行政院國家科學委員會專題研究計畫 成果報告

貝氏網路與分類技術之基礎研究與應用：建構學生學習歷程之模型與語意標記（第2年）
 研究成果報告（完整版）

計 畫 類 別：個別型
計畫編 號 ：NSC 95－2221－E－ 004 013 N2
執行期間：96年08月01日至97年10月31日
執 行 單 位：國立政治大學資訊科學系

計畫主持人：劉弨麟
計畫參與人員：碩士班研究生－兼任助理人員：何君豪碩士班研究生－兼任助理人員：鄭人豪碩士班研究生－兼任助理人員：呂明欣碩士班研究生－兼任助理人員：林仁祥碩士班研究生－兼任助理人員：張智傑碩士班研究生－兼任助理人員：賴敏華碩士班研究生－兼任助理人員：藍家樑

報 告 附 件 ：出席國際會議研究心得報告及發表論文

處 理 方 式 ：本計畫涉及專利或其他智慧財㽔權，2年後可公開查詢

中 華 民 國 98年01月26日

行政院國家科學委員會補助專題研究計畫

貝氏網路與分類技術之基礎研究與應用：
 建構學生學習歷程之模型與語意標記

計畫類別：\square 個別型計畫 \square 整合型計畫
計畫編號：NSC－95－2221－004－003－MY2
執行期間：95年8月1日至97年10月31日

計畫主持人：劉昭麟
共同主持人：
計畫參與人員：碩士班研究生：何君豪，鄭人豪，呂明欣，林仁祥，張智傑，賴敏華，藍家樑
博士班研究生：無
成果報告類型（依經費核定清單規定繳交）：\square 精簡報告 \square 完整報告

本成果報告包括以下應繳交之附件：
\square 赴國外出差或研習心得報告一份
\square 赴大陸地區出差或研習心得報告一份
出席國際學術會議心得報告及發表之論文各一份
\square 國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫，提升產業技術及人才培育研究計畫，列管計畫及下列情形者外，得立即公開查詢
\square 涉及專利或其他智慧財產權，\square —年 \square 二年後可公開查詢

執行單位：國立政治大學資訊科學系

中 華 民 國 98年1月 20日

中文摘要

本研究案主要著力於學生學習模型，電腦輔助試題翻譯，電腦輔助語文教學和中文訴訟文書分類四個研究主題。在學生學習模型方面，我們以貝氏網路來表示學生學習模型，並且提出了一個方法來學習學生的學習模型的方法。在電腦輔助試題翻譯這一項工作中，我們建構了一個實際的系統，用以輔助專家翻譯 TIMSS 試題。在電腦輔助語文教學這一項工作中，我們建構了一個真實的系統，可以輔助國語科教師編輯試題。中文訴訟文書分類並不是這一次研究案的主角，是我們結束前一國科會研究案的工作。本次研究計畫執行期間，合計發表 17 篇論文（兩篇國際期刊論文，三篇國際學術研討會論文國内學術會議方面，則有六篇 ROCLING 論文，四篇 TAAI 論文，一篇 NCS 和一篇 TANET 論文），總頁數達到 133頁；其中包含一篇人工智慧與電腦輔助教學跨領域研究的優質期刊論文（IJAIED）和一篇計算語言學優質研討會（ACL）的研討會論文。

關鍵詞：貝氏網路，學生學習歷程，建模技術，資訊檢索，電腦輔助語文學習，機器翻譯

Abstract

In this report，we summarize the results of this research project on several fronts． For student modeling，we proposed a simulation－based approach to learn the struc－ tures of Bayesian networks that contain unobservable variables．We have built three functioning systems for practical applications of natural language processing tech－ niques．We built an environment for computer－assisted translation of TIMSS test items，an environment for assisting teachers to compose test items for elementary Chinese，and an environment for searching Chinese indictment documents．

Keywords：Bayesian networks，structure learning，learning processes of composite concepts，information retrieval，computer assisted language learning，machine translation

目錄

報告内容 1
前言 1
研究目的 1
相關文獻 2
研究方法 2
研究成果 3
論文列表 4
計畫成果自評 6
附錄 7－22

報告内容

前言

本研究案雖然不是一個整合型計畫，但是一開始即訂定多項目標，因此實際上很難以一份報告來總結所有子項計畫的研究成果。因此，在這一份報告中，我們為個別子項計畫撰寫簡要的文字資料，然後請有興趣深入研究的讀者繼續研讀已經發表的期刊論文或者學術會議論文。

這一個研究案從事兩大類但相互關連的研究工作：一個是認知歷程的建模技術，另一個則是以自然語言處理為基礎的實際軟體系統的建置。認知歷程的建模技術方面，我們以學生學習綜合觀念的問題作為研究的主題。實際軟體系統方面，我們建立了三個不同的系統：中文訴訟文書檢索系統，電腦輔助 TIMSS 試題翻譯環境和電腦輔助國語科試題出題環境。

在實際的環境中，如果我們想要利用人工智慧技術來讓軟體系統提供使用者最好的服務，瞭解使用者真實的需求是必要的基礎。實務上我們很難經常性地詢問使用者的需求和回饋，因此從間接的資訊來推測使用者的興趣或者意向是重要的基礎技術。所以，以上雨大類的研究工作，以長遠的角度來說是有密切關連的。現階段的工作是一個逐漸打底的工作；我們期待繼續朝綜合人工智慧技術，機器學習技術和自然語言處理技術來建構有用的資訊檢索環境和電腦輔助語文學習的環境。

在研究進度方面，計畫主持人全力從事認知歷程的建模技術，因此這一部分的成果比較能夠掌握。應用自然語言處理技術來建立實際系統的部分，則全部是以碩士班研究生執行，雖然能多維持一些進度，但是計畫推展的速度並不能令人完全滿意。

在研究成果方面，我們發表了 17 篇學術論文，總頁數達到 133 頁。在研究成果小節中我們將分析所達成的成果。我們把各項主要子項工作比較具有代表性的論文附在本份報告的附錄中。就如前面所說明，這一份報告的本身其實只能是我們所進行的所有工作的大摘要而已，所有工作的真正成果已經反映在所發表的論文之中，因此雖然我們必須把論文放在附錄，但是其實論文本身才應該是這一個研究案的成果的真正主角。

附錄包含了四篇論文：IJAIED 的期刊論文一篇（建模技術相關論文，這是一篇出版商有版權的文章，不宜在網路上公開），ACL 國際學術研討會論文一篇（電腦輔助國語科試題出題輔助系統），ROCLING 國内學術研討會論文一篇（電腦輔助 TIMSS 試題翻譯環境）和TAAI 國内學術研討會論文一篇（中文訴訟文書檢索系統）。

研究目的

我們分四個段落簡述四個不同的子項目的研究目的。詳細資料請參閱相關論文。
在建立使用者模型方面，我們希望能多找到一個好的辨法，讓我們可以在不能夠直接觀測模型中所有相關變數的狀態的情形之下，仍然能多以貝氏網路來表示所有相關變數的直接和間接機率關係。在所進行的研究中，學生的答題的反應（目前僅以「對」和「錯」表示）是可以直接觀測的變數，而我們所建立的模型包含了學生對於個別觀念的能力。能力與答題的對錯雖然有密切關係，但是關係卻不是邏輯式的，因為有人會因為運氣好答對

題目，也有人會因為一時疏忽等複雜原因，在有相關能力的情形之下，卻沒有答對題目。簡單地說，本項研究是要以學生的答題的對錯來反推學生的學習模式的貝氏網路。

在中文訴訟文書檢索系統中，我們採用了幾種資訊檢索和人工智慧的分類，分群的技術來輔助專業和非專業法學人士來檢索以中文撰寫的地方法院訴訟文書。對於檢索者而言，我們希望能夠提高相關判例的檢索效率，同時這一系統也希望能夠有助於專業人士檢索相關刑事案件的判刑刑度，藉此希望有助於法院判決的一致性。

