. The smaller the *e*, the larger the *n** is; hence, the smaller the *ARL*₁.

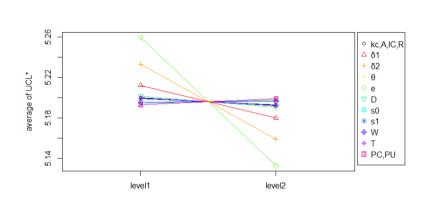


Figure 3-5. Response Figure of $\overline{UCL^*}$

According to Figure 3-5, δ_1 , δ_2 , and *e* are the most significant. The smaller the δ_1 , δ_2 or *e*, the smaller the *UCL** is. The smaller shift in products necessitates a narrower chart to test; hence, the smaller the *UCL**. The smaller the *e*, the larger the *n** is; hence, the smaller the *UCL**.

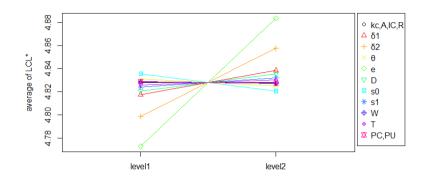


Figure 3-6. Response Figure of $\overline{LCL^*}$

According to Figure 3-6, δ_2 and *e* are the most significant. The smaller the δ_2 or *e*, the larger the *LCL** is. The smaller shift in products necessitates a narrower chart to test; hence, the larger the *LCL**. The smaller the *e*, the larger the *n** is; hence, the larger the *LCL**.

We use the value of EAP^* of the EWMA_{X-bar} chart with λ =0.05 minus the EAP^* of the EWMA_{X-bar} chart with λ =1 to plot the response figure and to determine the significant parameters.

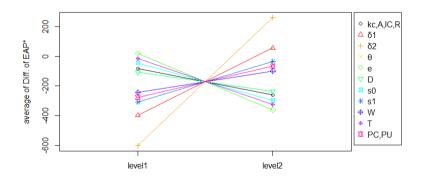


Figure 3-7. Response Figure of $\overline{\text{Difference of } EAP^*}$

According to Figure 3-7, δ_2 is the most significant. The smaller the δ_2 , the larger the difference of *EAP** is. The smaller the shift in *b*, the better performance of the EWMA_{X-bar} chart with λ =0.05. This is because the smaller the shift, the smaller λ we need.

CHAPTER 4. DERIVATION OF THE PROFIT MODEL WITH PRODUCER INSPECTION

4.1 Derivation of the Expected Cycle Time

We use the same assumptions in Section 3.1 and with or without inspection, we have the same formula of expected cycle time.

Hence, the same as Equation 3-3, the expected cycle time is

$$ET = \frac{1}{\theta} + h(ARL_1 - \frac{1}{2} + \frac{\theta h}{12}) + en + D$$
(4-1)

4.2 Derivation of the Expected Cycle Profit

Because the quality variable is the smaller the better, we have only the upper specification limit if the producer decides to inspect products. Hence, the quadratic Taguchi loss function is as follows:

$$L = \begin{cases} k_c X^2, & \text{if } X < USL \\ A, & \text{if } X > USL \end{cases}$$
(4-2)

where $USL = a_I b_I + \omega \sqrt{a_I b_I^2} \ge 0$ is the upper specification limit, X > 0 is the quality variable, k_c is the coefficient of loss function, and A is the cost of extra working for selling discount price P_U .

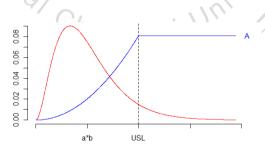


Figure 4-1. The Gamma Distribution and Taguchi Loss Function with Inspection

If the producer decides to inspect products, then the expected profit per unit item using the quadratic Taguchi loss function is

$$\int_{0}^{USL} (P_C - k_c x^2) f(x) dx + (P_U - A) \int_{USL}^{\infty} f(x) dx - IC$$
(4-3)

where f(x) is the p.d.f of the gamma distribution and IC is the inspection cost.

Hence, in the in-control state, the expected profit per unit time is

$$EP_{I} = \left[\int_{0}^{USL} (P_{C} - k_{c}x^{2})f_{I}(x)dx + (P_{U} - A)\int_{USL}^{\infty} f_{I}(x)dx - IC\right] * R$$

$$= \left[P_{C}\frac{\gamma(a_{I}, a_{I} + \omega\sqrt{a_{I}})}{\Gamma(a_{I})} - \frac{k_{c}b_{I}^{2}}{\Gamma(a_{I})}\gamma(a_{I} + 2, a_{I} + \omega\sqrt{a_{I}}) + (P_{U} - A)(1 - \frac{\gamma(a_{I}, a_{I} + \omega\sqrt{a_{I}})}{\Gamma(a_{I})}) - IC\right] * R$$

$$(4-4)$$

where $\gamma(a,t) = \int_{0}^{t} x^{a-1} e^{-x} dx$ is the lower incomplete gamma function.

Similarly, in the out-of-control state, the expected profit per unit time is

$$EP_{o} = \left[\int_{0}^{USL} (P_{c} - k_{c}x^{2})f_{o}(x)dx + (P_{u} - A)\int_{USL}^{\infty} f_{o}(x)dx - IC\right] * R$$

$$= \left[P_{c}\frac{\gamma(a_{o}, \frac{USL}{b_{o}})}{\Gamma(a_{o})} - \frac{k_{c}b_{o}^{2}}{\Gamma(a_{o})}\gamma(a_{o} + 2, \frac{USL}{b_{o}}) + (P_{u} - A)(1 - \frac{\gamma(a_{o}, \frac{USL}{b_{o}})}{\Gamma(a_{o})}) - IC\right] * R$$
(4-5)

Hence, the expected cycle profit is

$$EP = EP_{I}\frac{1}{\theta} - \frac{T}{\theta h ARL_{0}} + EP_{O}\left[h(ARL_{1} - \frac{1}{2} + \frac{\theta h}{12}) + en + D\right] - \frac{(s_{0} + s_{1}n)ET}{h} - W \quad (4-6)$$

Therefore, the expected profit per unit time is

$$EAP = \frac{EP}{ET}$$
(4-7)

4.3 Determining the Optimum Producer Inspection and Design Parameter of the Economic EWMA_{X-bar} Control Chart

The procedure to determine n^* , h^* , ω^* , and control limits of the economic EWMA_{X-bar} control chart with producer inspection is as follows:

Step1. Let *n*=2.

Step2. Determine the UCL coefficient (L_I) of the EWMA_{X-bar} control chart. With *a*, *b*, and λ , let LCL=0 and ARL₀=740 to solve L_I using the routine "uniroot" in the R program. Hence, UCL is determined.

- Step3. Determine the *LCL* coefficient (L_2) of the EWMA_{X-bar} control chart. With *UCL*, let *ARL*₀=370 to solve L_2 using the routine "uniroot" in the R program. Hence, the economic EWMA_{X-bar} control chart is constructed.
- Step4. We use the routine "DEoptim" of the R program to maximize *EAP*, subject to $0.5 \le h \le 8$ and $2 \le \omega$. We let $2 \le \omega$ to ensure that the yield is more than 0.95 for $a_I = 1.5$ and $b_I = 2$. Hence, h^* and ω^* are determined. If *EAP*(*n*+1) is greater than *EAP*(*n*), then we choose *EAP*(*n*+1) to become *EAP**.

Step5. Let n=n+1, $3 \le n \le 25$. Proceed to Step2.

4.4 Example and Optimum Results Comparison for with and without Producer Inspection

The same as Section 3.4, for the gamma distribution parameters, we let $a_I = 1.5$, $b_I = 2$, $\delta_I = 0.1$, and $\delta_2 = 0.05$. For cycle time and profit parameters, we let $\theta = 0.01$, e = 0.05, D = 20, T = 250, $s_0 = 5$, $s_1 = 0.1$, and W = 500. We also let $k_c = 10$, A = 600, IC = 0.1, $P_C = 300$, $P_U = 150$, and R = 200.

Similarly, we choose EWMA_{X-bar} chart with three different λ , and let g=101. We compare tolerance, design parameters, *EAP**, and *ARL*₁ as follows:

λ	1^{0}	eng 0.5	0.05
L_l	3.438	3.303	2.604
L_2	2.571	2.668	2.387
<i>n</i> *	25	25	25
h^*	0.5	0.5	0.5
ω^*	2.311	2.311	2.311
USL*	8.66	8.66	8.66
Yield	0.965834	0.965834	0.965834
EAP*	31379.35	31860.24	32238.47
ARL_1	135.66	63.02	22.94
UCL*	4.684	3.934	3.204
LCL*	1.741	2.245	2.813

Table 4-1. Optimum Results of Profit Model under Three Different λ

According to Table 4-1, n^* , h^* , and ω^* are the same in three types of optimum results, but we have the largest *EAP**, the smallest *ARL*₁, and the narrowest chart when we use the economic EWMA_{X-bar} chart with λ =0.05. The table shows that λ affects the optimum result significantly. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.05 and take 25 samples every 0.5 unit time to obtain 32238.47 profits per unit time.

For comparison of without inspection, we merged Tables 3-1 and 4-1 as follows:

λ		1 0.5		.5	0.	05		
Inspection	Without	With	Without	With	Without	With		
L_1	3.438	3.438	3.303	3.303	2.604	2.604		
L_2	2.571	2.571	2.668	2.668	2.387	2.387		
<i>n</i> *	25	25	25	25	25	25		
h^*	0.5	0.5	0.5	0.5	0.5	0.5		
EAP*	26621.1	31379.35	27246.47	31860.24	27738.33	32238.47		
ARL_1	135.66	135.66	63.02	63.02	22.94	22.94		
UCL*	4.684	4.684	3.934	3.934	3.204	3.204		
LCL*	1.741	1.741	2.245	2.245	2.813	2.813		

Table 4-2. Merging Tables 3-1 and 4-1

According to Table 4-2, with and without inspection, n^* , h^* , UCL^* , LCL^* , and ARL_1 are the same at each λ . However, the EAP^* , we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 16.2% profit per unit time when we have an inspection.
- (2) If λ =0.5, we increase 16.9% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 17.9% profit per unit time when we have an inspection.

Therefore, we suggest that the producer takes inspection with $USL^*=8.66$, use the economic EWMA_{X-bar} chart with $\lambda=0.05$ and take 25 samples every 0.5 unit time to obtain 32238.47 profit per unit time.

4.5 Sensitivity Analysis and Comparing the Results of EWMA_{X-bar} Chart with $\lambda = 1$

In sensitivity analysis, we use the same combinations of parameters in Table 3-3.

In Table 4-3, we let $a_I = 25$ and $b_I = 0.2$ maximize *EAP* and determine the optimum n^* , h^* , and ω^* at each combination of parameters, subject to $2 \le n \le 25$, $0.5 \le h \le 8$, and $2 \le \omega$. The optimum results are solved as follows:

	Optim	num results	for pr	ofit	mo	del wi	th $\lambda = 1$	1 Optimum results for profit model with λ =0.05						
Exp.	ω^*	EAP*	ARL_1	n*	h^*	UCL*	LCL*	ω^*	EAP*	ARL_1	n*	h^*	UCL*	LCL*
1	4.487	39686.39	1.09	5	0.5	6.449	3.764	4.487	38646.06	2.06	6	0.5	5.185	4.852
2	3.660	-941.02	1.09	5	0.5	6.449	3.764	3.660	-1133.29	2.06	6	0.5	5.185	4.852
3	3.660	1779.87	4.51	6	0.5	6.314	3.864	3.660	2191.23	6.07	3	0.5	5.249	4.784
4	3.660	3632.39	4.51	6	0.5	6.314	3.864	3.660	3739.40	6.07	3	0.5	5.249	4.784
5	4.487	47087.44	1.45	14	0.5	5.840	4.236	4.487	46949.93	2.72	15	0.5	5.109	4.902
6	3.660	-11075.92	2.29	4	0.5	6.634	3.632	3.660	-11142.79	4.64	2	0.5	5.298	4.732
7	4.487	42181.72	1.19	8	0.5	6.128	4.006	4.487	41410.73	2.21	10	0.5	5.143	4.885
8	4.487	41144.76	2.29	4	0.5	6.634	3.632	4.487	41106.61	4.64	2	0.5	5.298	4.732
9	3.660	3930.40	10.99	18	0.5	5.737	4.322	3.660	4807.32	11.46	6	0.5	5.185	4.852
10	4.487	46232.68	6.47	25	0.5	5.621	4.421	4.487	46289.11	5.67	18	0.5	5.092	4.904
11	3.944	343452.49	2.38	2	0.5	7.390	3.142	3.944	341621.67	3.24	2	0.5	5.298	4.732
12	3.944	345900.25	2.38	2	0.5	7.390	3.142	3.944	345512.01	3.24	2	0.5	5.298	4.732
13	2.071	167806.31	1.09	5	0.5	6.449	3.764	2.071	167337.93	2.06	6	0.5	5.185	4.852
14	3.944	339667.17	4.51	6	0.5	6.314	3.864	3.944	340063.00	6.07	3	0.5	5.249	4.784
15	2.071	146191.39	1.45	14	0.5	5.840	4.236	2.071	145807.34	2.82	14	0.5	5.115	4.900
16	2.071	134792.50	1.19	8	0.5	6.128	4.006	2.071	134277.64	2.21	10	0.5	5.143	4.885
17	2.071	167045.58	2.29	4	0.5	6.634	3.632	2.071	166939.27	4.64	2	0.5	5.298	4.732
18	3.944	358006.36	6.47	25	0.5	5.621	4.421	3.944	358195.16	5.50	19	0.5	5.087	4.902
19	3.944	366754.99	10.99	18	0.5	5.737	4.322	3.944	367715.87	10.45	7	0.5	5.172	4.863
20	2.071	169650.57	6.47	25	0.5	5.621	4.421	2.071	169792.39	5.39	20	0.5	5.082	4.899

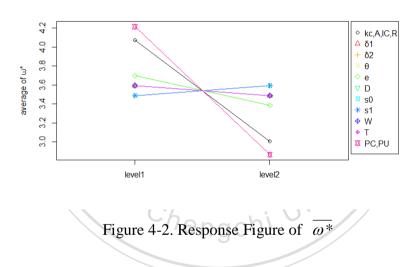
Table 4-3. Optimum Result in Each Experiment

According to Table 4-3, at Experiment 3, 4, 9, 10, 14, 18, 19, and 20 the profit model with λ =0.05 has larger *EAP** than the profit model with λ =1. We find δ_1 =3.5 and δ_2 =-0.01 are very small shift at Experiment 9, 10, 18, 19, and 20. The δ_1 =6.5, δ_2 =-0.01 and *e*=0.5 are small shift, but *e* is large at Experiments 3, 4, and 14.