電腦輔助 TIMSS 試題翻譯環境的研究，同様也是結合人工智慧與自然語言處理的應用研究，目的是協助 TIMSS 試題的翻譯。TIMSS 試題的原文是以英文撰寫的國際標準試題，測驗的目的是要評比参與 TIMSS 計畫的各個國家的科學數理的教學成效。我國參與TIMSS計畫，因此須要把 TIMSS 試題翻譯為中文試題，好讓我國四年級和八年級（國中二年級）的學生受測。我們建構了一個環境，希望能協助負責翻譯試題的專家，能夠以較低的時間代價從事符合翻譯準則的翻譯工作。

電腦輔助國語科試題出題環境則是利用自然語言處理技術，協助國語科或者華語教師編輯與華語學習相關的試題，好讓教師能多透過網路從事測驗。這一個系統同時包含了試題編輯，題庫管理，網路施測和測後分析等功能。試題的類型則包含的漢語語音辨識，改錯字試題，中文克漏詞（cloze），中文量詞和句子重組五個題型。

文獻探討

由於前述的四大項研究各有自己相關的文獻，因此無法在一篇報告中簡單地整合。除了因為研究方向的重要差別，另外也因為相關文獻的量的關係，請有興趣的讀者與評審参閲個別論文中的相關文獻探討的資料。

研究方法

我們分四個段落簡述四個不同的子項目的研究方法。詳細資料請參閱相關論文。
在建立使用者模型方面，我們首先建立一般適性化教學研究所依賴的模型，利用這様的模型來產生模擬的學生答題表現。有了答題表現的資料，我們才能進行下一步研究。在研究中，我們比較了以經駗法則（heuristics），類神經網路（artificial neural networks）和支持向量機（support vector machines）所建構的分類器等技術來猜測先前用以產生模擬的學生資料時所使用的貝氏網路模型。除了利用經験法則來猜測的方法之外，我們須要利用監督式學習法（supervised learning）來訓練類神經網路模型和支持向量機模型，這時我們假設有專業的猜測，讓我們得以限縮所欲尋找的模型的範圍。實騟中，我們假設了學生的答題反應跟其真實能力，只會呈現機率式的關連性，同時操弄這一關連性的不確定性，來研究經驗法則，類神經網路和支持向量機所建構的分類器，在不同的程度的不確定性關連下所能達成的正確性。

在中文訴訟文書檢索系統中，除了典型的 inverted indexing 之外，我們利用更多的自然語言處理技術，建構不同的管道來協助查詢者找到有用的資料。這其中跟語意比較相關的是我們採用了詞組（term pairs）為基礎的分群機制，讓我們來評比訴訟文書的相關度直覺上來說。以詞組為檢索機制，比較能夠彰顯詞彙的語意。此外，我們也利用詞彙的同現（collocation）

來導引建議檢索檔案。跟我們以詞組為基礎來做檔案分群的理念相似，以同現的分數高低來建議檢索資料，也可能因為比較能多捕捉到檢索者的意圖而提高檢索效率。

電腦輔助 TIMSS 試題翻譯環境的建置是一個典型的機器翻譯（machine translation）的研究。對於機器翻譯這個研究議題來說，兩年的計畫時程只能建立基礎而已。我們應用語言模型（language models），雙語對譯資料（parallel corpora），範例式學習技術（example－based learning）三個主要技術，結合現在受到學界普遍使用的 Moses 和 Lucene 開放式軟體工具建立了一個翻譯輔助環境。本研究案，受到國立台灣師範大學科學教育中心的張主任的協助，因此得以獲得相關的 TIMSS 中英文試題。

電腦輔助國語科試題出題環境提供五大類型試題的編輯：漢語語音辨識，改錯字試題，中文克漏詞，中文量詞和句子重組。因此我們須要利用到語音，漢字構形，漢語詞菒和漢語語法等數個不同層次的語文資訊。我們利用自然語言處理技術，依照試題編輯者（通常是教師）所要求的試題條件，從所蒐集的語文資料找到相關的語料，並且依照所編輯的試題的特性提出有用的建言。試題編輯者可以利用我們的介面建立基本的題庫，進而建立試卷資料庫，爾後學生也可以透過網路作答。學生作答的結果可以立即得到回饋，教師也可以分析所任課的學生群的測驗結果，檢討其教學策略。

研究成果與討論

我們分別簡述四個不同的子項目的研究成果。詳細資料（特別是個別研究的學術意義）請參閱相關論文中比較詳細的討論。

在建立使用者模型方面，我們在 International Journal of Artificial Intelligence in Education（IJAIED）發表了一篇 49 頁的長篇論文［1］，在這之前，我們在全國計算機會議發表了一篇中文論文［12］為國内學者介紹這一個研究的縮影 。IJAIED 是一個優質的期刊，是 International AIED Society 的正式期刊，由 University of Edinburgh 的教授擔任主編，一年一般只收錄十稌篇論文，其中部分還是兩年一次的 AIED 學術研討會的最佳論文才能獲得推薦。因此研究成果能夠在 IJAIED 刊登，應該算是相當不容易的一項成就。

在中文訴訟文書檢索系統方面，我們在2007年和2008年的人工智慧學會年會（TAAI）發表了三篇論文 $[6,13,14]$ 。

電腦輔助 TIMSS 試題翻譯環境的建置方面，我們在 Journal of Advanced Computational Intelligence and Intelligent Informatics（JACIII）發表了一篇簡短的期刊論文［2］，在 RANLP 國際學術研討會中發表了一篇論文［5］，在 2007 年和 2008 年的計算語言學研討會（ROCLING）上各發表了一篇論文［10，17］。

因為所牽涉的問題，不僅僅是資訊科學的技術，同時還有關於教學的可能成效，因此電腦輔助國語科試題出題環境的研究成果，部分是發表在比較接近教育領域的會議中，去接受第一線的使用者的挑戰。這一方面的部分成果發表於 JACIII 期刊論文［2］，2008 年的 ACL 國際學術研討會［3］，2008 年的 CAERDA 學術研討會［4］，2007 年的 RANLP 國際學術研討會［5］，兩篇 2008 年的計算語言學研討會（ROCLING）［8，9］和一篇2007年的網際網路研討會（TANET）［15］。ACL 是國際間計算語言學界最著名的國際學術研討會之一，研究成果能夠獲得 ACL 年會收錄，是一項不錯的成就。

除了本份報告目前所報告的四項研究子項目之外，我們這一個研究計畫還做了一些嘗試性質的研究，這一些嘗試性的研究偶而也有一些零星的論文發表。在研究生方面，這兩年期間，有一為研究生曾經探討利用文件分類的技術來猜測新聞報導與股價漲跌趨勢的可能關係［16］，另有一位研究生探討利用文件内容的分析技術，來為研討會投稿論文找尋合適的論文評審委員［11］，這雨項研究經驗都發表在 ROCLING 研討會。此外，我們也有一位大學部同學利用機器學習技術的觀念，發展出一個可以提供任意形狀棋盤的黑白棋（Reversi）服務的軟體服務［7］，這一向研究成果則發表於 TAAI 研討會。

論文列表

以下是因本項研究案所得以發表的學術論文清單
1．Chao－Lin Liu．A simulation－based experience in learning structures of Bayesian networks to represent how students learn composite concepts，International Journal of Artificial Intelli－ gence in Education，18（3），237－285．IOS Press，The Netherlands，September 2008.
2．Ming－Shin Lu（呂明欣），Yu－Chun Wang（王昱鈞），Jen－Hsiang Lin（林仁祥），Chao－Lin Liu， Zhao－Ming Gao（高照明），and Chun－Yen Chang（張俊彦）．Supporting the translation and authoring of test items with techniques of natural language processing，Journal of Advanced Computational Intelligence and Intelligent Informatics，12（3），234－242．Fuji Technology Press，Japan，May 2008.
3．Chao－Lin Liu and Jen－Hsiang Lin（林仁祥）．Using structural information for identifying similar Chinese characters，Proceedings of the Forty Sixth Annual Meeting of the Associa－ tion for Computational Linguistics：Human Language Technologies（ACL＇08），short paper， 93－96．Columbus，Ohio，USA， 2008.
4．Chao－Lin Liu，Jen－Hsiang Lin（林仁祥），and Chih－Bin Huang（黄志斌）．A platform for au－ thoring test items for elementary Chinese with techniques of natural language processing， presented in the 2008 CAERDA International Conference（Chinese American Educational Research and Development Association）．New York，New York，USA， 2008.
5．Ming－Shin Lu（呂明欣），Jen－Hsiang Lin（林仁祥），Yu－Chun Wang（王昱鈞），Zhao－Ming Gao（高照明），Chao－Lin Liu，and Chun－Yen Chang（張俊彥）．Prototypes of using NLP tech－ niques for assisting translation and authoring of test items，Proceedings of the Workshop on NLP for Educational Resources，International Conference on Recent Advances in Natural Language Processing 2007 （RANLP’07），1－6．Borovets，Bulgaria， 2007.
6．藍家良，賴敏華，田侃文及劉昭麟。訴訟文書檢索系統，第十三屋人工智慧與應用研討會論文集（TAAI’08），305－312。2008年。
7．林正宏及劉昭麟。任意棋盤的 Othello 遊戲，第十三厒人工智慧與應用研討會論文集 （TAAI’08），443－449。2008 年。
8．劉昭麟，黄志斌，翁睿妤及莊怡軒。形音相近的易混淆漢字的搜尋與應用，第二十屋自然語言與語音虗理研討會論文集（ROCLING XX），108－122。2008 年。
9．賴敏華及劉昭麟。電腦輔助中學程度漢英翻譯習作環境之建置，第二十厒自然語言與語音處理研討會論文集（ROCLING XX），293－307。2008 年。

10．張智傑及劉昭麟。以範例為基礎之英漢 TIMSS 試題輔助翻譯，第二十屆自然語言與語音虗理研討會論文集（ROCLING XX），308－322。2008 年。
11．陳禹勳及劉昭麟。電腦輔助推薦學術會議論文評審委員之初探，第二十厒自然語言與語音虗理研討會論文集（ROCLING XX），323－337。2008 年。
12．劉昭麟。利用試題反應建立學生學習歷程模型的一些經驗，中華民國九十六年全國計算機會議論文集（NCS’07），第一册（下），359－366。2007 年。
13．何君豪，鄭人豪及劉昭麟。階層式分群法在民事裁判要旨分群上之應用，第十二屋人工智慧與應用研討會論文集（TAAI’07），794－800。2007年。
14．鄭人豪及劉昭麟。中文詞槀集的來源與權重對中文裁判書分類成效的影響，第十二屋人工智慧與應用研討會論文集（TAAI’07），801－808。2007年。
15．林仁祥及劉昭麟。國小國語科測驗卷出題輔助系統，2007 臺灣網際網路研討會論文集 （TANET’07），論文光碟。2007年。
16．陳俊達，王台平及劉昭麟。以文件分類技術預測股價趨勢，第十九屋自然語言與語音處理研討會論文集（ROCLING XIX），347－361。2007年。
17．呂明欣，高照明，劉昭麟及張俊彥。針對數學與科學教育領域之電腦輔助英中試題翻譯系統，第十九屋自然語言與語音虗理研討會論文集（ROCLING XIX），407－421。2007年。

計畫成果自評

這一項研究計畫歷時兩年，原本的研究目標包含兩大方向，一個是模型建立技術的研究，另一個則是與自然語言處理相關的研究。在這兩年之中，我們合計發表兩篇期刊論文，三篇國際學術研討會論文和 12 篇國内學術會議論文。

在建立模型技術的研究方面，我們覺得有很值得自豪的成就，能多在 International Journal of Artificial Intelligence in Education（IJAIED）發表長篇論文。IJAIED 是 AIED 學會的代表期刊，而 AIED 的學術研討會和 ITS 學術研討會則是電腦輔助教學兩大旗艦級的國際學術研討會。部分的 IJAIED 論文還是從 AIED 兩年一次的國際學術會議中精選而得的 （ITS 也是兩年一次的國際學術會議）。因此，我們主觀地相信以兩年多的努力來換取一篇 IJAIED 的論文是一項值得的投資。

相對之下，自然語言處理相關的研究的學術成果則顯得較為薄弱，由於研究計畫的規模和過去兩年的兼任研究助理都還是只有由碩士班研究生來擔任，因此只能建立一些基礎的經驗，僅僅在發表論文的數量和研究廣度上做努力。我們在電腦輔助法學資訊檢索，電腦輔助機器翻譯和電腦輔助國語科試題編輯三個方面，都建置了真實可以在網路上使用的軟體，除了為實驗室建立一些可用的軟體工具，為更深層研究建立基礎之外，最明顯可見的成果可能是在於訓練可以進入職場的資訊科技人才。

附錄

本附錄依序包含下列四篇論文。

1．Chao－Lin Liu．A simulation－based experience in learning structures of Bayesian networks to represent how students learn composite concepts，International Journal of Artificial Intelli－ gence in Education，18（3），237－285．IOS Press，The Netherlands，September 2008.
2．Chao－Lin Liu and Jen－Hsiang Lin（林仁祥）．Using structural information for identifying similar Chinese characters，Proceedings of the Forty Sixth Annual Meeting of the Associa－ tion for Computational Linguistics：Human Language Technologies（ACL＇08），short paper， 93－96．Columbus，Ohio，USA， 2008.
3．張智傑及劉昭麟。以範例為基礎之英漢 TIMSS 試題輔助翻譯，第二十厒自然語言與語音虗理研討會論文集（ROCLING XX），308－322。2008 年。
4．藍家良，賴敏華，田㑆文及劉昭麟。訴訟文書檢索系統，第十三屋人工智慧與應用研討會論文集（TAAI’08），305－312。2008 年。

A Simulation-Based Experience in Learning Structures of
Bayesian Networks to Represent How Students Learn Composite Concepts
Cha-Lin LLi, Departrment of Computer Science, National Chengchi Universit, Taivan
thooilnanculueduluw

introductio

 the areset probem nonntivil.

ereminaries

 he Simulated World

We choose to use Baysesin networks to reppesent studert modeds, because Bayceian networks are a

Te Target Question and Assumption

 $\substack{\text { our computaic } \\ \text { in infer } \\ \text { Therterere }}$

(1425+50-16)
(san

.

 strings in our stud
Definition 3 . (The
.

 ${ }^{\text {Figure } 3 \text {, , was wed do generate }}$ Grating Student Records

 might be competent in inter "concent

$\frac{8}{8}$	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	0	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	0	1	1		1	1

 Compunatoman Complexity

 $s(t, i)=\frac{1}{i!} \sum_{=0=0}^{i-1}(-1)^{1}\binom{i}{j}^{(i-j)^{t}}$

 (2)

 Impact of tent Variables

-

We will examine
Sarch.Based Methods

aid in he s.
hat
sections is.
s.

methods for model selection

 $M(R, T)>M(S, T) \geqslant H(T)-H(T|R\rangle>H(T)-H(T \mid S)=H(T \mid R)>H(T \mid S)$

Input. sudensens item responses

mand smon

Hes stof of candidate parent concepss sepresented by e_{x}°, ad in incerase κ by We indulde seep lin the learitm
 . For instanance, if $o j$ is $A B C, 0$, , we have conerept of $\pi_{j, j}=d$

has the largest score among all σ^{σ},

 emadidate with the neve candidate and carry ou step 7 . In the altete case, we will have to comput

 Model-Based Methods: ANNs and SvMs

Tale 6. A sample ingtance for raining ANN and SVMs

We can compute the number of faturus for this propedirum of preparing the trining intances.

5. 6 C Crating recorts of fiem repoposes of simulated studers
design of the experiments
 Generaing Daasels


```
m
women
                Manmen
```



```
            *)
```



```
            Na/m,
            M,
```

Steps of the Experiments

 Measurement of fuality

 and test insatanes for oratuating the

 fuuere and turuminess in reating the training and iest datal. In the seocond
mealistic evaluations

Effects of Method sad Parameers

Using heurisitis and Search4Pattern

 answis)

 $\underset{\substack{\text { minans. } \\ \text { tin }}}{ }$

 Using suppored vecor macchines

 $=1$ \qquad
Fiig 15. Using SVMS for precicionn((5)

umer

 Effects of unuber ofbasic concepts

为

Fig. 16. Using 1

 4

Hose hat consider for bus basic conecepss.