At Experiment 10, 18, and 20, the profit model with λ =0.05 has larger *EAP** and smaller *ARL*₁ than the profit model with λ =1. For these three experiments with larger *EAP**, we find δ_1 =3.5 and δ_2 =-0.01 are very small, also *e*=0.05 and *s*₀=0.5, are small.

The ω^* , (P_C, P_U) , and (k_c, A, IC, R) at Experiment 2, 3, 4, 6, and 9 are same, respectively. The ω^* , (P_C, P_U) , and (k_c, A, IC, R) at Experiment 1, 5, 7, 8, and 10, are same, respectively. The ω^* , (P_C, P_U) , and (k_c, A, IC, R) at Experiment 11, 12, 14, 18, and 19, are same, respectively. The ω^* , (P_C, P_U) , and (k_c, A, IC, R) at Experiment 13, 15, 16, 17, and 20, are same, respectively. Hence, the ω^* depends only on the values of (P_C, P_U) and (k_c, A, IC, R) .

We use the optimum results for profit model with λ =0.05 in Table 4-3 to plot the response figures (from Figure 4-2. to 4-8.) and determine the parameters that affects optimum value significantly.



According to Figure 4-2, (P_C, P_U) and (k_c, A, IC, R) are the most significant. The larger (P_C, P_U) or (k_c, A, IC, R) , the larger ω^* . This means that the larger the selling price or cost, the larger the USL^* is.

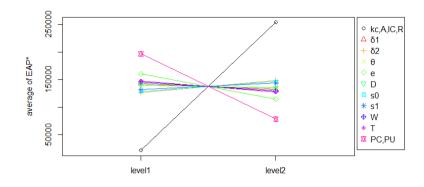


Figure 4-3. Response Figure of $\overline{EAP^*}$

According to Figure 4-3, (k_c, A, IC, R) and (P_C, P_U) are the most significant. The smaller the (k_c, A, IC, R) , the larger the EAP^* , and the larger the (P_C, P_U) , the larger the EAP^* . The smaller the cost, the larger the profit is, and the larger the selling price, the larger the profit is.

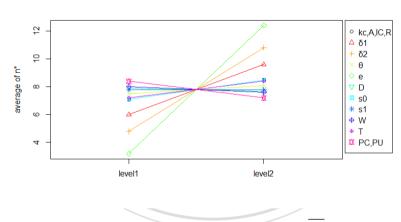


Figure 4-4. Response Figure of $\overline{n^*}$

According to Figure 4-4, δ_1 , δ_2 , and *e* are the most significant. The smaller the δ_1 , δ_2 or *e*, the larger the n^* is. The smaller shift in products necessitates more samples for testing. The term e^*n causes the parameter *e* to affect the optimum value n^* significantly.

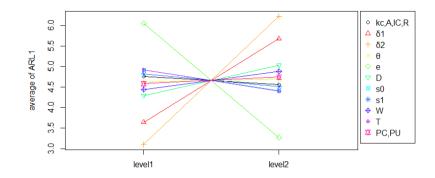


Figure 4-5. Response Figure of ARL₁

According to Figure 4-5, δ_1 , δ_2 , and *e* are the most significant. The larger the δ_1 or δ_2 , the smaller the *ARL*₁ is, and also the smaller the *e*, the smaller the *ARL*₁ is. A larger shift results in larger power; hence, the smaller the *ARL*₁. The smaller the *e*, the larger the *n** is; hence, the smaller the *ARL*₁.

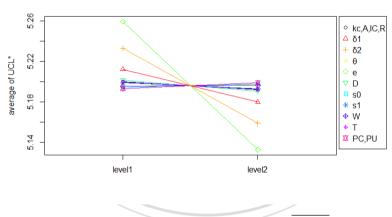


Figure 4-6. Response Figure of $\overline{UCL^*}$

According to Figure 4-6, δ_1 , δ_2 , and *e* are the most significant. The smaller the δ_1 , δ_2 or *e*, the smaller the *UCL** is. The smaller shift in products necessitates a narrower chart to test; hence, the smaller the *UCL**. The smaller the *e*, the larger the *n** is; hence, the smaller the *UCL**.

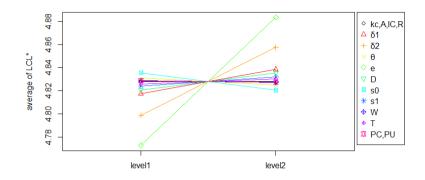


Figure 4-7. Response Figure of $\overline{LCL^*}$

According to Figure 4-7, δ_2 and *e* are the most significant. The smaller the δ_2 or *e*, the larger the *LCL** is. The smaller shift in products necessitates a narrower chart to test; hence, the larger the *LCL**. The smaller the *e*, the larger the *n** is; hence, the larger the *LCL**.

We use the value of EAP^* of the EWMA_{X-bar} chart with λ =0.05 minus the EAP^* of the EWMA_{X-bar} chart with λ =1 to plot the response figure and to determine the significant parameters.

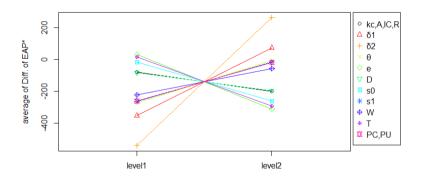


Figure 4-8. Response Figure of $\overline{\text{Difference of } EAP^*}$

According to Figure 4-8, δ_2 is the most significant. The smaller the δ_2 , the larger the difference of *EAP** is. The smaller the shift in *b*, the better performance of the EWMA_{X-bar} chart with λ =0.05. This is because the smaller the shift, the smaller λ we need.

CHAPTER 5. DETERMINING THE BEST λ OF THE ECONOMIC EWMA_{X-bar} CONTROL CHART UNDER DIFFERENT SHIFT SCALES IN THE MEAN AND VARIANCE

5.1 Data Description and Determining the Optimum Producer Inspection and the Design Parameters of the Economic EWMA_{X-bar} Control Chart

In this section, we use routine "rgamma" to simulate one type of in-control gamma distribution and five types of out-of-control gamma distributions.

We first simulate 25 samples of size 4 data from the in-control gamma distribution with a=25 and b=0.2, with a mean and variance of 5 and 1, respectively.

No.	simu	lation d	lata with	n <i>n</i> =4	\overline{X}	No.	simu	lation d	ata with	n <i>n</i> =4	\overline{X}
1	6.283	6.397	4.894	5.691	5.816	14	5.849	6.036	5.879	3.814	5.394
2	4.071	5.513	4.908	5.222	4.929	15	6.359	4.882	4.89	2.939	4.767
3	5.222	4.037	5.591	5.076	4.982	16	6.288	3.448	6.242	2.928	4.727
4	2.54	5.11	3.753	5.155	4.14	17	5.595	5.352	4.419	4.756	5.03
5	6.439	4.634	5.628	4.692	5.348	18	5.124	4.054	5.542	4.358	4.77
6	5.2	5.276	3.601	2.725	4.201	19	5.816	4.549	5.241	5.435	5.26
7	5.265	4.934	5.253	3.719	4.793	20	4.593	4.515	5.584	5.111	4.951
8	3.954	5.004	5.628	6.364	5.237	21	6.918	5.952	5.245	4.799	5.728
9	4.04	3.106	5.334	4.119	4.15	22	4.881	4.955	6.066	4.761	5.166
10	4.102	7.045	4.045	5.118	5.077	23	4.525	5.358	5.983	3.144	4.753
11	4.317	4.943	5.044	4.384	4.672	24	5.442	4.729	5.419	5.011	5.15
12	3	5.595	5.794	4.064	4.613	25	7.023	5.363	5.197	3.921	5.376
13	4.992	5.155	7.028	5.743	5.729					$\overline{\overline{X}}$	= 4.99

Table 5-1. In-control Data with Gamma (a=25, b=0.2)

As a producer, we do not know the parameters of the gamma distribution; thus, we used the MLE method, which maximizes cumulative products of p.d.f for given data to estimate \hat{a} and \hat{b} of the simulation data.

With 100 data in Table 5-1, we estimate the parameters of in-control data, and obtain $\hat{a}_I = 24.349$, $\hat{b}_I = 0.205$, Mean = $\hat{a}_I * \hat{b}_I = 4.99$, and Var = $\hat{a}_I * \hat{b}_I^2 = 1.023$.

For the following, we let n=4, $\theta=0.01$, e=0.05, D=20, T=250, $s_0=5$, $s_1=0.1$, W=500, $k_c=10$, A=600, IC=0.1, $P_C=300$, $P_U=150$, and R=200. If the producer decides not to inspect, we maximize *EAP* (Equation 3-12) to determine the optimum h^* , subject to $0.5 \le h \le 8$. If the producer decides to inspect, we maximize *EAP* (Equation 4-7) to determine the optimum h^* and ω^* , subject to $0.5 \le h \le 8$ and $2 \le \omega$.

I. To compare the profit model with different λ , we adopt moderate shifts in the mean and variance of out-of-control gamma data.

Let a=26 and b=0.25, that is, the out-of-control mean and variance are 6.5 and 1.625, respectively, which means $\delta_1=1$ and $\delta_2=0.05$. We simulate 15 samples of size 4 data from the out-of-control gamma distribution with a=26 and b=0.25, as follows:

Table 5.2. Out of control Data with Samma $(a=20, b=0.25)$										
No.	si	imulation d	ata with <i>n</i> =	4	\overline{X}					
1	5.745	7.612	4.765	6.292	6.103					
2	6.441	4.498	5.032	9.175	6.287					
3	7.145	6.166	5.624	7.499	6.608					
4	7.21	5.55	7.1	5.784	6.411					
5	5.971	6.097	7.355	5.414	6.209					
6	6.292	7.096	9.027	5.149	6.891					
7	4.741	6.698	7.71	6.21	6.34					
8	6.76	5.287	11.144	5.372	7.141					
9	5.447	6.346	6.172	6.578	6.136					
10	7.465	7.072	7.945	9.309	7.948					
11	8.298	4.874	5.87	6.009	6.263					
12	10.221	8.085	5.179	7.298	7.696					
13	5.417	6.453	6.746	6.935	6.388					
14	7.509	6.938	5.835	5.22	6.375					
15	9.154	7.477	8.304	5.888	7.706					
					$\overline{\overline{X}} = 6.7$					

Table 5-2. Out-of-control Data with Gamma (a=26, b=0.25)

With 60 data in Table 5-2, we estimate the parameters of out-of-control data, and obtain $\hat{a}_o = 25.268$, $\hat{b}_o = 0.265$, $\hat{\delta}_1 = 0.919$, $\hat{\delta}_2 = 0.006$, Mean = 6.7, and $\hat{Var} = 1.777$. Hence, we have a 1.685 mean shift scale and a 1.317 s.d. shift scale.

According to Table 2-17, to minimize ARL_1 , λ =0.6 is the best at *n*=4. Thus, we choose λ =1, 0.6, 0.05 and *g*=101. We compare the optimum results of profit model with λ =1, 0.6, and 0.05, as follows:

Inspection		Without			With	
λ	1	0.6	0.05	1	0.6	0.05
L_1	3.272	3.211	2.743	3.272	3.211	2.743
L_2	2.732	2.772	2.303	2.732	2.772	2.303
h^*	0.5	0.5	0.5	0.5	0.5	0.5
ω^*	-	-	_	3.627	3.627	3.627
USL*	-	ľ		8.66	8.66	8.66
Yield	-//	- 141	- 2	0.998884	0.998884	0.998884
EAP*	920.55	952.33	755.91	1327.2	1357.31	1171.23
P_W	299.833	299.833	299.833	1	l -	-
ARL ₁	1.94	1.71	3.11	1.94	1.71	3.11
UCL	6.646	6.055	5.214	6.646	6.055	5.214
LCL	3.61	4.074	4.805	3.61	4.074	4.805
first true alarm	- No.6	No.3	No. 4	No.6	No.3	No. 4
on which	(5	(13	(12	(5	(13	(12
sample	outliers)	outliers)	outliers)	outliers)	outliers)	outliers)

Table 5-3. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-3, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 54.9% profit per unit time when we have an inspection.
- (2) If λ =0.6, we increase 42.5% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 44.2% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.6, we have the largest *EAP** and smallest *ARL*₁ for the moderate shifts in the mean and variance. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.6 and take four samples every 0.5 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

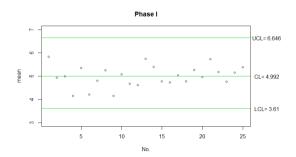


Figure 5-1. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-1 shows that no points are out of limits for in-control samples.

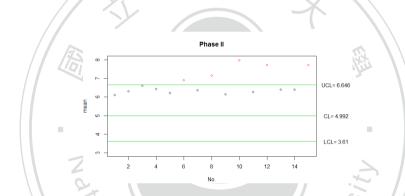


Figure 5-2. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-2 shows that No. 6, 8, 10, 12, and 15 are out of limits; the first true alarm is on No. 6.

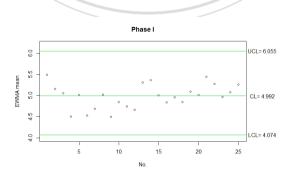


Figure 5-3. The Economic EWMA_{X-bar} Chart (λ =0.6) with In-control Data

For EWMA_{X-bar} chart with λ =0.6, Figure 5-3 shows that no points are out of limits for in-control samples.

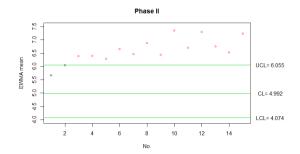


Figure 5-4. The Economic EWMA_{X-bar} Chart (λ =0.6) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.6, Figure 5-4 shows that No. 3 to No. 15 are out of limits; the first true alarm is on No. 3.

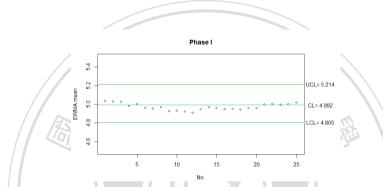


Figure 5-5. The Economic EWMA_{X-bar} Chart (λ =0.05) with In-control Data

For EWMA_{X-bar} chart with λ =0.05, Figure 5-5 shows that no points are out of limits for in-control samples.

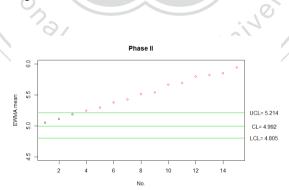


Figure 5-6. The Economic EWMA_{X-bar} Chart (λ =0.05) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.05, Figure 5-6 shows that No. 4 to No. 15 are out of limits; the first true alarm is on No. 4.

II. To compare the profit model with different λ , we adopt small shifts in the mean and variance of out-of-control gamma data.

Let *a*=28 and *b*=0.21, that is, the out-of-control mean and variance are 5.88 and 1.2348, respectively, which means δ_1 =3 and δ_2 =0.01. We simulate 15 samples of size 4 data from the out-of-control gamma distribution with *a*=28 and *b*=0.21, as follows:

No.	S	imulation d	ata with <i>n</i> =	4	\overline{X}
1	6.156	5.224	7.595	6.145	6.28
2	5.026	4.593	8.429	6.001	6.012
3	5.205	5.889	4.731	3.281	4.776
4	4.828	5.989	4.256	4.911	4.996
5	7.144	7.129	5.382	6.513	6.542
6	5.664	5.578	6.608	6.595	6.111
7	7.939	4.867	5.966	6.424	6.299
8	5.524	5.661	7.156	6.023	6.091
9	5.271	5.992	5.396	7.1	5.94
10	7.212	5.952	7.16	5.058	6.345
11	7.683	5.009	6.831	5.237	6.19
12	6.226	4.889	4.416	5.096	5.157
13	5.478	4.99	5.898	6.196	5.641
14	6.961	6.639	4.215	6.964	6.195
15	5.797	7.595	7.614	7.204	7.053
		Chan	achi \	J. /	$\overline{\overline{X}} = 5.975$

Table 5-4. Out-of-control Data with Gamma (a=28, b=0.21)

With 60 data in Table 5-4, we estimate the parameters of out-of-control data, and obtain $\hat{a}_o = 30.883$, $\hat{b}_o = 0.193$, $\hat{\delta}_1 = 6.534$, $\hat{\delta}_2 = -0.012$, Mean = 5.975, and

 $\hat{Var} = 1.156$. Hence, we have a 0.974 mean shift scale and a 1.063 s.d. shift scale.

We choose $\lambda=1$, 0.5, 0.05 and g=101, where the EWMA_{X-bar} chart with $\lambda=1$ is the same as the X-bar probability chart. We compare the optimum results of profit model with $\lambda=1$, 0.5, and 0.05, as follows:

Inspection		Without			With	
λ	1	0.5	0.05	1	0.5	0.05
L_{l}	3.272	3.178	2.743	3.272	3.178	2.743
L_2	2.732	2.784	2.303	2.732	2.784	2.303
h*	0.5	0.5	0.5	0.5	0.5	0.5
ω^*	-	-	_	3.627	3.627	3.627
USL*	-	ľ		8.66	8.66	8.66
Yield	-//	171	Ň	0.998884	0.998884	0.998884
EAP*	3763.32	4134.25	4039.73	3832.9	4200.45	4106.79
P_W	299.833	299.833	299.833		<u>_</u>	-
ARL ₁	9.16	4.01	5.3	9.16	4.01	5.3
UCL	6.646	5.92	5.214	6.646	5.92	5.214
LCL	3.61	4.179	4.805	3.61	4.179	4.805
first true alarm	No.15	No.6	No.7	No.15	No.6	No.7
on which	(1	(8	(9	(1	(8	(9
sample	outlier)	outliers)	outliers)	outlier)	outliers)	outliers)

Table 5-5. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-5, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 1.66% profit per unit time when we have an inspection.
- (2) If λ =0.5, we increase 1.6% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 1.85% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.5, we have the largest *EAP** and smallest *ARL*₁ for the small shifts in the mean and variance. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.5 and take four samples every 0.5 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

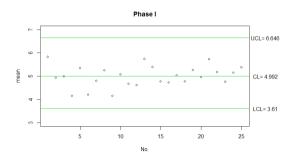


Figure 5-7. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-7 shows that no points are out of limits for in-control samples.

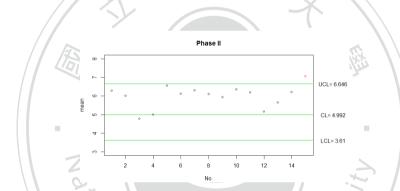


Figure 5-8. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-8 shows that No. 15 is out of limits; the first true alarm is on No. 15.

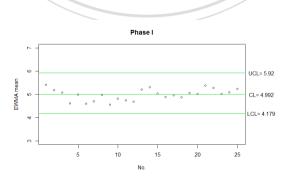


Figure 5-9. The Economic EWMA_{X-bar} Chart (λ =0.5) with In-control Data

For EWMA_{X-bar} chart with λ =0.5, Figure 5-9 shows that no points are out of limits for in-control samples.

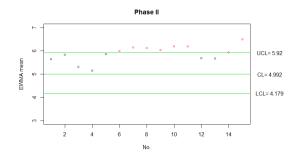


Figure 5-10. The Economic EWMA_{X-bar} Chart (λ =0.5) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.5, Figure 5-10 shows that No. 6 to No. 11, 14, and 15 are out of limits; the first true alarm is on No. 6.

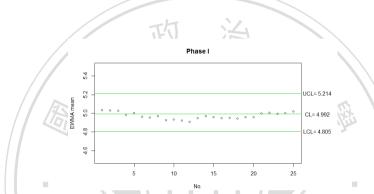


Figure 5-11. The Economic EWMA_{X-bar} Chart (λ =0.05) with In-control Data

For EWMA_{X-bar} chart with λ =0.05, Figure 5-11 shows that no points are out of limits for in-control samples.

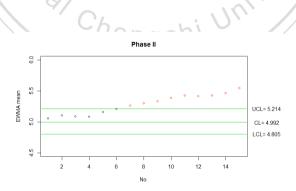


Figure 5-12. The Economic EWMA_{X-bar} Chart (λ =0.05) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.05, Figure 5-12 shows that No. 7 to No. 15 are out of limits; the first true alarm is on No. 7.

III. To compare the profit model with different λ , we adopt only moderate shifts in the mean of out-of-control gamma data.

Let a=42.45 and b=0.154, that is, the out-of-control mean and variance are 6.5 and 1, respectively, which means $\delta_1=17.25$ and $\delta_2=-0.046$. We simulate 15 samples of size 4 data from the out-of-control gamma distribution with a=42.45 and b=0.154, as follows:

No.	si	imulation d	ata with <i>n</i> =	4	\overline{X}
1	5.211	6.206	8.77	6.833	6.755
2	6.232	6.273	7.556	6.781	6.71
3	7.759	6.392	4.876	6.144	6.293
4	8.373	7.25	6.74	5.986	7.087
5	5.014	7.998	5.377	5.547	5.984
6	7.65	5.385	5.822	6.622	6.37
7	7.911	6.213	10.067	6.721	7.728
8	7.416	5.252	6.553	6.646	6.467
9	6.259	7.502	5.828	7.118	6.677
10	4.747	5.193	7.432	6.134	5.876
11	25.911	7.173	6.807	6.404	6.574
12	7.335	6.388	6.383	6.643	6.687
13	6.699	8.889	5.93	5.889	6.852
14	6.41	4.786	5.894	7.576	6.167
15	6.871	6.969	7.435	5.815	6.773
		- 611	yum		$\overline{\overline{X}} = 6.6$

Table 5-6. Out-of-control Data with Gamma (a=42.45, b=0.154)

With 60 data in Table 5-6, we estimate the parameters of out-of-control data, and obtain $\hat{a}_o = 41.331$, $\hat{b}_o = 0.16$, $\hat{\delta}_1 = 16.983$, $\hat{\delta}_2 = -0.045$, Mean = 6.6, and $\hat{Var} = 1.05$. Hence, we have a 1.603 mean shift scale and a 1.017 s.d. shift scale.

According to Table 2-17, to minimize ARL_1 , λ =0.6 is the best at *n*=4. Thus, we choose λ =1, 0.6, 0.05 and *g*=101, where the EWMA_{X-bar} chart with λ =1 is the same as the X-bar probability chart. We compare the optimum results of profit model with λ =1, 0.6, and 0.05, as follows:

Inspection		Without			With	
λ	1	0.6	0.05	1	0.6	0.05
L_l	3.272	3.211	2.743	3.272	3.211	2.743
L_2	2.732	2.772	2.303	2.732	2.772	2.303
h^*	0.5	0.5	0.5	0.5	0.5	0.5
ω*	-	-	-	3.627	3.627	3.627
USL*	-//	TAT	X	8.66	8.66	8.66
Yield		LX		0.998884	0.998884	0.998884
EAP*	1569.48	1622.3	1436.81	1691.04	1743.11	1560.23
P_W	299.833	299.833	299.833	-	-	-
ARL_1	2.2	1.78	3.24	2.2	1.78	3.24
UCL	6.646	6.055	5.214	6.646	6.055	5.214
LCL	3.61	4.074	4.805	3.61	4.074	4.805
first true alarm on	No.1	No.2	No.3	No.1	No.2	No.3
which sample	(8	(14	(13	(8	(14	(13
which sample	outliers)	outliers)	outliers)	outliers)	outliers)	outliers)

Table 5-7. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-7, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 8.6% profit per unit time when we have an inspection.
- (2) If λ =0.6, we increase 7.4% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 7.7% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.6, we have the largest *EAP** and smallest *ARL*₁ for the only moderate shifts in the mean. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.6 and take four samples every 0.5 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

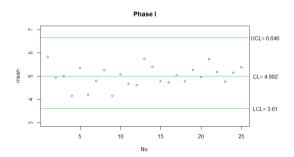


Figure 5-13. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-13 shows that no points are out of limits for in-control samples.

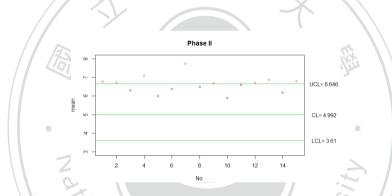


Figure 5-14. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-14 shows that No. 1, 2, 4, 7, 9, 12, 13, and 15 are out of limits; the first true alarm is on No. 1.

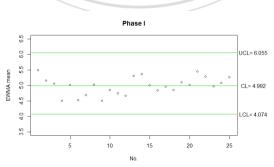


Figure 5-15. The Economic EWMA_{X-bar} Chart (λ =0.6) with In-control Data

For EWMA_{X-bar} chart with λ =0.6, Figure 5-15 shows that no points are out of limits for in-control samples.

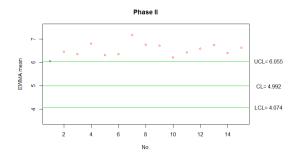


Figure 5-16. The Economic EWMA_{X-bar} Chart (λ =0.6) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.6, Figure 5-16 shows that No. 2 to No. 15 are out of limits; the first true alarm is on No. 2.