Effects of conpecerce in ine basis and the targect compositie concepls

morementrenventions

 competence patemsmof real students.
ness on hic prexicition of the lexning patems. To this end. we continued to use the networss shoum

Fuences of the Q-Matrices and Sinses of Sudent Populations

Shers hiped usatueve beteter cassintiation accuray.

summary and discussion

We wrap up this pper by y summarising our findings and refering to additionan reated work.

More on Related Wort

acknowiedgements

efrrences

 Cuse

 Sind

soms

\author{
Chao－Lin Liu
 Jen－Hsiang Lin
 Department of Computer Science，National Chengchi University，Taipei 11605，Taiwan
 \｛chaolin，g9429\}@cs.nccu.edu.tw

}

Abstract
Chinese characters that are similar in their
pronunciations or in their internal structures pronuche useful for computer－assisted language
are learning and for psycholinguistic studies．Al－ though it is possible for us to employ image－ based methods to identify visually similar
characters，the resulting compuational costs characters，the resulting computational costs
can be very high．We propose methods for can be very high．We propose methods for
identifying visually similar Chinese characters by adopting and extending the basic concepts of a proven Chinese input method－－Cangiie． We present the methods，illustrate how they

1 Introduction

A Chinese sentence consists of a sequence of char acters that are not separated by spaces．The func fion of a Chinese character is not exactly the same as the function of an English word．Normally，two
or more Chinese characters form a Chinese word to carry a meaning，although there are Chinese word that contain only one Chinese character．For in stance，a translation for＂＂onference＂is＂研討會＂，
and a translation for＂go＂is＂去＂．Here＂研討會＂ is a word formed by three characters，and＂去＂is a word with only one character．
Just like that there are English words that are spelled similarly，there are Chinese characters tha are pronounced or written alike．For instance，in English，the sentence＂John plays an important rol
in this event．＂contains an incorrect word should replace＂roll＂with＂role＂．In Chinese，the sentence＂今天上午我們束試場貿菜＂contains an incorrect word．We should replace＂試場＂（a plac for taking examinations）with＂市場＂（a market） These two words have the same pronunciation，
shi (4) chang $(3)^{\dagger}$ ，and both represent locations．The sentence＂經理要我構買一部計算機＂also con－

We use Arabic digits to denote the four tones in Mandarin．

 but can be confused with＂購買＂because the first
characters in these words characters in these words look similar．
Characters that are similar in
es or in their pronunciations are useful for computer－assisted language learning（cf．Burstein \＆Leacock，2005）．When preparing test items for testing students＇knowledge about correct words in a computer－assisted environment，a teacher pro－
vides a sentence which contains the character that will be replaced by an incorrect character．The teacher needs to specify the answer character，and the software will provide two types of incorrect characters which the teachers will use as distracters in the test items．The first type includes characters that look similar to the answer character，and the second includes characters that have the same
similar pronunciations with the answer character． Similar characters are also useful for studies in Psycholinguistics．Yeh and Li（2002）studied how similar characters influenced the judgments made by skilled readers of Chinese．Taft，Zhu，and Peng（1999）investigated the effects of positions of responses．Computer programs that can automati－ cally provide similar characters are thus potentially helpful for designing related experiments．
2 Identifying Similar Characters with In－ formation about the Internal Structures

We present some similar Chinese characters in the first subsection，illustrate how we encode Chinese
characters in the second subsection，elaborate how we improve the current encoding method to facili－ tate the identification of similar characters in the third subsection，and discuss the weakness of our
current approach in the last subsection

2．1 Examples of Similar Chinese Characters
We show three categories of confusing Chinese characters in Figures 1，2，and 3．Groups of similar

母母土エチ千 成成成男男由甲申
頍勁 捵溝 陪倍 硯現裸棵搞筑
Figure 2．Some similar Chinese characters that have different pronunciations

形刑型 踵種腫䐟䐟構搆紀記計

Figure 3．Homophones with a shared componen
characters are separated by spaces in these figures． In Figure 1，characters in each group differ at the俍 he shared part is not the radical of these chart，but Similar characters in every group in the second ow in Figure 2 share a common part，which is the radical of these characters．Similar characters in every group in Figure 2 have different pronuncia－ tions．We show six groups of homophones that also share a component in Figure 3．Characters that are similar in both pronunciations and internal
structures are most confusing to new learners． It is not difficult to list all of those characte that have the same or similar pronunciations，e．g．，
＂試場＂and＂市場＂，if we have a machine readable lexicon that provides information about pronuncia－ tions of characters and when we ignore special pa terns for tone sandhi in Chinese（Chen，2000）．
In contrast，it is relatively difficult to fi
racters that are written in similar ways，eg， ＂構＂with＂購＂，in an efficient way．It is intriguing to resort to image processing methods to find such structurally similar words，but the computational costs can be very high，considering that there can be tens of thousands of Chinese characters．There corpus of Chinese documents（Juang et al．，2005）， so directly computing the similarity between im－ ages of these characters demands a lot of computa－ tion．There can be more than 4.9 billion combinations of character pairs．The Ministry of
Education in Taiwan suggests that about 5000 Education in Taiwan suggests that about 5000
characters are needed for ordinary usage．In this characters are needed for ordinary ust
case，there are about 25 million pairs．

The quantity of combinations
the bottlenecks．We may have to shift the positions of the characters＂appropriately＂to find the com－ mon part of a character pair．The appropriateness
for shifting characters is not easy to define the image－based method less directly useful；for
instance，the common part of the characters in the right group in the second row in Figure 3 appears
in different places in the characters． Lexicographers employ radic characters to organize Chinese characters into sec－ tions in dictionaries．Hence，the information should be useful．The groups in the second row in Figure 2 show some examples．The shared components in these groups are radicals of the characters，so we
can find the characters of the same group in the same section in a Chinese dictionary．However， information about radicals as they are defined by the lexicographers is not sufficient．The groups of characters shown in the first row in Figure 2 have shared components．Nevertheless，the shared com－
ponents are not considered as radicals，so the char－ acters，eg．＂輀＂and＂勁＂，are listed in different sections in the dictionary．

2．2 Encoding the Chinese Characters

The Cangiie ${ }^{t}$ method is one of the most popular methods for people to enter Chinese into com－
puters．The designer of the Cangie method，Mr Bong－Foo Chu，selected a set of 24 basic elements in Chinese characters，and proposed a set of rules to decompose Chinese characters into elements 2008）．Hence，it is possible to define the similarity 2008）．Hence，it is possible to define the similarity larity between their Cangjie codes．

${ }^{\ddagger}$ htp：／／en．wikipedia．org／wiki／Cangii＿method
sections，each showing the Cangie codes for some
characters in Figures 1，2，and 3．Every Chinese character is decomposed into an ordered sequence these elements comes from a major component of a character，shortly．）Evidently，computing the num－ ber of shared elements provides a viable way to determine＂visually similar＂characters for charac－ ters that appeared in Figure 2 and Figure 3．For instance，we can tell that＂搞＂and＂管＂are similar in fact represent＂＂高＂ fact represent＂高＂
pear to be as helpful for identifying the similaritie between characters that differ subtly at the stroke level，e．g．，＂士土工干＂and other characters listed in Figure 1．There are special rules for decompos－ ing these relatively basic characters in the Cangjie
method，and these special encodings make the re－ sulting codes less useful for our tasks．
The Cangjie codes for characters that contain multiple components were intentionally simplified to allow users to input Chinese characters more efficiently．The longest Cangiie code for any Chi－
nese character contains no more than five elements． In the Cangiie codes for＂脛＂and＂婹＂，we see＂－女一＂for the component＂㜽＂，but this compone is represented only by＂－－＂in the Cangjie codes for＂㛲＂and＂勁＂．The simplification makes it elatively harder to identify visually similar charac ters by comparing the actual Cangjie codes．