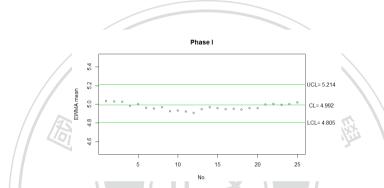


Figure 5-17. The Economic EWMA_{X-bar} Chart (λ =0.05) with In-control Data

For EWMA_{X-bar} chart with λ =0.05, Figure 5-17 shows that no points are out of limits for in-control samples.

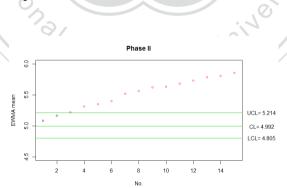


Figure 5-18. The Economic EWMA_{X-bar} Chart (λ =0.05) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.05, Figure 5-18 shows that No. 3 to No. 15 are out of limits; the first true alarm is on No. 3.

IV. To compare the profit model with different λ , we adopt only moderate shifts in the variance of out-of-control gamma data.

Let a=15.385 and b=0.325, that is, the out-of-control mean and variance are 5 and 1.625, respectively, which means $\delta_1=-9.615$ and $\delta_2=0.125$. We simulate 15 samples of size 4 data from the out-of-control gamma distribution with a=15.385 and b=0.325, as follows:

No.	S	imulation d	ata with <i>n</i> =	4	\overline{X}
1	5.783	4.26	7.003	4.471	5.379
2	5.485	4.479	7.158	3.814	5.234
3	4.143	7.228	7.417	4.916	5.926
4	6.487	5.547	2.772	4.822	4.907
5	5.967	4.88	5.348	3.423	4.904
6	4.063	3.395	5.573	2.929	3.99
7	5.252	4.555	6.222	4.037	5.016
8	3.769	4.488	2.513	4.25	3.755
9	4.227	7.095	4.826	5.706	5.463
10	4.821	4.497	6.032	4.128	4.87
11	25.136	4.276	7.218	5.864	5.624
12	4.27	4.185	7.084	5.688	5.307
13	6.958	3.505	6.282	4.767	5.378
14	4.593	3.912	4.769	7.98	5.313
15	5.699	7,59	4.129	5.879	5.824
		.61	yuu.		$\overline{\overline{X}} = 5.126$

Table 5-8. Out-of-control Data with Gamma (a=15.385, b=0.325)

With 60 data in Table 5-8, we estimate the parameters of out-of-control data, and obtain $\hat{a}_o = 15.608$, $\hat{b}_o = 0.328$, $\hat{\delta}_1 = -8.741$, $\hat{\delta}_2 = 0.123$, Mean = 5.126, and $\hat{Var} = 1.684$. Hence, we have a 0.126 mean shift scale and a 1.281 s.d. shift scale.

According to Table 2-17, to minimize ARL_1 , λ =0.3 is the best at *n*=4. Thus, we choose λ =1, 0.3, 0.05 and *g*=101, where the EWMA_{X-bar} chart with λ =1 is the same as the X-bar probability chart. We compare the optimum results of profit model with λ =1, 0.3, and 0.05,, as follows:

Inspection		Without			With	
λ	1	0.3	0.05	1	0.3	0.05
L_{l}	3.272	3.071	2.743	3.272	3.071	2.743
L_2	2.732	2.784	2.303	2.732	2.784	2.303
h^*	0.5	0.5	0.5	0.5	0.5	0.5
ω^*	-	ŗ	-	3.627	3.627	3.627
USL*	- //	- 1/1	-2	8.66	8.66	8.66
Yield	<u> </u>	LX LX		0.998884	0.998884	0.998884
EAP*	6800.75	6828.18	6725.84	6895.95	6921.99	6824.86
P_W	299.833	299.833	299.833		-	-
ARL ₁	51.4	48.56	59.45	51.4	48.56	59.45
UCL	6.646	5.644	5.214	6.646	5.644	5.214
LCL	3.61	4.4	4.805	3.61	4.4	4.805
first true alarm on	No true	No true	No true	No true	No true	No true
which sample	alarm	alarm	alarm	alarm	alarm	alarm

Table 5-9. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-9, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 1.5% profit per unit time when we have an inspection.
- (2) If λ =0.3, we increase 1.4% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 1.4% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.3, we have the largest *EAP** and smallest *ARL*₁ for the only moderate shifts in the variance. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.3 and take four samples every 0.5 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

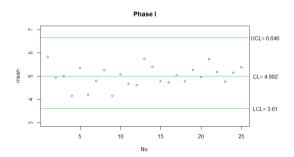


Figure 5-19. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-19 shows that no points are out of limits for in-control samples.

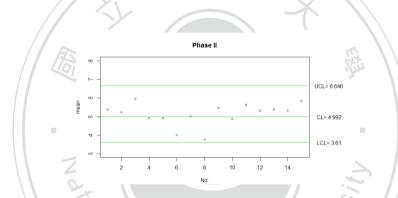


Figure 5-20. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-20 shows that no points are out of limits; it has no true alarm.

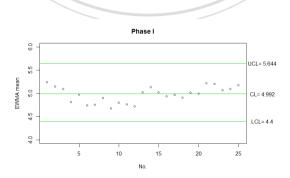


Figure 5-21. The Economic EWMA_{X-bar} Chart (λ =0.3) with In-control Data

For EWMA_{X-bar} chart with λ =0.3, Figure 5-21 shows that no points are out of limits for in-control samples.

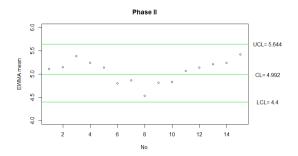


Figure 5-22. The Economic EWMA_{X-bar} Chart (λ =0.3) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.3, Figure 5-22 shows that no points are out of limits; it has no true alarm.

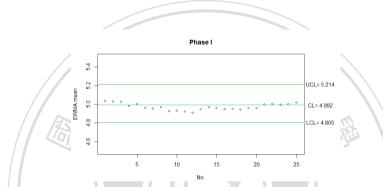


Figure 5-23. The Economic EWMA_{X-bar} Chart (λ =0.05) with In-control Data

For EWMA_{X-bar} chart with λ =0.05, Figure 5-23 shows that no points are out of limits for in-control samples.

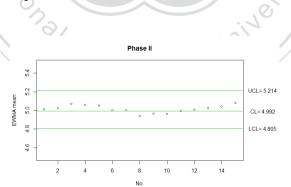


Figure 5-24. The Economic EWMA_{X-bar} Chart (λ =0.05) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.05, Figure 5-24 shows that no points are out of limits; it has no true alarm.

V. To compare the profit model with different λ , we adopt only small shifts in the variance of out-of-control gamma data.

Let a=15.385 and b=0.325, that is, the out-of-control mean and variance are 5 and 1.625, respectively, which means $\delta_1=-9.615$ and $\delta_2=0.125$. We simulate 15 samples of size 4 data from the out-of-control gamma distribution with a=15.385 and b=0.325, as follows:

No.	S	\overline{X}			
1	3.461	5.507	6.388	3.679	4.759
2	3.152	3.912	3.297	4.57	3.733
3	4.175	3.619	3.699	5.961	4.363
4	5.62	5.381	6.398	3.62	5.255
5	4.68	3.814	5.188	5.141	4.706
6	3.949	5.531	6.154	5.891	5.381
7	5.054	4.684	6.065	5.079	5.22
8	6.155	3.538	3.748	4.434	4.469
9	7.259	5.163	5.59	5.38	5.848
10	6.283	6.908	5.931	6.023	6.287
11	4.941	4.361	6.621	3.688	4.903
12	4.891	5.098	5.064	4.271	4.831
13	4.771	5.773	7.21	4.154	5.477
14	4.146	6.678	4.142	4.289	4.814
15	5.892	5.977	5.689	4.045	5.401
		GU	yum		$\overline{\overline{X}} = 5.03$

Table 5-10. Out-of-control Data with Gamma (a=15.385, b=0.325)

With 60 data in Table 5-10, we estimate the parameters of out-of-control data, and obtain $\hat{a}_o = 22.087$, $\hat{b}_o = 0.228$, $\hat{\delta}_1 = -2.261$, $\hat{\delta}_2 = 0.023$, Mean = 5.03, and $\hat{Var} = 1.145$. Hence, we have a 0.039 mean shift scale and a 1.058 s.d. shift scale. We choose $\lambda=1$, 0.2, 0.05 and g=101, where the EWMA_{X-bar} chart with $\lambda=1$ is the same as the X-bar probability chart. We compare the optimum results of profit model with $\lambda=1$, 0.2, and 0.05, as follows:

Inspection		Without		With				
λ	1	0.2	0.05	1	0.2	0.05		
L_1	3.272	2.976	2.743	3.272	2.976	2.743		
L_2	2.732	2.747	2.303	2.732	2.747	2.303		
h^*	0.5	0.5	0.5	0.5	0.5	0.5		
ω*	-	-	-	3.627	3.627	3.627		
USL*	-	-	-	8.66	8.66	8.66		
Yield	- //	- 14	N	0.998884	0.998884	0.998884		
EAP*	7488.64	7491.52	7456.01	7528.7	7531.53	7496.61		
P_W	299.833	299.833	299.833		-	-		
ARL_1	223.6	220.6	260.48	223.6	220.6	260.48		
UCL	6.646	5.493	5.214	6.646	5.493	5.214		
LCL	3.61	4.528	4.805	3.61	4.528	4.805		
first true alarm on	No true	No true	No true	No true	No true	No true		
which sample	alarm	alarm	alarm	alarm	alarm	alarm		

Table 5-11. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-11, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.05, we increase 0.5% profit per unit time when we have an inspection.
- (2) If λ =0.2, we increase 0.5% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 0.5% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.2, we have the largest *EAP** and smallest *ARL*₁ for the only small shifts in the variance. Therefore, we suggest that the producer takes inspection with *USL**=8.66, use the economic EWMA_{X-bar} chart with λ =0.2 and take four samples every 0.5 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

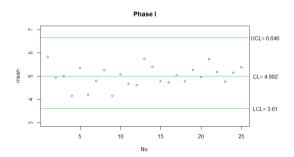


Figure 5-25. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-25 shows that no points are out of limits for in-control samples.

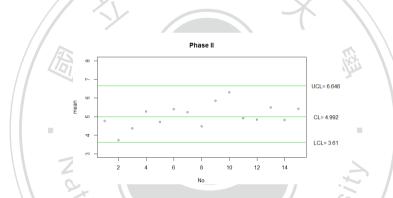


Figure 5-26. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-26 shows that no points are out of limits; it has no true alarm.

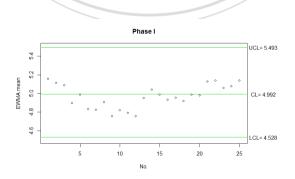


Figure 5-27. The Economic EWMA_{X-bar} Chart (λ =0.2) with In-control Data

For EWMA_{X-bar} chart with λ =0.2, Figure 5-27 shows that no points are out of limits for in-control samples.

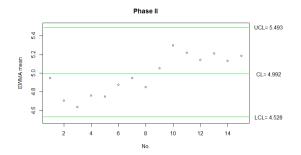


Figure 5-28. The Economic EWMA_{X-bar} Chart (λ =0.2) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.2, Figure 5-28 shows that no points are out of limits; it has no true alarm.

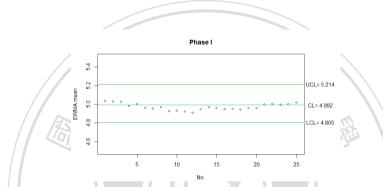
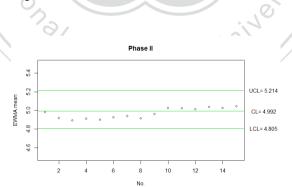


Figure 5-29. The Economic EWMA_{X-bar} Chart (λ =0.05) with In-control Data

For EWMA_{X-bar} chart with λ =0.05, Figure 5-29 shows that no points are out of limits for in-control samples.



Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.05, Figure 5-30 shows that no points are out of limits; it has no true alarm.

VI. Comparing the profit model with different λ using an example of service time data.

We consider a quality variable with an exponential distribution, and take the service time data from Yang et al. (2012). The service time is an important quality characteristic for a bank branch in Taiwan. To measure the efficiency in the service system of a bank branch, the sampling service times (in minutes) are measured from 10 counters every 2days for 30days; that is, 15 samples of size n=10 are taken from an in-control service system. These data have been analyzed and have a right-skewed distribution, as shown in Table 5-12.