2．3 Engineering the Original Cangjie Codes

Although useful for the sake of designing input method，the simplification of Cangjie codes causes
difficulties when we use the codes to find similar characters．Hence，we choose to use the complete codes for the components in our database．For in－ stance，in our database，the codes for＂㜽＂，＂脮＂ ＂徑＂＂＂黷＂，and＂劲＂are，respectively，＂一女女一＂，山金＂，and＂一女女一大户＂，
f the Chinese characters（cf graphical structures of the Chinese characters（cf．Juang et al．， 2005
Lee，2008）can be instrumental as well．Conside the examples in Figure 2．Some characters can be decomposed vertically；e．g．，＂虫＂can be split into two smaller components，i．e．，＂中＂＂and＂m＂．Some characters can be decomposed horizontally；e．g．，
＂現＂is consisted of＂王＂and＂見＂Some have ＂現＂is consisted of＂王＂and＂見＂．Some have ＂口＂in＂囚＂．Hence，we can consider the location of the components as well as the number of shared

components in determining the similarity between characters．

Figure 4 illustrates possible layouts of the components in Chinese characters that were adopted by the Cangjie method（cf．Lee，2008）．A layouts．A box in a layout indicates a component in a character，and there can be at most three compo－ nents in a character．We use digits to indicate the
ordering the components．Notice that，in the sec－ ordering the components．Notice that，in the sec－
ond row，there are two boxes in the second to the rightmost layout．A larger box contains a smaller one．There are three boxes in the rightmost layout， and two smaller boxes are inside the outer box． Due to space limits，we do not show＂ 1 ＂for this outer box．
After

After recovering the simplified Cangjie code for a character，we can associate the character with nents，and separate the code sequence of the char－ acter according to the layout of its components． Hence，the information about a character includes
the tag for its layout and between one to three se the tag for its layout and between one to three se－

tated and expanded codes of the sample characters in Figure 4 and the codes for some characters that we will discuss．The layouts are numbered from Elements that do not belong to the original Canie codes of the characters are shown in smaller font．

Recovering the elements that were dropped out by the Cangjie method and organizing the sub－ sequences of elements into parts facilitate the iden－ tification of similar characters．It is now easier to
find that the character（ （ 鰂）that is represented by ＂ind that the character（顡）that is represented by character（垤）that is represented by＂竹人＂and ＂一女一＂in our database than using their origi－ nal Cangjie codes in Table 1．Checking the codes for＂員＂and＂圆＂in Table 1 and Table 2 will offer an additional support for our design decisions．
In the worst case，we have to compare
In the worst case，we have to compare nine both have three components．Since we do not sim－ plify codes for components and all components have no more than five elements，conducting the
comparisons operations are simple． comparisons operations are simple．

2．4 Drawbacks of Using the Cangiie Codes

Using the Cangjie codes as the basis for comparing he similarity between characters introduces some potential problems．
It appears that the Cangjie codes for some
characters，particular those simple ones，were not assigned without ambiguous principles．Relying on Cangjie codes to compute the similarity between such characters can be difficult．For instance，＂分＂ uses the fifth layout，but＂兌＂uses the first layout in Figure 4．The first section in Table 1shows the ficult to compare－that are dif Due to the d
an be at most one component at the left hand side and at most one component at the top in the layouts． The last three entries in Table 2 provide an exam－ ple for these constraints．As a standalone character， ＂相＂，the＂相＂in＂箱＂was divided into two parts． However，in＂想＂，＂相＂is treated as an individual component because it is on top of＂想＂．Similar problems may occur elsewhere，e．g．，＂森焚＂and ＂恩因＂．There are also some exceptional cases；e．．．．，品＂uses the sixth layout，but＂闆＂uses the fifth layout．

3 Concluding Remarks

We adopt the Cangjie alphabet to encode Chinese characters，but choose not to simplify the code se－ quences，and annotate the characters with the lay－
out information of their components．The resulting method is not perfect，but allows us to find visually similar characters more efficient than employing the image－based methods．

Trying to find conceptually similar but con－ textually inappropriate characters should be a natu－ ral step after being able to find characters that have

Acknowledgments

Work reported in this paper was supported in part by the plan NSC－95－2221－E－004－013－MY2 from plan ATU－NCCU－96H061 from the Ministry of Education of Taiwan．

References

Jill Burstein and Claudia Leacock．editors．2005．Pro－
ceedings of the ceedings of the Second Workshop on Bu．
tional Applications Using NLP，ACL．
Matthew Y．Chen．2000．Tone Sandhi：Patterns across
Chinese Dialects．（Cambridge．Studies in Linguistics Chinese Dialects．（Cambrigge．Studies in Liss．
92．）Cambridge：Cambridge University Press． Bong－Foo Chu．2008．Handbook of the Fifth Generation
of the Cangie Inyut Method，web version，available of the Cangiie Input Method，web version，available at http：／／www．cbflabs．com／book／ocj5／ocj5／index．html．
Last visited on 14 Mar．2008． Last visited on 14 Mar． 2008.
http：／／input．foruto．com／cidict／Selthods in 30 Days， http：／／input．foruto．com／cjdict／Search＿1．php，Foruto
Company，Hong Kong．Last visited on 14 Mar． 2008. Derming Juang，Jenq－Haur Wang，Chen－Yu Lai，Ching－ Chun Hsieh，Lee－－Eeng CCiien，and Jun－Ming Ho
2005．Resolving the unencoded character problem for 2005．Resolving the unencoded character problem for ACM／IEEE Joint Conference on Digital Libraries， A11－319．
Marcus Taff，Xiaoping Zhu，and Danling Peng． 1999. Positional specificity of radicals in Chinese character
recognition，Journal of Memory and Language，40， recognitio
$498-519$.
u－Ling Yeh and Jing－Ling Li．2002．Role of structure and component in judgments of visual similarity of Chinese characters，Journal of Experimental Psy－
chology：Human Perception and Performance，28（4），
chology: Human Perception and Performance, 28(4),

\＆9512，chaolin ！＠c
摘要

1．緒侖

 \qquad

正隹 \quad ．

－系䖻架構

 3．系䖻相關技術

在建立 BSTC．

 （解：$: n /$／STC
 1 到Cunt

2 建立 BSSTC 結横和㢆生範伆榬

局里

解義 1 1

	範例樹資料庫 $\mathrm{D}=\left\{\mathrm{D}_{i}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{m}\right\}, \mathrm{D}_{i} \in \mathrm{D}$ D_{i} 包含 T_{i} 與 O_{i}, i 䳕 1 到 m
螺烚	
	s 加入 Q
	器Q＊NULL
緛束	

3.4 䊮济豦理

 4.1 旗閄來源

本身絾維作斿中英

䋛203 M					｜ow
	TIMSS2003國中 科學領域场監	TIMSS2003國 數學領域試題	TIMSS2003國／ 科學領域証題	TIMSS2003閾中 $\begin{aligned} & \text { 數學及科學領域 } \\ & \text { 試䔈 }\end{aligned}$	TMS 5

 Yahoo

4．3复理絲吉果

렝…

致触

參考交嵅

 tional L Lingusistics， $79-85$ ，1990．

Camings of the Tvelfth Ineremational Conference on Compunational Lingusistics，59－64．

 773－778， 1994 ．
ion＂，Procecingss of
 Slaisitic
2005．
 Jun 30， 2008 ．
＂An Efficient Method for Detemining Bilingual Word Classes＂，Proceedings：
 Thirb－eighh Ammal Meeting of the Association for Computational Lingusistics

${ }^{\text {IIS }}$ A．Solcke．SRLIM－an extensible language modeling toolki：Procecedings of fhe inelel． ligence Conference on Sopoken Languge Procesing，901－904， 2002

SI．Sato and M．Nagao，Touard Memory－Based Translaion＂，Proceedings of meterac
The Interanional Assocaition for the Evaluation of Education Acchievemen，