No.	In-control service data with $n=10$										\overline{X}
1	0.88	0.78	5.06	5.45	2.93	6.11	11.59	1.2	0.89	3.21	3.81
2	3.82	13.4	5.16	3.2	32.27	3.68	3.14	1.58	2.72	7.71	7.67
3	1.4	3.89	10.88	30.85	0.54	8.4	5.1	2.63	9.17	3.94	7.68
4	16.8	8.77	8.36	3.55	7.76	1.81	1.11	5.91	8.26	7.19	6.95
5	0.24	9.57	0.66	1.15	2.34	0.57	8.94	5.54	11.69	6.58	4.73
6	4.21	8.73	11.44	2.89	19.49	1.2	8.01	6.19	7.48	0.07	6.97
7	15.08	7.43	4.31	6.14	10.37	2.33	1.97	1.08	4.27	14.08	6.71
8	13.89	0.3	3.21	11.32	9.9	4.39	10.5	1.7	10.74	1.46	6.74
9	0.03	12.76	2.41	7.41	1.67	3.7	4.31	2.45	3.57	3.33	4.16
10	12.89	17.96	2.78	3.21	1.12	12.61	4.23	6.18	2.33	6.92	7.02
11	7.71	1.05	1.11	0.22	3.53	0.81	0.41	3.73	0.08	2.55	2.12
12	5.81	6.29	3.46	2.66	4.02	10.95	1.59	5.58	0.55	4.1	4.50
13	2.89	1.61	1.3	2.58	18.65	10.77	18.23	3.13	3.38	6.34	6.89
14	1.36	1.92	0.12	11.08	8.85	3.99	4.32	1.71	1.77	1.94	3.71
15	21.52	0.63	8.54	3.37	6.94	3.44	3.37	6.37	1.28	12.83	6.83
										$\overline{\overline{X}} = 5.766$	

Table 5-12. In-control Service Time Data.

Since the 150 in-control data follows exponential distribution, we estimate the parameters of the exponential distribution, and obtain $\hat{b}_1 = 5.766$, Mean = 5.766, and $\sqrt{ar} = 33.244$. We use the routine "ks.test" to test in-control data with

Kolmogorov-Smirnov test method and have a *p*-value = 0.6714; therefore, we do not reject the data drawn from the exponential distribution with b_I =5.766.

The new data set of service times from a new automatic service system of the bank branch, 10 new samples of size 10, were collected and listed in Table 5-13.

The out-of-control service time data are as follows:

No.		Out-of-control service data with $n=10$									
1	3.54	0.01	1.33	7.27	5.52	0.09	1.84	1.04	2.91	0.63	2.42
2	0.86	1.61	1.15	0.96	0.54	3.05	4.11	0.63	2.37	0.05	1.53
3	1.45	0.19	4.18	0.18	0.02	0.7	0.8	0.97	3.6	2.94	1.50
4	1.37	0.14	1.54	1.58	0.45	6.01	4.59	1.74	3.92	4.82	2.62
5	3	2.46	0.06	1.8	3.25	2.13	2.22	1.37	2.13	0.25	1.87
6	1.59	3.88	0.39	0.54	1.58	1.7	0.68	1.25	6.83	0.31	1.88
7	5.01	1.85	3.1	1	0.09	1.16	2.69	2.79	1.84	2.62	2.22
8	4.96	0.55	1.43	4.12	4.06	1.42	1.43	0.86	0.67	0.13	1.96
9	1.08	0.65	0.91	0.88	2.02	2.88	1.76	2.87	1.97	0.62	1.56
10	4.56	0.44	5.61	2.79	1.73	2.46	0.53	1.73	7.02	2.13	2.90
									$\overline{\overline{X}} = 2.045$		
							X			/	. 11

Table 5-13. Out-of -control Service Time Data.

With 100 data in Table 5-13, we estimate the parameters of out-of-control data, and obtain $\hat{b}_o = 2.045$, $\hat{\delta}_2 = -3.72$, Mean = 2.045, and Var. = 4.184. Hence, we have a -0.645 small mean shift scale and a 0.355 small s.d. shift scale. During calculation, the out-of-control mean and variance are smaller than the in-control mean and variance.

We use the routine "ks.test" to test out-of-control data and we have a p-value=0.4182; therefore, we do not reject the data drawn from the exponential distribution with b_o =2.045.

We let $a_I = 1$, n=10, $\theta=0.01$, e=0.05, D=20, T=250, $s_0=5$, $s_I=0.1$, W=500, $k_c=10$, A=600, IC=0.1, $P_C=300$, $P_U=150$, and R=200. If the producer decides not to inspect, we maximize EAP (Equation 3-12) to determine the optimum h^* , subject to $0.5 \le h \le 8$. If the producer decides to inspect, we maximize EAP (Equation 4-7) to determine the optimum h^* and ω^* , subject to $0.5 \le h \le 8$ and $2 \le \omega$.

We choose $\lambda=1$, 0.4, and 0.1 and g=101, where the EWMA_{X-bar} chart with $\lambda=1$ is the same as the X-bar probability chart. We compare the optimum results of profit model with $\lambda=1$, 0.4, and 0.1, as follows:

Inspection		Without		With			
λ	1	0.4	0.1	1	0.4	0.1	
L_{l}	3.85	3.517	2.902	3.85	3.517	2.902	
L_2	2.187	2.451	2.506	2.187	2.451	2.506	
h^*	8	8	8	8	8	8	
ω^*	-	-	-	2	2	2	
USL*	-			17.297	17.297	17.297	
Yield	-//	五	A	0.950213	0.950213	0.950213	
EAP*	-42444.27	-43125.13	-36886.39	-5577.36	-5973.12	-2346.79	
P_W	292.532	292.532	292.532	$\tau - \gamma$	-	-	
ARL_1	2.69	2.55	3.9	2.69	2.55	3.9	
UCL	12.786	8.972	6.98	12.786	8.972	6.98	
LCL	1.778	3.531	4.718	1.778	3.531	4.718	
first true clares or	• No.2	No.2	No.3	No.2	No.2	No.3	
first true alarm on which sample	(3	(9	(8	(3	(9	(8	
	outliers)	outliers)	outliers)	outliers)	outliers)	outliers)	

Table 5-14. The Optimum Results Comparison of Profit Model with Different λ

According to Table 5-14, with and without inspection, h^* , EWMA_{X-bar} chart, and *ARL*₁ are the same at each λ . However, with inspection, we increased the profit per unit time as follows:

- (1) If λ =0.1, we increase 93.6% profit per unit time when we have an inspection.
- (2) If λ =0.4, we increase 86.1% profit per unit time when we have an inspection.
- (3) If $\lambda = 1$, we increase 86.9% profit per unit time when we have an inspection.

If we use the economic EWMA_{X-bar} chart with λ =0.1, we have the largest *EAP**, but largest *ARL*₁. If we use the economic EWMA_{X-bar} chart with λ =0.4, we have the smallest *EAP**, but smallest *ARL*₁. To maximize *EAP** for small shifts in the mean and variance we suggest that the producer takes inspection with *USL**=17.297, use the economic EWMA_{X-bar} chart with λ =0.1 and take 10 samples every 8 unit time.

To find the detection ability for the three types of $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

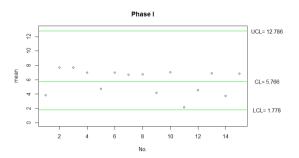


Figure 5-31. The Economic EWMA_{X-bar} Chart (λ =1) with In-control Data

For EWMA_{X-bar} chart with λ =1, Figure 5-31 shows that no points are out of limits for in-control samples.

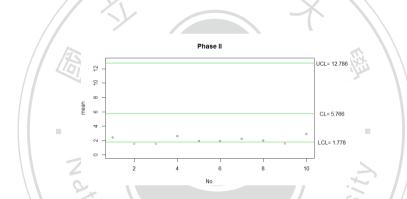


Figure 5-32. The Economic EWMA_{X-bar} Chart (λ =1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =1, Figure 5-32 shows that No. 2, 3, and 9 are out of limits; the first true alarm is on No. 2.

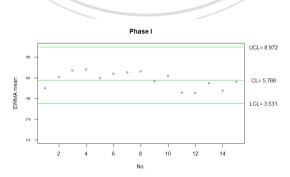


Figure 5-33. The Economic EWMA_{X-bar} Chart (λ =0.4) with In-control Data

For EWMA_{X-bar} chart with λ =0.4, Figure 5-33 shows that no points are out of limits for in-control samples.



Figure 5-34. The Economic EWMA_{X-bar} Chart (λ =0.4) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.4, Figure 5-34 shows that No. 2 to No. 10 are out of limits; the first true alarm is on No. 2.

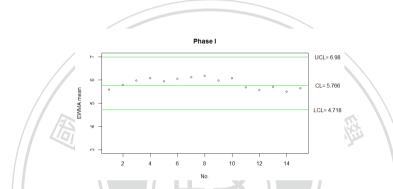


Figure 5-35. The Economic EWMA_{X-bar} Chart (λ =0.1) with In-control Data

For EWMA_{X-bar} chart with λ =0.1, Figure 5-35 shows that no points are out of limits for in-control samples.

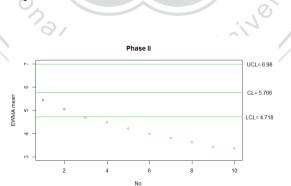


Figure 5-36. The Economic EWMA_{X-bar} Chart (λ =0.1) with Out-of-control Data

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.1, Figure 5-36 shows that No. 3 to No. 10 are out of limits; the first true alarm is on No. 3.

5.2 Performance Comparison of Six Numerical Examples

According to Section 5.1, we have five numerical examples of gamma distribution and one exponential numerical example. In each numerical example, we choose three λ to determine the optimum results and compare them with each other. In Table 5-15, we summarize all six numerical examples as follows:

				mean	s.d.	Si or Six Trumericar Exam			
\hat{a}_{I}	\hat{b}_{I}	$\hat{\delta}_1$	$\hat{\delta}_2$	shift	shift	λ	Summary		
	1	1	2	scale	scale				
						0.05 (λ is arbitrarily choose)			
24.349	0.205	0.919	0.006	1.685	1.317	0.6 (The best λ in table 2-17)	For max. EAP^* and min. ARL_l ,		
24.349	0.205	0.919	0.000	1.085	1.517	1 (Reduce to X-bar	λ =0.6 is the best, but λ =0.05 is the worst.		
						probability chart)	the worst.		
						0.05 (λ is arbitrarily choose)	For more EAD* and min ADI		
24.349	0.205	6 534	-0.012	0.974	1.063	0.5 (λ is arbitrarily choose)	For max. <i>EAP</i> * and min. <i>ARL</i> ₁ , λ =0.5 is the best, but λ =1 is the		
24.349	0.205	1 (Reduce to X-bar		χ =0.5 is the best, but χ =1 is the worst.					
						probability chart)	worst.		
						0.05 (λ is arbitrarily choose)	For max. EAP^* and min. ARL_l ,		
24.349	0.205	16.983	-0.045	1.603	1.017	0.6 (The best λ in table 2-17)	For max. <i>LAP</i> and min. <i>ARL</i> ₁ , λ =0.6 is the best, but λ =0.05 is		
24.349	0.205	10.965	-0.043	1.005	1.017	1 (Reduce to X-bar	λ =0.03 is the best, but λ =0.03 is the worst.		
				0		probability chart)	the worst.		
				9		0.05 (λ is arbitrarily choose)	For max. EAP^* and min. ARL_1 ,		
24.349	0.205	5 -8.741 0.123 0.126 1.281 0.3 (The best λ in table 2-17) λ =0.3 is	0.123	0.126	1 281 6	0.3 (The best λ in table 2-17)	$\lambda = 0.3$ is the best, but $\lambda = 0.05$ is		
24.347	0.205						0.120	0.120	1 (Reduce to X-bar
						probability chart)	the worst.		
						0.05 (λ is arbitrarily choose)	For max. EAP^* and min. ARL_I ,		
24.349	0.205	-2.261	0.023	0.039	1.058	0.2 (λ is arbitrarily choose)	$\lambda = 0.2$ is the best, but $\lambda = 0.05$ is		
24.347	0.205	-2.201	0.025	0.037	1.050	1 (Reduce to X-bar	the worst.		
						probability chart)	the worst.		
						0.1 (λ is arbitrarily choose)			
							For max. <i>EAP</i> *, λ =0.1 is the		
1	5.766	0	-3.72	-0.645	0.355	0.4 (λ is arbitrarily choose)	best, but λ =0.4 is the worst.		
		2			For min. A	For n	For min. ARL_1 , $\lambda = 0.4$ is the best,		
						1 (Reduce to X-bar	but $\lambda = 0.1$ is the worst.		
						probability chart)			

Table 5-15. Comparison of Six Numerical Examples

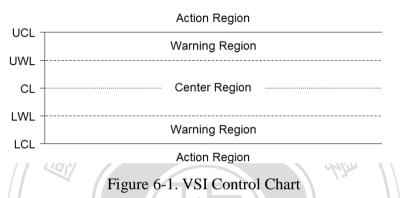
According to Table 5-15 and Table 2-17, we use the best λ to obtain the largest *EAP** and smallest *ARL*₁ in three of the six numerical examples. However, in the example of service time data, the choice λ , could not simultaneously obtain the largest *EAP** and smallest *ARL*₁.

The best λ becomes smaller when the mean shift scale becomes smaller. The result is reasonable.