22］The Porter Stemming
cesesd 1 IT． 30.2008$]$
goritm，htif／／www

訴訟文書檢索系統

藍家良 賴敏華 田㑆文 剹昭麟國立政治大學資訊科學系

摘要

在新洨文書检索需求上，對於法官而言，須要找到相似的案例輔助判決；䶕於學習或研究法學的人柬說，輩由检索大量案例，用以分析探討相開議題，而一般民眾，則可藉由實際案例，東吸收法律上的基本知裁，用以保障自身權益
䂨訟案件與日俱增，欲閉詰耍所有案例斯然不

准行查旑，以期減少使用者閏站文件上的角掊，同時猚得較完整資訊。另設計文件棌記與註解功能供使用者建立個人化資料康，便於日後㭘索或債由此資訊修正自動分頻機制

絞场
字資訊系統，人工智慧與法律，階層式分群

緒論

度普及，并多資訊都經由數位化，得以迅速發佈傳 ，且使得检索糹得十分便利，在法學相關資訊上亦是如此。我国的司法院法學資料检索系䋁［2］，胶提供了中央與地方的法規查訽，以及司法解释和法院的判例，開放给大䍝使用。

依司法院統計慮［3］資料顛示，台滋在2007年地方法院刑事案件终结件数達 41 萬件，民事案件更多连 268 禹件。每天約有一禺件的案件被终结以台䓂約 2300 萬人口柬估計，平均約每年每七人就有一人須上法庭，如果去掉末成年和老人等較無犯罪能力的人，比例則更高。遥様的情形並不代表社會環境的覀劣，而是隨著教育水準的提高，資訊取得容易，人柳對於法治的概念日益成熟，愈柬愈多人情得利用司法來保障图人的權益。

果仍包含的大量資訊，則仍是一件耗時的事。

基於上述的理由，本研究欲㝄計一套分類式索系統，㙝助使用者在取得大量结果時，能經由系統自動分類機制，以分頻為出發點檢索訴効文件

勆於較不相關的分類，經由少數幾篇的检查束跳遈此分類，能減少检索的時間與增進检索效率在第 3 第 2 節介節中，我们斨介绍相閒研究縅題；接 4 節是本系統所使用到的相門技術部分：第 5 節作一些初步的評估；最後第 6 節作結語

2 相開研究

Hearst［14］提到搜尋資料的人希望能有介面能替他侞把結果作分類，使資料更有意義且更方便其作检索，快速過濾不符合需求的資訊。作者討論了分群 （clustering）與建立各個面向類别（faceted categor zation）雨種方法的愎缺點。分群法優點是整個過程可自動化，可找到一些有趣的颣別特徽；缺點則是根㧨統㖕结果所得出的類别名稱很可能不具代表性，甚至造成類别的凌乳，使得使用者無法透過類别名楆來㙝助其检索省訊。而另一種方法則是以人工方式手動建立類別，再依據類别的特微比粪搜录结果，架構良好的類別可使分類較清楚，是相㭔於分群法較好的部分，然而送椂可能無法包含所有颣
何君豪［10］将䃈

何君豪［10］将㫮層式分群法府用在民事裁判要
他的需求，便可以曶略此群集的其他裁判要旨，以減少法官理费在民事裁判要旨開蒖時問。作者利以用聎合法［13］的方式來分群，不断合併相似的窂例至一個門檻值。逜社籍由群數或相似度門檻束設定合併终止條件，由使用者個別榆驗，對於無法以間單描述给予類别定義的問題，是较直接的作法。

Schweighofer 等學者［18］提到将法律文件以向量維度的方式展現是很好的作法，包括在計算相似度，分類或是内容的描述上，也指出單純使用 tf －idf （term frequency－inverse document frequency） ［15］［16］来計算向量以表示文件，即使利用完善的詁算相似度公式仍䫒不足，作者使用法律领域較简軋的本骾架構（ontology）束改進造楸的缺失，另外也针偖特定的法律名詞作加重權重的動作。但道些様是會回鍗一個基本問題，就是須要有一個公信力的方式設計本䑤架冓，用以建置詞典或是是規則為基碚達 $[12]$ 研究相似新訜文書的检索，利用詞组為基砹，㸛文章轉換為向量，以 k 最近搂居法演算法，作訴訟文書的分類工作。
分類成效影響，比较從 HowNet［5］攋取出詞喿産生之詞典興 TermSpotter 演算法［12］取出訴訟文件特定詞菒韩以人工修正，所建立之詞典，基於分類效果之影響。親察案例的相似度分佈，找到道常参數提升分類效果。利用 $k \mathrm{NN}$ 作為系統分類機制分析分類效果。另依自省式學習法精神，建立權重調整機制，分析權重調整教分頻效果的影響

3 系統設計

現有的司法院法學資料检索系統［2］中的裁判書查泃，提供了基本的检索裁判書功能，可設定法院裁判類别，案由，時間及關鍵字等佟件，取得符合的结果，在介面上影示至多 100 筆的資訊。寀粎的检索介面可以㙝助法官和律師，甚至一般民眾取得所需的資訊。然而依照開鍵字搜素出本的结果，很可能包含大量的資訊，我们仍要透過逐一检視束過

本研究欲設計一套訴訟文書检索系統，提供不同於上述的检索功能。聙於检索結果而言，如果所检索條件，那此時須要改進的便是检索结果的呈現方式。若能使得检索結果依照裁判書内容的不同進行分類，則可協助使用者在检索結果時，依照類别作榆索。其中不符合其需求的類别，可以在較短時間内決定略過，方便其檢索的效率以及组識資訊對於榆索條件而言，加上简單的相索條件，協助本系統依此條件作分類，為使用者整理結果，可方便其関讀。
（inverted indexes）且提供查訽功能，以增進检索㸚率。Lucene 内部負責製作索引之前断詞功能的程式叫作 Analyzer，其中有多種不同實作方式，像是 Lucene 内建的 StandardAnalyzer－CJKAnalyzer 和 WhitespaceAnalyzer 等。其對中文字的断詞支授只限於一個字一個字切割或是雨雨成一詞去分割，於是我们選挥圆内研究普遍採用中研院的中文断詞系統［1］，預先谁行断詞，再——將断詞後的内容用空白隔開，最後再利用 WhitespaceAnalyzer 依據空白断詞束建立索引

在本系統裁判書的分類中，須使用到断詞詞典

率，且可能因大部分不相關的詞䒼而影響结果。對於像法律逗様専業的领域有午多専有名詞，而有些詞喿則是制式或相慣用法，如果能將其建成専業詞典，便能大幅堿低一般詞典所造成向量維度過大的問題。本系統使用第 2 節提到 TermSpotter 演算法所傾取出的詞喿作為詞典，將裁判書断詞轉換為向量，柬進行依相似度的分群方法

3.2 系统功能及操作介面

逼 1 為使用者在操作本系㧧進行的流程。以下分別

围 1 系統操作流程

一開始使用者可選挥輸入欲检索的詞点闌键字或是一段犯罪事實陳述，以及選探結果的呈現方式，由不同的检索程式慮理。检索程式依照分類數目，刑度選挥以及事實從筫料庫柦匋等不同需求條件，由各資料庫為了提供检素程式大量資料，除了原始的資料（裁判書），另預先建立索引和䤼換資料，提供不同榆索程式進行快速存取。最後輸出分類提供使用者選取，检索内容。另外我们也提供使用者不同類别中出現的相關詞栗資訊，使其能更快掌握相關資訊。在閉讀文件時，可對文件㕠行棌記，如：選
示出束之文字，也可進行統竍或用以改進分頻結果。而加上註解的功能，提供使用者對一段文字作辝解，且可自行定義頖別，方便日後查訽。
在䨘作方面我例採用 Java 語言束開永，且使用