CHAPTER 6. DETERMINING THE OPTIMUM PRODUCER INSPECTION AND THE ECONOMIC VSI EWMA_{X-bar} CONTROL CHART

6.1 VSI EWMA_{X-bar} Control Chart and ATS Calculation

In this chapter, we consider the variable sampling interval (VSI) $EWMA_{X-bar}$ control chart, which partitions the region between the two control limits into two sub-regions as follows:



The VSI EWMA_{X-bar} control chart based on the sampling distribution is

$$UCL = a_{I}b_{I} + L_{1}\sqrt{\frac{\lambda}{2-\lambda}}\frac{a_{I}b_{I}^{2}}{n}$$
$$UWL = a_{I}b_{I} + W_{1}\sqrt{\frac{\lambda}{2-\lambda}}\frac{a_{I}b_{I}^{2}}{n}$$
$$CL = a_{I}b_{I}$$
$$LWL = a_{I}b_{I} - W_{2}\sqrt{\frac{\lambda}{2-\lambda}}\frac{a_{I}b_{I}^{2}}{n}$$
$$LCL = a_{I}b_{I} - L_{2}\sqrt{\frac{\lambda}{2-\lambda}}\frac{a_{I}b_{I}^{2}}{n}$$

where $0 \leq W_1 \leq L_1$ and $0 \leq W_2 \leq L_2$.

When the last sample point falls within the warning region, take the next sample after h_1 unit time; and when the last sample point falls within the center region, take the next sample after h_2 unit time, where $h_1 \leq h_2$.

To measure the performance of the economic VSI EWMA_{X-bar} control chart, we calculate ATS_1 as follows:

- Step1. Divide the interval between the upper and lower control limits into g=2m+1, the number of states, subintervals of width 2δ , where $\delta = \frac{UCL LCL}{2g}$.
- Step2. Define state $j=(S_j \delta, S_j + \delta)$, j=-m,...-1,0,1,...,m, and S_j as the midpoint for the *j*-th interval.
- Step3. The statistic $Z_{t,j}$ is in transient state *j* at time *t*, if $S_j - \delta < Z_{t,j} \le S_j + \delta$ for $-m \le j \le m$
- Step4. The transition probability matrix for the transient state calculated by out-of-control gamma distribution is

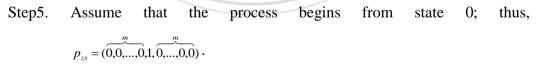
$$R_{o} = [p_{t-1,t}(jk)]$$
where $p_{t-1,t}(jk) = P(S_{k} - \delta < Z_{t,k} \le S_{k} + \delta \mid S_{j} - \delta < Z_{t-1,j} \le S_{j} + \delta)$

$$= P(S_{k} - \delta < Z_{t,k} \le S_{k} + \delta \mid Z_{t-1,j} = S_{j})$$

$$= P(S_{k} - \delta < \lambda \overline{X}_{t,k} + (1 - \lambda)Z_{t-1,k} \le S_{k} + \delta \mid Z_{t-1,j} = S_{j})$$

$$= P(\frac{(S_{k} - \delta) - (1 - \lambda)S_{j}}{\lambda} < \overline{X}_{t} \le \frac{(S_{k} + \delta) - (1 - \lambda)S_{j}}{\lambda})$$

$$= \frac{r(na_{o}, \frac{n}{b_{o}} \frac{(S_{k} + \delta) - (1 - \lambda)S_{j}}{\lambda})}{\Gamma(na_{o})} - \frac{r(na_{o}, \frac{n}{b_{o}} \frac{(S_{k} - \delta) - (1 - \lambda)S_{j}}{\lambda})}{\Gamma(na_{o})}$$



Step6. Calculate Zero-state *ATS*₁

$$ATS_{1} = p_{zs}^{T} (I - R_{0})^{-1} \vec{h}$$
(6-1)

where R_0 is the transition probability matrix calculated by out-of-control gamma distribution, I is the g*g dimension identity matrix, and h_j , the element of \bar{h} , is defined as follows:

$$h_{j} = \begin{cases} h_{1} & \text{if } S_{j} \in [UWL, UCL] \cup [LCL, LWL] \\ h_{2} & \text{if } S_{j} \in (LWL, UWL) \end{cases}$$

6.2 Derivation of the Profit Model without Producer Inspection

For expected cycle time, because the sampling interval is not fixed, again we use ATS_1 , which is Equation 6-1, instead of $h/(1-\beta)-\tau$ in Equation 3-3.

Hence, the expected cycle time is

$$ET = \frac{1}{\theta} + ATS_1 + en + D \tag{6-2}$$

where ATS_1 is calculated using Equation 6-1.

For expected cycle profit, because the sampling interval is not fixed, we use ARL_0 instead of $1/\theta h$ and use $(ARL_0 + ARL_1)$ instead of ET/h in Equation 3-11.

Hence, the expected cycle profit is

$$EP = EP_{I} \frac{1}{\theta} - T + EP_{O} * ATS_{1} - (s_{0} + s_{1}n)(ARL_{0} + ARL_{1}) - W$$
(6-3)

where ARL_0 , ARL_1 , EP_1 , EP_0 , and ATS_1 are calculated using Equation 2-3, 2-4, 3-9, 3-10, and 6-1, respectively.

Therefore, the expected profit per unit time is

$$EAP = \frac{EP}{ET}$$
(6-4)

where ET is calculated using Equation 6-2 and EP is calculated using Equation 6-3.

6.3 Derivation of the Profit Model with Producer Inspection

Similarly, for expected cycle time, we have the same reason in Section 6.2 and the same formula of expected cycle time, with or without inspection.

enach

Hence, the same as Equation 6-2, the expected cycle time is

$$ET = \frac{1}{\theta} + ATS_1 + en + D \tag{6-5}$$

For expected cycle profit, we have the same reason in Section 6.2 and a similar formula of expected cycle profit with or without inspection, except for the calculation of EP_I and EP_O .

Hence, the expected cycle profit is

$$EP = EP_{I} \frac{1}{\theta} - T + EP_{O} * ATS_{1} - (s_{0} + s_{1}n)(ARL_{0} + ARL_{1}) - W$$
(6-6)

where ARL_0 , ARL_1 , EP_1 , EP_0 , and ATS_1 are calculated using Equation 2-3, 2-4, 4-4, 4-5, and 6-1, respectively.

Therefore, the expected profit per unit time is

$$EAP = \frac{EP}{ET} \tag{6-7}$$

where ET is calculated using Equation 6-5 and EP is calculated using Equation 6-6.

6.4 Determining Optimum Parameters of the Economic VSI EWMA_{X-bar} Control Chart with and without producer tolerance

The procedures to determine n, warning limits, control limits, and ATS_1 of the economic VSI EWMA_{X-bar} control chart without producer inspection is as follows:

- Step1. Let n=2.
- Step2. Determine the UCL coefficient (L_1) of the EWMA_{X-bar} control chart. With λ , let LCL=0 and $ATS_0 = p_{zs}^T (I - R_1)^{-1} \vec{h}_0 = 740$ to solve L_1 using the routine "uniroot" in the R program, where \vec{h}_0 is the g*I dimension vector with all components are h_0 , which is the FSI sampling time. Hence, UCL is determined.
- Step3. Determine the *LCL* coefficient (L_2) of the EWMA_{X-bar} control chart. With *UCL*, let $ATS_0 = p_{zs}^T (I - R_I)^{-1} \vec{h}_0 = 370$ to solve L_2 using the routine "uniroot" in the R program.
- Step4. With UCL and LCL, from $ATS_0 = p_{zs}^T (I R_I)^{-1} \vec{h} = 370$, W_2 is a function of W_I . To determine optimum W_I , we use the routine "DEoptim" of the R program to maximize EAP in Equation 6-4, subject to $0 \le W_I \le L_I$ with specified parameters.

Hence, the coefficient of the upper warning control limits (*UWL*) of the $EWMA_{X-bar}$ control chart is determined.

If EAP(n+1) is greater than EAP(n), then we choose EAP(n+1) to become EAP^* .

Step5. With W_I , let $ATS_0 = p_{zs}^T (I - R_I)^{-1} \vec{h} = 370$ to solve W_2 using the routine "uniroot" in the R program. Hence, lower warning control limits (*LWL*) of the EWMA_{X-bar} control chart is determined.

The economic VSI EWMA_{X-bar} control chart is then constructed.

Step6. Let n=n+1, $3 \le n \le 25$. Proceed Step2.

The procedures to determine n, ω^* , warning limits, control limits, and ATS_1 of the economic VSI EWMA_{X-bar} control chart with producer inspection is instead Step 4 of the previous procedure as follows:

Step4. With UCL and LCL, from $ATS_0 = p_{zs}^T (I - R_I)^{-1} \vec{h} = 370$, W_2 is a function of W_I . To determine optimum ω and W_I , we use the routine "DEoptim" of the R program to maximize EAP in Equation 6-7, subject to $2 \le \omega$ and $0 \le W_I \le L_I$ with specified parameters.

If we let $h_1=h_2=h_0$, $W_1=0$, and $W_2=0$, then the VSI EWMA_{X-bar} control chart becomes the FSI EWMA_{X-bar} control chart.

6.5 Two Numerical Examples and the Results Comparison with the FSI EWMA_{X-bar} Control Chart

For the first numerical example, we use the procedures in Section 6.4 with the same specified parameters in Section 3.4 and choose λ =0.05, h_0 =1, h_1 =0.5, and h_2 =2 to compare the optimum results of the VSI EWMA_{X-bar} control chart with the FSI EWMA_{X-bar} control chart, as follows:

		charts			
Inspection	With	nout	Wi	th	
Chart	FSI	VSI	FSI	VSI	
L_1	2.604	2.604	2.604	2.604	
L_2	2.387	2.387	2.387	2.387	
W_1	-	0.002	-	0.002	
W_2	-	0.929	-	0.929	
<i>n</i> *	25	25	25	25	
ω^*	-	-	2.311	2.311	
USL*			8.66	8.66	
Yield			0.965834	0.965834	
EAP*	27428.1	27677.6	31998.4	32190	
ATS_1	22.929	13.119	22.929	13.119	
UCL*	3.2043	3.2043	3.2043	3.2043	
UWL*		3.0002		3.0002	
LWL*	-	2.9271	-	2.9271	
LCL*	2.8127	2.8127	2.8127	2.8127	

Table 6-1. Comparison of the optimum results of VSI and FSI $\ensuremath{\mathsf{EWMA}_{X\text{-}bar}}$ control

According to Table 6-1, n^* and ω^* are the same as in the model with inspection, but different FSI and VSI EWMA_{X-bar} charts. We have the largest *EAP** and the smallest *ATS*₁ when we use the economic VSI EWMA_{X-bar} chart with λ =0.05. With or without inspection, n^* , EWMA_{X-bar} chart, and *ATS*₁ are the same. However, for *EAP**, we increase the profit per unit time as follows:

henach

- If we use the VSI EWMA_{X-bar} control chart, we increase 16.3% profit per unit time when we have an inspection.
- (2) If we use the FSI EWMA_{X-bar} control chart, we increase 16.66% profit per unit time when we have an inspection.
- (3) If we use the VSI EWMA_{X-bar} chart, we increase 0.6% profit per unit time more than the FSI EWMA_{X-bar} chart when the producer decides to inspect.
- (4) If we use the VSI EWMA_{X-bar} chart, we increase 0.91% profit per unit time more than the FSI EWMA_{X-bar} chart when the producer decides not to inspect.

Therefore, we suggest that the producer takes inspection with $USL^*=8.66$, use the economic VSI EWMA_{X-bar} chart with $\lambda=0.05$ and take 25 samples for having better performance. If the last sample point falls within the warning region, then take the next sample after 0.5 unit time; if the last sample point falls within the center region, then take the next sample after 2 unit time. We then obtain 32190 profits per unit time.

For the second numerical example, we consider a special case of exponential distribution using the same service time data as that in the end of Section 5.1. We also use the same specified parameters and choose the same λ =0.1 and 0.4.

We compare the optimum results of the VSI EWMA_{X-bar} control chart with the FSI EWMA_{X-bar} control chart at λ =0.4, as follows:

10

		at λ=0.4		
Inspection	With	nout	w and	ith
Chart	FSI	VSI	FSI	VSI
L_1	3.5169	3.5169	3.5169	3.5169
L_2	2.4510	2.4510	2.4510	2.4510
W_{I}	z \overline{z}	0.5403	-	0.5403
W_2	2	0.2943	11	0.2943
ω*	10		2	2
USL*	2		17.297	17.297
Yield	Ch		0.950213	0.950213
EAP*	-52723.27	-52546.4	-11560.23	-11457.41
ATS_1	2.55	2.778	2.55	2.778
UCL	8.972	8.972	8.972	8.972
UWL	-	6.258	-	6.258
LWL	-	5.497	-	5.497
LCL	3.531	3.531	3.531	3.531
first true alarm on	No.2	No.2	No.2	No.2
which sample	(9 outliers)	(9 outliers)	(9 outliers)	(9 outliers)
first true alarm on which time	2 unit time	2.5 unit time	2 unit time	2.5 unit time

Table 6-2. Comparison of the optimum results of the VSI and FSI EWMA $_{X\text{-}bar}$ charts

According to Table 6-2, ω^* is the same as in the model with inspection, but different FSI and VSI EWMA_{X-bar} charts. We have the largest *EAP**, but largest *ATS*₁ when we use the economic VSI EWMA_{X-bar} chart with λ =0.4. With or without inspection, *ATS*₁ is the same. However, for *EAP**, we increase the profit per unit time as follows:

- (1) If we use the VSI EWMA_{X-bar} control chart with λ =0.4, we increase 78.1% profit per unit time when we have an inspection.
- (2) If we use the FSI EWMA_{X-bar} control chart with λ =0.4, we increase 86.1% profit per unit time when we have an inspection.
- (3) If we use the VSI EWMA_{X-bar} chart, we increase 0.89% profit per unit time more than the FSI EWMA_{X-bar} chart when the producer decides to inspect.
- (4) If we use the VSI EWMA_{X-bar} chart, we increase 0.34% profit per unit time more than the FSI EWMA_{X-bar} chart when the producer decides not to inspect.

Therefore, for maximum *EAP*, we suggest that the producer takes inspection with $USL^*=17.297$, use the economic VSI EWMA_{X-bar} chart with $\lambda=0.4$ and take 10 samples for every 0.5 or 2 unit time.

Zartona Chengchi Univer

To find the detection ability for the three types of FSI $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

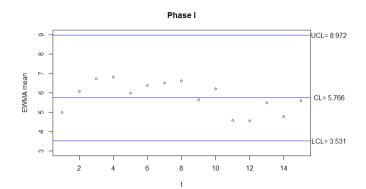


Figure 6-2. The Economic FSI EWMA_{X-bar} Chart (λ =0.4) with In-control Data

For FSI EWMA_{X-bar} chart with λ =0.4, Figure 6-2 shows that no points are out of limits for in-control samples.

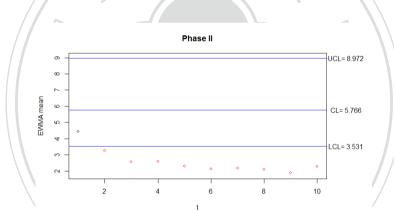


Figure 6-3. The Economic FSI EWMA_{X-bar} Chart (λ =0.4) with Out-of-control Data

Plots the out-of-control statistics on the FSI EWMA_{X-bar} Chart with λ =0.4, Figure 6-3 shows that No. 2 to No. 10 are out of limits; the first true alarm is on No. 2.

To find the detection ability for the three types of VSI EWMA_{X-bar} chart, we plot the in-control and out-of-control statistics on them.

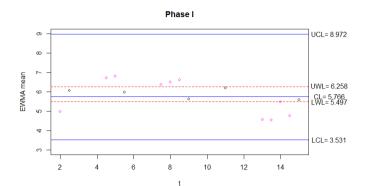


Figure 6-4. The Economic VSI EWMA_{X-bar} Chart (λ =0.4) with In-control Data

According to the falling region of each in-control plotted point, we determine the sampling time as follows:

No.	X-ba	ar EWN	MA Regio	on h_i
1	3.8	1 4.9	8 W.R	. 2
2	7.6	7 6.0	6 C.R.	0.5
3	7.68	8 6.7	1 W.R	. 2
4	6.93	5 6.8	0 W.R	. 0.5
5	4.7	3 5.9	7 C.R.	0.5
6	6.9	7 6.3	7 W.R.	2
7	6.7	6.5	1 W.R.	. 0.5
8	6.74	4 6.6	0 ^C W.R	. 0.5
9	4.10	6 5.6	3 C.R.	0.5
10	7.02	2 6.1	8 C.R.	2
11	2.12	2 4.5	6 W.R	. 2
12	4.50	0 4.5	4 W.R	. 0.5
13	6.89	9 5.4	8 W.R	. 0.5
14	3.7	1 4.7	7 W.R.	. 0.5
15	6.8	3 5.5	9 C.R.	0.5

Table 6-3. Region and Sampling Time of Each In-control Statistic (λ =0.4)

For VSI EWMA_{X-bar} chart with λ =0.4, Figure 6-4 and Table 6-3 show that no points are out of limits for in-control samples.

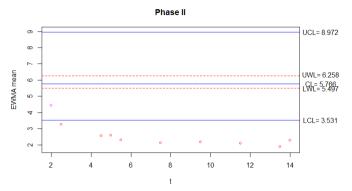


Figure 6-5. The Economic VSI EWMA_{X-bar} Chart (λ =0.4) with Out-of-control Data

According to the falling region of each out-of-control plotted point, we determine the sampling time as follows:

0	1 0			
No.	X-bar	EWMA	Region	h_i
1	2.42	4.43	W.R.	2
2	1.53	3.27	A.R.*	0.5
3	1.50	2.56	A.R.*	0.5
4	2.62	2.58	A.R.*	2
5	1.87	2.30	A.R.*	2
6	1.88	2.13	A.R.*	0.5
7	2.22	2.16	A.R.*	0.5
8 0	1.96	2.08	A.R.*	0.5
9	1.56	1.88	A.R.*	2
10	2.90	2.29	A.R.*	2
		andci		

Table 6-4. Region and Sampling Time of Each Out-of-control Statistic (λ =0.4)

If the plotted point falls inside the action region, then we randomly choose the sampling time.

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.4, Figure 6-5 and Table 6-4 show that No. 2 to No. 10 out of limits; the first true alarm is on No. 2.

We compare the optimum results of the VSI EWMA_{X-bar} control chart with the FSI EWMA_{X-bar} control chart at λ =0.1, as follows:

		at λ =0.1						
Inspection	With	nout	Wi	ith				
Chart	FSI	VSI	FSI	VSI				
L_{l}	2.9015	2.9015	2.9015	2.9015				
L_2	2.5052	2.5052	2.5052	2.5052				
W_{I}	-	0.2088	-	0.2088				
W_2	-	0.6048	-	0.6048				
ω^*	-	-	2	2				
USL*	T	T is	17.297	17.297 0.950213				
Yield		x /D	0.950213					
EAP*	-51692.3	-51823.37	-10960.91	-11037.11				
ATS ₁	3.9	3.73	3.9	3.73				
UCL	6.98	6.98	6.98	6.98				
UWL	-	5.853	-	5.853				
LWL	-	5.513		5.513				
LCL	4.718	4.718	4.718	4.718				
first true alarm on	No.3	No.3	No.3	No.3				
which sample	(8 outliers)	(8 outliers)	(8 outliers)	(8 outliers)				
first true alarm on which time	3 unit time	3 unit time	3 unit time	3 unit time				
rengchi								

Table 6-5. Comparison of the optimum results of the VSI and FSI $\ensuremath{\mathsf{EWMA}_{X\text{-}bar}}$ charts

According to Table 6-5, ω^* is the same in the model with inspection, but different FSI and VSI EWMA_{X-bar} charts. We have the largest *EAP**, but largest *ATS*₁ when we use the economic FSI EWMA_{X-bar} chart with λ =0.1. With or without inspection, *ATS*₁ is the same. However, for *EAP**, we increase the profit per unit time as follows:

- (1) If we use the VSI EWMA_{X-bar} control chart with λ =0.1, we increase 78.8% profit per unit time when we have an inspection.
- (2) If we use the FSI EWMA_{X-bar} control chart with λ =0.1, we increase 93.6% profit per unit time when we have an inspection.

- (3) If we use the FSI EWMA_{X-bar} chart, we increase 0.7% profit per unit time more than the VSI EWMA_{X-bar} chart when the producer decides to inspect.
- (4) If we use the FSI EWMA_{X-bar} chart, we increase 0.25% profit per unit time more than the VSI EWMA_{X-bar} chart when the producer decides not to inspect.

Therefore, for maximum *EAP*, we suggest that the producer takes inspection with *USL**=17.297, use the economic FSI EWMA_{X-bar} chart with λ =0.1 and take 10 samples every 0.5 or 2 unit time.

To find the detection ability for the three types of FSI $EWMA_{X-bar}$ chart, we plot the in-control and out-of-control statistics on them.

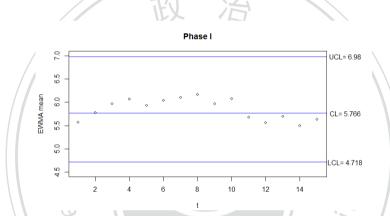


Figure 6-6. The Economic FSI EWMA_{X-bar} Chart (λ =0.1) with In-control Data

For FSI EWMA_{X-bar} chart with λ =0.1, Figure 6-6 shows that no points are out of limits for in-control samples.

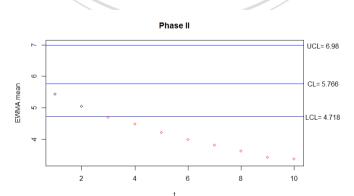


Figure 6-7. The Economic FSI EWMA_{X-bar} Chart (λ =0.1) with Out-of-control Data

Plots the out-of-control statistics on the FSI EWMA_{X-bar} Chart with λ =0.1, Figure 6-7 shows that No. 3 to No. 10 are out of limits; the first true alarm is on No. 3.

To find the detection ability for the three types of VSI EWMA_{X-bar} chart, we plot the in-control and out-of-control statistics on them.

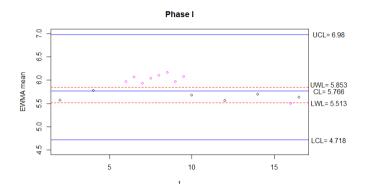


Figure 6-8. The Economic VSI EWMA_{X-bar} Chart (λ =0.1) with In-control Data

According to the falling region of each in-control plotted point, we determine the sampling time as follows:

No.	X-bar	EWMA	Region	h_i
1	3.81	5.57	C.R.	2
2	7.67	5.78	C.R.	2
3	7.68	5.97	W.R.	2
4	6.95	6.07	W.R.	0.5
5	4.73	5.93	W.R.	0.5
6	6.97	6.04	W.R.	0.5
7	6.71	6.10	W.R.	0,5
8	6.74	e 6.17CV	W.R.	0.5
9	4.16	5.97	W.R.	0.5
10	7.02	6.07	W.R.	0.5
11	2.12	5.68	C.R.	0.5
12	4.50	5.56	C.R.	2
13	6.89	5.69	C.R.	2
14	3.71	5.49	W.R.	2
15	6.83	5.63	C.R.	0.5

Table 6-6. Region and Sampling Time of Each In-control Statistic (λ =0.1)

For VSI EWMA_{X-bar} chart with λ =0.1, Figure 6-8 and Table 6-6 show that no points are out of limits for in-control samples.

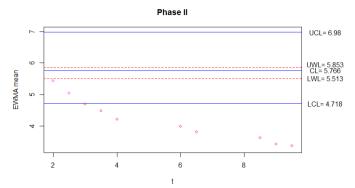


Figure 6-9. The Economic VSI EWMA_{X-bar} Chart (λ =0.1) with Out-of-control Data

According to the falling region of each out-of-control plotted point, we determine the sampling time as follows:

	r e			
No.	X-bar	EWMA	Region	h_i
1	2.42	5.43	W.R.	2
2	1.53	5.04	W.R.	0.5
3	1.50	4.69	A.R.*	0.5
4	2.62	4.48	A.R.*	2
5	1.87	4.22	A.R.*	2
6	1.88	3.98	A.R.*	2
7	2.22	3.81	A.R.*	2
8	1.96	3.62	A.R.*	0.5
9	1.56	3.42	A.R.*	0.5
10	2.90	3.37	A.R.*	0.5
		endci		

Table 6-7. Region and Sampling Time of Each Out-of-control Statistic (λ =0.1)

If the plotted point falls inside the action region, then we randomly choose the sampling time.

Plots the out-of-control statistics on the EWMA_{X-bar} Chart with λ =0.1, Figure 6-9 and Table 6-7 show that No. 3 to No. 10 out of limits; the first true alarm is on No. 3.

In the second numerical example, the *EAP** of FSI EWMA_{X-bar} chart with λ =0.1 in Table 6-5 is larger than that of VSI EWMA_{X-bar} chart with λ =0.4 in Table 6-2. The FSI EWMA_{X-bar} chart is slightly better than the VSI EWMA_{X-bar} chart when we fix h_0 =1, h_1 =0.5, and h_2 =2.

6.6 Sensitivity Analysis and the Optimum Results Comparison between the FSI EWMA_{X-bar} Chart and VSI EWMA_{X-bar} Chart

For sensitivity analysis in this section, we consider only the producer decides to inspect. We use the same combinations of parameters in Table 3-3.