国2 操作介面
俭索；HSQLDB［6］資料庫用本儲在標記和譥解等省訊，便於系就之整合
图 2 為目前設計的操作介面，主要有 $\mathrm{A}, ~ \mathrm{~B}$ 和 C 三部分。在 A 輸入检索的條件；搜录之後，在 B中顕示分群結果和相關資訊供使用者检索；C 則依照 B 中的操作顛示分群裁判書列表或裁判書内容㾫褔限制，在之後偅附上部分截圆
依相似度進行裁判書分群检家的操作介面，如圆 2 的 A 部分為檢索條件的設定，包含了检索网键子，分群数限制，分群依拪等。膍 2 的 B 部分則是在設定好检索條件，按下「搜埐」 後的分群结果，倉顛示各分群所包含裁判書之案由統㖕的前三名。點選任意一群後，䫏示此群集的所有裁判書列表，如图 2 的 C 部分所示。其中每一個選項提供了三栶資訊：日期，案由和主文。任點選一篇後便會䫫示裁判書内容，同時操作介面切换到「裁判

thaman		
masay：	妵	120
9 M	sintesat	twifit
mataif		
massia		
Masatia		
miazabie		

園3 判刑列表

書」 棌䈅，如圆 3 所示，上面會列出此裁判書最後所裁定之刑法法佟 \circ 點選法條後會自動連結到全图

前述功能是针数提供資坛狍少
前进功能是针對提供資訊䡈少且較不明礁的案件检索功能，是可以在检索條件中輸入一段犯罪事實，透過将其鍟換成向量束計算興資料庫中的裁判書相似度，輸出相似的裁判書，提供使用者作裁判的参考依㧨或作相關案件的研究。輸入介面如圆 4 所示，雷我们在图 2 的 A 部分中按下「關键字的方格，可切換至犯罪事實的輸入方塊，按下搜素之後，會顕示相似分群。我们提供最相似的雨栶案由分群，將其相似案件依相似度排序，並將各案由之案件分為雨半，䌐共輸出四腘分群，操作介面及

trameal	化开展分
	120
 Z0000000000－5948．12月30日 	

国4 相似案件检索

5 依刑度分群
接下來介绍量刑辅助检索功能，此功能可廷賣之前對於未知案件分群检索後，為了㙝助使用者检
重，以不同的医間分別列出，方便分析检索•我们文區段中㨁取出刑罚量刑的部分，如有期往刑
分類顛示。另外我們也可以提供法官，律師師特特定分刑罚的區間作检索，輔助其考虑案件，判決蛭重。特面如圆5 所示，大致上興依相似度進行裁判書分群检索介面相同，系統将检索結果依刑度來排序，图中的例子将结果平均分成七群，未柬將再加入圆形化的介面束䫫示某一群相關案件的判刑分佈。目前只考虑有期徒刑的刑期，排序後再將不同的區間倛别分成一群，未来可加入其他量刑評估機制，如拘役，罚金和易服勞役等

現在已經介紹分群的功能及介面操作，接著要介绍我何所提供的其他資訊，相開詞查均功能資訊检索上常用到的基本技街，就是利用詞喿與詞点之間的共現（collocation），可従前後文來搜录出時常同時出現的字串，此字串很有可能是具有意義的，代表著逗些詞菓可能有菑際上的開連性。我们其前後的詞。柾於一般使用者束說，可以提供興開

以詞頻高低作為结果排序。此功能可使一般民䍚或學習法照的使用者了解相閒詞营的出现情形，也有機會籍此找出某些犯案的關連性

介面如圆6所示，我們在查訽時在關键字閵位
点」的標䄾，便會出現圖中E 部分第一層的相關詞喿列表，點選「戌骨」詞喿便會出現裁判書列表如本節圖 2 的 C 部分形式，同時圆 6 中 F 部分也會出現與检索詞荣以及所點選的相關詞喿皆共現的詞喿列表，點選後同粎會出現相關裁判書列表另外為避免第一層相關詞喿列表過大使得影示速

度緩慢，加上圆中間度綵槾，軸束切換頁面，每頁虹䫫示 20 項，依照共現
判書時，我我侞提供文字㮦时的功能。全球資訊絧進入 Web 2.0的時代，O＇Reilly［17］提出與過去 Web 1.0不同的其中一项特徽是從分類學（tax－
onomy）到現在的大 nomy）到現在的大昌分頻法（folkson－
omy），由使用者柬決 omy），由使用者本決
定類别，雖說多数㳟力（tyranny of the ma－
jority）是栶須要深入卥6 相開詞菒列表 jority）是個須要深入研究的議題，但遀椂的分類方式更貼近使用者，如能用在個人化上，也能㙝助使用者更精碳迅速地找助使用者對裁判書内容作標記及䇈解。

目前我們的標記方式分為雨種，一種是選捍某段文字利用更改背景顔色作棌記，加上意見衤解，設定意自的類別，或是增加新的類别。而文字背景由類別柬決定，不同類別可以設定不同頝色。操作介面如圆7所示，在選取「致生危害安全」 按右键

7 標記註解文字
文字」橎位可以預留棌圮成類别 1 後的顔色設定，另外也可以按下新增」，新增棌記類別以及設定棌記後的資訊合存至資料庫中，以後開敞此文件倉将适些部分作標妃，點選標記部分之後會再重新頻示註記資訊。
一段文字将其前景（即文字）顔色作薮更，日後在間领裁判書時，本系統合自動將所有包含的重要詞喿
四栶字便是圆 8 標記後的结果

围8 重要詞㭉標記
文字加上䇈解意見並分颣的目的，是希望使用者日後可以针對自己所分類的資訊作检索，可能是持殊情形的判決，文字敘述所代表的含意或是有爭我的陳述等不同的註解類別。而重要詞喿的標記則是可以效使用者透過自倍的詞栾以不同的顔色皇岏而能快速检視裁判書的内容•進一步由法官所䁬记的一些特定詞点也可以作為我侧在對裁判書断司或分類時，所参考的依據
對於棌記文字或墪解紀狳的储存，我们有雨種方式可以考量，一種是利用標記語言（Markup Language）如絧頁的形式，使用不同的㮃䉝，來棌絃解片段，量一種方式是採用質料庫來儲存興龢而不修改原始文件。為了方便管理標記註解的資訊，我们選用後者的方式來記録相閣筫訊。考量資料庫，属於較精簡，小量資料存取且可常作一艇慮理程序而不作為系統股務的嵌入式睢一料庫 （embedded SQL database），如 SQLite［7］和 HSQLDB［6］等開放原始碼的軟腷。如我们目前採用 HSQLDB，因為此資料庫系統完全由 Java 開發，我何可以將其整合至我們的系統，將資料庫存取視為一般䟧案存取的處理程序。另外此資料庫也採用棌準的SQL 語法，若日後本系統要改為永上多人作業，也能較容易作轉換

4 相關技術

本節介紹所使用到相開技術及討埨，以下各小節將分别敘述。

4.1 階層式分群演算法

利用皆層式分群演算法，將符合條件的結果進行分群，可依聚合法將文件依相似度不断合併至譄當的群僌。本系統採用此演算法，賔作裁判書分群检系功能。在分群的数目上，可由使用者自行決定分群演算法中的相似度竍算，何君豪［10］的研究中比較了最小值（min），配合係數（matching coefficient），Jaccard 係数（Jaccard coefficient）和䍱弦函数（cosine）四種方法束計算相似度，結果影示採用俆弦函數束作胡算在整體表現上能得到好好的分群效果。此公式作法是以雨篇文章同時出