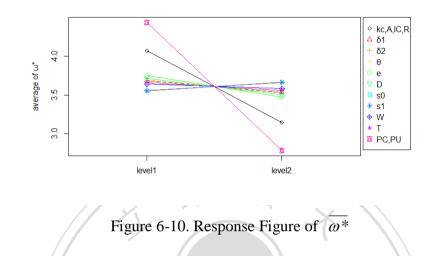
In Table 6-8, for improving computing efficiency of optimum solutions, we choose *n* equal to the optimum n of the profit model in Table 4-3. We let $a_I=25$, $b_I=0.2$, $h_0=1$, $h_1=0.5$, $h_2=2$, and $\lambda=0.05$ to maximize *EAP* and to determine the optimum ω^* and W_I^* at each experiment, subject to $2 \leq \omega$ and $0 \leq W_I \leq L_I$. The optimum results are solved using the procedure in Section 6.4, as follows:

				Eco	nomic VSI	EWM	IA _{X-bar}	chart	Eco	nomic FSI	EWM	A _{X-bar} c	hart
Exp.	Fix n	L ₁	L_2	ω^*	EAP*	ATS_1	UWL*	LWL*	ω^*	EAP*	ARL ₁	UWL*	LWL*
1	6	2.83	2.26	4.747	37947.78	1.03	5.002	4.939	4.747	36108.05	2.06	5.185	4.852
2	6	2.83	2.26	3.660	-1229.16	1.03	5.002	4.939	3.660	-1591.71	2.06	5.185	4.852
3	3	2.69	2.33	3.367	2069.35	3.06	5.001	4.915	3.367	530.25	6.06	5.249	4.784
4	3	2.69	2.33	3.660	3697.28	3.06	5.002	4.915	3.660	3286.46	6.06	5.249	4.784
5	15	2.63	2.38	4.487	46890.20	1.36	5.000	4.962	4.487	46624.74	2.72	5.109	4.902
6	2	2.63	2.37	3.367	-10900.88	2.34	5.003	4.897	3.367	-11715.25	4.64	5.298	4.732
7	10	2.83	2.27	4.747	41062.06	1.11	5.000	4.953	4.747	39779.87	2.21	5.143	4.885
8	2	2.63	2.37	4.487	41034.47	2.34	5.002	4.897	4.487	40491.73	4.64	5.298	4.732
9	6	2.83	2.26	3.660	4633.30	5.85	5.002	4.939	3.660	3837.41	11.46	5.185	4.852
10	18	2.44	2.55	4.487	46165.21	4.45	5.001	4.968	4.487	46098.63	5.67	5.092	4.904
11	2	2.63	2.37	3.944	340559.84	1.62	5.003	4.897	3.944	334357.06	3.24	5.298	4.732
12	2	2.63	2.37	4.487	344608.20	1.62	5.002	4.897	4.487	343148.26	3.24	5.298	4.732
13	6	2.83	2.26	2.000	169797.16	1.03	5.001	4.939	2.000	169162.21	2.06	5.185	4.852
14	3	2.69	2.33	4.487	339756.57	3.06	5.000	4.915	4.487	338207.39	6.06	5.249	4.784
15	14	2.68	2.34	2.000	150700.08	1.41	5.001	4.960	2.000	150067.93	2.82	5.115	4.900
16	10	2.83	2.27	2.000	143564.82	1.11	5.001	4.953	2.000	142870.64	2.21	5.143	4.885
17	2	2.63	2.37	2.071	166758.15	2.34	5.003	4.897	2.071	165342.69	4.64	5.298	4.732
18	19	2.36	2.66	4.487	357615.26	4.43	5.001	4.969	4.487	357398.08	5.50	5.087	4.902
19	7	2.85	2.26	3.944	367648.58	5.31	5.002	4.945	3.944	366796.14	10.45	5.172	4.863
20	20	2.28	2.83	2.071	169471.13	4.24	5.020	4.990	2.071	169274.14	5.39	5.082	4.899

Table 6-8. Optimum Results in Each Experiment

According to Table 6-8, in all of the experiments, the VSI EWMA_{X-bar} chart has a larger EAP^* and smaller ATS_I than the FSI EWMA_{X-bar} chart.

We can use the optimum results of the economic VSI EWMA_{X-bar} chart with λ =0.05 in Table 6-8 to plot response figures (from Figure 6-10. to 6-15.) and determine the significant parameters that affects optimum value.



According to Figure 6-10, (P_C, P_U) and (k_c, A, IC, R) are the most significant. The larger (P_C, P_U) or (k_c, A, IC, R) , the larger ω^* . This means that the larger the selling price or cost, the larger the USL^* is.

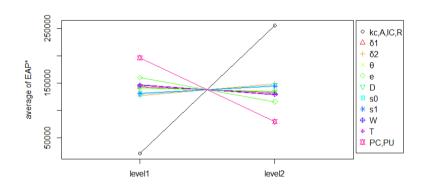


Figure 6-11. Response Figure of EAP*

According to Figure 6-11, (k_c, A, IC, R) and (P_C, P_U) are the most significant. The smaller the (k_c, A, IC, R) , the larger the *EAP**, and the larger the (P_C, P_U) , the larger the *EAP**. The smaller the cost, the larger the profit is, and the larger the selling price, the larger the profit is.

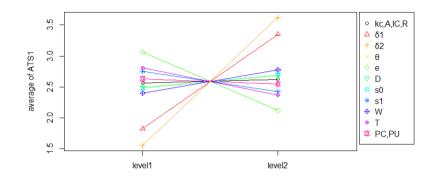


Figure 6-12. Response Figure of ATS₁

According to Figure 6-12, δ_1 , δ_2 , and *e* are the most significant. The larger δ_1 or δ_2 , the smaller ATS_1 is, and also the smaller *e*, the smaller ATS_1 is. A larger shift results in larger power; hence, the smaller ATS_1 . The smaller the *e*, the larger the *n* is; hence, the smaller the ATS_1 .

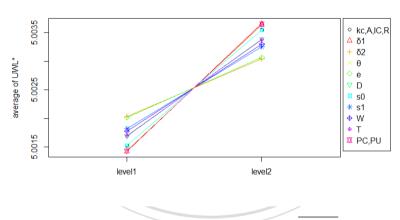


Figure 6-13. Response Figure of $\overline{UWL^*}$

According to Figure 6-13, although all of the parameters seem significant, the value of the y-axis is too small. Therefore, not all of the parameters are significant.

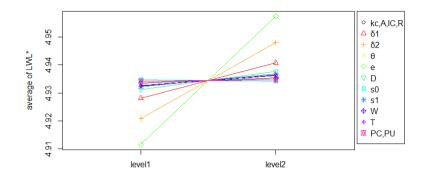


Figure 6-14. Response Figure of LWL*

According to Figure 6-14, δ_2 and *e* are the most significant. The smaller the δ_2 or *e*, the larger the *LWL** is. The smaller shift in products necessitates a narrower chart to test; hence, the larger the *LWL**. The smaller the *e*, the larger the *n* is; hence, the larger the *LWL**.

We use the value of the EAP^* of the VSI EWMA_{X-bar} chart minus the EAP^* of the FSI EWMA_{X-bar} chart to plot the response figure and to determine the significant parameters.

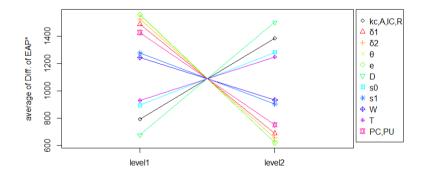


Figure 6-15. Response Figure of Difference of EAP*

According to Figure 6-15, all of the parameters are significant. However, e and θ are the most significant. The larger the e or θ , the larger the difference of EAP^* is. If process has a big e or θ , than using the economic VSI EWMA_{X-bar} chart is considerably better than using the FSI EWMA_{X-bar} chart.

CHAPTER 7. SUMMARY

In this study, we simultaneously determine the upper specification limit and the design parameters of $EWMA_{X-bar}$ control chart with maximal profit.

For the smaller the better quality variable of gamma distribution, because its parameters *a* and *b* both exist in the mean and variance; hence, the EWMA_{X-bar} chart detects both mean and variance. We use the EWMA_{X-bar} chart to simultaneously detection process mean and variance and calculate *ARL* using the Markov chain approach to measure the performance of the EWMA_{X-bar} chart. We set *ARL*₀=370 to compare *ARL*₁ with different shift scales, λ , and *n*. We then have the best λ , which minimizes *ARL*₁ at each shift scale and *n*. We find out that *n* significantly affects the value of the best λ when both the mean shift scale or the s.d. shift scale, the larger the value of the best λ .

If the producer decides not to inspect products and the distribution parameters are known, we follow the procedure in Section 3.3 to determine the optimum parameters of the EWMA_{X-bar} chart. If the producer decides to inspect products and the distribution parameters are known, then we follow the procedure in Section 4.3 to determine the upper specification limit and the optimum parameters of the EWMA_{X-bar} chart. To obtain additional profit, to inspect is better than not to inspect in our example in Section 4.4. In the sensitivity analysis of Chapters 3 and 4, (P_C , P_U) and (k_c , A, IC, R) significantly affect ω^* and EAP^* . However, δ_1 , δ_2 , and esignificantly affect n^* , ARL_1 , UCL^* , and LCL^* . We also find out that the ω^* only dependent on the values of (P_C , P_U) and (k_c , A, IC, R). The smaller the shift in b, the better the performance of the EWMA_{X-bar} chart with λ =0.05.

Most examples show that we can simultaneously obtain the largest EAP^* and the smallest ARL_I . However, in service time data, any one of three different λ could not obtain the largest EAP^* and smallest ARL_I . According to the comparison in Section 5.2, the mean shift scale affects the choice of the best λ significantly.

We also consider the VSI EWMA_{X-bar} chart, and calculate *ATS* to measure the performance of the VSI EWMA_{X-bar} chart. We follow the procedure in Section 6.4 to determine the upper specification limit and the optimum parameters of the EWMA_{X-bar} chart. The first numerical example in Section 6.5 shows that by

inspecting and using the VSI EWMA_{X-bar} chart, we can obtain the greatest profits per unit time. However, in the example of service time data, the FSI EWMA_{X-bar} chart is slightly better than the VSI EWMA_{X-bar} chart. In the sensitivity analysis of Chapter 6, the VSI EWMA_{X-bar} chart has a larger *EAP** and a smaller *ATS*₁ than the FSI EWMA_{X-bar} chart in all of the experiments. Also, (P_C , P_U) and (k_c , A, IC, R) significantly affect ω * and *EAP**. However, δ_1 , δ_2 , and e significantly affect *ATS*₁ and *LWL**. If the process has a large e or θ , than using the economic VSI EWMA_{X-bar} chart is considerably better than using the FSI EWMA_{X-bar} chart.

In the future, the study can be extend to determine the optimum h_1 and h_2 to get significant difference of EAP* between VSI chart and FSI chart. Also, the study can be extend to determine the optimum gamma distribution.

REFERENCES

- [1] Ardia, D., Mullen, K., Peterson, BG. and Ulrich, J. (2011), DEoptim, Differential Evolution Optimization in R. URL http://CRAN.R-project.org/package=DEoptim.
- [2] Bai, D. S. and Lee, K. T. (1998), "An economic design of variable sampling interval \overline{X} control charts," *International Journal of Production Economics*, 54, 57-64.
- [3] Cho, B. R. and Phillips, M. D. (1998a), "Design of the optimum product specifications for S-type quality characteristics," *International Journal of Production Research*, 36(2), 459-474.
- [4] Cho, B. R. and Phillips, M. D. (1998b), "An Empirical Approach to Designing Product Specifications: A Case Study," *Quality Engineering*, 11(1), 91-100.
- [5] Chou, C. Y., Chen, C. H. and Liu, H. R. (2006), "Economic Design of EWMA Charts with Variable Sampling Intervals," *Quality & Quantity*, 40, 879–896.
- [6] Crowder, S. V. (1987), "A simple method for studying run length distributions of exponentially weight moving average control charts," *Technometrics*, 29, 401–407.
- [7] Duncan, A. J. (1956), "The economic design of \overline{X} charts used to maintain current control of a process," *Journal of the American Statistical Association*, 51(274), 228–242.
- [8] Feng, Q. and Kapur, K. C. (2006), "Economic development of specifications for 100% inspection based on asymmetric quality loss function," *IIE Transactions*, 38, 659-669.
- [9] Hong, S. H. and Cho, B. R. (2007), "Joint optimization of process target mean and tolerance limits with measurement errors under multi-decision alternatives," *European Journal of Operational Research*, 183, 327–335.
- [10] Hong, S. H., Kwon, H. M., Lee, M. K. and Cho, B. R. (2006), "Joint optimization in process target and tolerance limit for L-type quality characteristics," *International Journal of Production Research*, 44(15), 1051-3060.
- [11] Kapur, K. C. (1988), "An approach for development of specifications for quality improvement," *Quality Engineering*, 1(1), 63-77.
- [12] Montgomery, D. C. (1980), "The economic design of control charts: a review and literature survey," *Journal of Quality Technology*, 12(2), 75–87.

- [13] Montgomery, D. C., Torng, J. C.-C., Cochran J. K. and Lawrence, F. P. (1995), "Statistically constrained economic design of the EWMA control chart," *Journal* of *Quality Technology*, 27(3), 250–256.
- [14] Panagos, M. R., Heikes R. G. and Montgomery, D. C. (1985), "Economic design of \overline{X} control charts for two manufacturing process models," *Naval Research Logistics Quarterly*, 32, 631-646.
- [15] Plackett, R. L. and Burman, J. P. (1946), "The Design of Optimum Multifactorial Experiments," *Biometrika*, 33(4), 305-325.
- [16] R Development Core Team (2011), R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- [17] Reynolds, M. R. JR., Amin, R. W., Arnold, J. C. and Nachlas, J. A (1988), " \overline{X} charts with variable sampling intervals," *Technometrics*, 30(2), 181-192.
- [18] Roberts, S. W. (1959), "Control chart tests based on geometric moving averages," *Technometrics*, 1, 239-250.
- [19] Saccucci, M. S. and Lucas, J. M. (1990), "Average run length for exponentially weighted moving average control schemes using the markov chain approach," *Journal of Quality Technology*, 22, 154-162.
- [20] Yang, S. F., Cheng, T. C., Hung, Y. C. and Cheng, S. W. (2012), "A New Chart for Monitoring Service Process Mean," *Quality and Reliability Engineering International*, 28(4), 377-386

Ptional Chengchi University