率，將雨扁文章個列的長度列入考量，以缓和文龺長度教於近似值的影響•基於前述原因，本系統也採用除弦公式（公式（1））束計算雨扁文草所轉控之詞营向量 $\vec{X}=\left\{x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right\}, \quad \vec{Y}=$
$\left\{y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{n}\right\}$ 之相似度，其中和和 y_{i} 代表 n
$\operatorname{sim}(\vec{X}, \vec{Y})$ \qquad $\sqrt{\sum_{i=1}^{n} x_{i}^{2} \times \sum_{i=1}^{n} y_{i}^{2}}$
（1）
數，也就是文章所轉換成向量的维度•依採俆弦公式可得知其計算结果澥图介於 0 到 1 ，所計算出的值愈大代表其相似度愈高•另外權重的险定是依的 tf－idf 束計算向量以表示文件，如公式（2）所示，業
中出現的次数， N 代表綿文件栶數，n_{i} 則代表此詞喿在幾篇文中出現過
$x_{i}=t f_{i} \times \log \left(\mathrm{N} / n_{i}\right)$
演算法如圆 9 所示，其中步聚三在計算相似度時為了減少計算量，我佷不㖕算重複的组合，如（a， $b)$ 奥 (b, a) ，其中 a, b 為雨案例的詞喿向量，所入：裁判書資料庫集合 $d b$ ，检索條件 f ，分案例分群集合 $T T$ 。
步㵵一：依㮩 f 従 $d b$ 中取出符合條件，各個案例之事實段，形成集合 T ，其中包括 m 篇事實段詞業向量，$T_{1} \ldots T_{m}$ 。 $T T$ ，其中 $T T_{i}$ 含有詞喿向量 T_{i} ， $i=1$ to m 。
步䎿三：令 $C T$ 用束储存雨雨集合之相似度資訊。
for $(i=$
$\operatorname{cor}(i=1$ to $m-1)($
$\operatorname{for}(j=i+1$ to $m)($
至集合 $C T$ 3］／斺算各集合間相似度。

步䎿四：自 $C T$ 取出相似度最大之集合對，進行合併集合，而 $T T$ 錔徽為新的集合 $T T^{\prime}, T T=T T^{\prime}, m=m-1$ 。
則中止建算，回傅 $T T$否則回到步聚三

園9 分群演算法

以第一次㖕算所有 m 腘案例间相似度的㖕算量为 $m(m-1) / 2$ ，分群數目則由使用者決定。另外在雨伯
 （complete－linkage agglomerative），也就是在群集相似度計算是取其中雨個點相似度最小的值，作為雨群集間的集合相似度

4.2 相似案件分群

向量楾換及相似度計算上我侞同様採用 4.1 節中的方式慮理，以下是相似案件检索的處理流程。瘅所有裁判書依照舆輸入之犯罪事實相似度判書，目前門棌值定為 0.2 。裁判書，目前門殓值定為 0.2
表1所示之t重案由。
詸所得到之结果，分别有雨個案由之雨颣判書，而且各自依照相似度由大至小排列们再將雨類各自對半分成雨類•之所已將同速大量案件在䫏示時的速度。
d．最後雨個案由共分成四份，將會依照相似度由高至低依序輸出在怙相近的分類，但在輸出的絡果上不決定唯一的類别，而是將最有可能的前雨名案由予以輸出，且提供其投票的裁判書列表。这様對於使用者束說，更有機會取得較多也較正兂的相關裁判資訊

4.3 建立相関詞条

在逗小節我们要介绍共現詞营的索引建立方式，事先建立共現詞点，以增進系統的運作效率。
位。由於烡文輅舞断放方面門明，可以空佫作为

文字䋆断詞程式断词本常作查䏛單位。若以詞典断呞作為單位，很可能错失一些特殊或陸著不同的資料出現的詞軍，而以原始文字作延伸，很可能找出無意義的组合，這是必須考虑之豦。断詞的問題斯然也會發生在對原始文章的統計及搜埐上，若使用現有的断詞系統，如中研院的中文断詞系統［1］可以完整統計所有詞嚾興㖕算共現詞咊，但同時也會出現茾多非使用者所期垔的相關詞承資訊，如連接詞，冠詞或甚至错误的断詞等，要再加以過颜造些組合，以符合需求。若是单純使用詞典，無一般或是此领域的専業詞典，會漏掉仵多未收錄在字典中的資訊

在上述情形之下，我们採用中研院的中文断訶系統將所蒐集的裁判書作断司，在断詞之後，可同時得到詞喿的詞性。另外依詞性過濾一些詞票，

保持文件中貫訊完整性以及䍀量減少一些䡈 没有帮助＂的詞点，也減少統計量上的負擔。目前過滤的詞喿之詞性有専有名詞，如人名等資訊，連接詞，如「和」及「或」，以及政詞定詞，如「三百五十」，對於目前我们所提供的相關詞喿之查訽目的是無關聯的。而地方詞，如地點「南港」或是門
者較不具意義，目前粠於地方詞皆都時予以保留。在過滤完一些詞喿之後，将詞喿去掉詞性並以

建立索引的機制，以便在棆真時能快速建立目楆清罟。但 Lucene 浐計的目的不在於提供相関詞量查找功能，而是快速且多楼化准行文件棆索，故我仰需要額外再建立共現詞喿列表。

我例在第一步猱時只建立各個詞喿的共現詞粟列表，而不儲存共現詞㩰所出現的橎案資訊。在步一罪則是利用 Lucene 的搜录程式進行榆索，此時才將出現共現詞葆的梏案列出•造粕的方式除能快速的搜寻之外，同時我何將共現詞荤列表匋立出柬，日後也可以進一步讓使用者针對共現詞㶳

5 初步評估

首先我们罦 3.1 節提到 9296 篇已取得的裁判書縒過中研院断詞系統断詞，再經過處理，過濾掉 4.3即所提到的詞喿，得到每份文件中一個一個以空白断開詞枲的畄案。依此建立 Lucene 的索引橎，逗部分耗費約 50 秒的時間，且其中包含约 33000 個的不重複詞權。

接下來我㑣測試相關詞喿建置時間，我們目前在建立相關詞菜共現所設定的詞喿間隔為 2 ，也就是說我侞將每腘詞喿的前三腘與後三腘詞喿視為共現詞喿，建立雨雨共現詞喿索引的時間约為 50秒，建立三個詞喿共現索引時間约為 14 分镜，未我们合螿较低頻的訶㭔遇源，以增快豦理速度

到取得的裁判文件畦数和欲分群数來決定分群速
度，以分成七群為例，若回传的文件数量為 1100度，以分成七群為例，若回傳的文件數量為 1100
篇，需要 12 秒左右時間得到結果，若回傳文件敕量 950 篇則需要 7 秒左右， 700 篇則倬需 2 秒時間。結果影示，階層式分群在回㮏的文件数量增加之下會造成分群時間大幅上升，适是需要再考慮的•評估是否足夠满足使用者，若不足，能否透過最佳化程式柬降低分群時間，或是录求其他較有效率的分群技徖，柬完成我們的系統

相似案件分群的效果部分，從鄭人豪［11］所作不同門檻值間對於正碓率影響的䆩験部分發現，使

囪 10 䀧博案判刑分布国

周 11 睹博案判刑分布圆 2

用 $k \mathrm{NN}$ 所得分類正碃率约莫可達到七至八成，目前我们没有再對門桖值的决定作分析以及修正。在判決量刑輔助上，我们試著以裁判書案由出發，統㖕判刑的分佈，討㷍此功能對於使用者的禁正蜆表示法㸛找判書中土文段所放铬的判決刑期
及刑期的出現頻率。
圆 10 和圆 11 我们統㖕的是賭博案的部分。為了清楚看見分佈的差暴性，我们以雨張圖來展示，其中横軸座標代表薥立月份，如横軸中「2 所純椋的出現次欶代表判刑為雨個月的出現次数。影然在我們的資料庫中，賭博案刑期大多集中於圆 10也就是判刑八個月以下，圆 11 是判刑九個月以上數量上則大幅降低。我们依判決刑度不同兓察部分裁判書，發現飶博常因「意圆营利」｢以睹博為常業」和「聚䍒睹博」等理由而崘罪。判一年以上軗重的罪，多有連緽意図営利，犯罪時間長甚至累犯的情形發生；五個月以下較短刑期會出現非開設覞博場所，而為受雇者或犯罪時間短，犯後態度良好

图12 強盗案判刑分布图
等情形
國 12 為强盗案件的判刑分佈，因為分佈區較廣，我例以「年」作區隔，所以横軸座標代表某腘區間的统計次数，如横䩜中 3 」 所統㖕的出現次數代表判刑超過一年且在三年以下的出現次数相較於賭㙛案件，䫫然強盗案件的判刑刑期偏高 （未統㖕無期徒刑）。强盗案常伴随著恐嚇•傷害稀盗策事件發生，因此會因為擭带的兇器，堵被害者的偒害程度，是否結夥和盗取的物品等因素而源定判刑，所以刑期分佈相當廣。可以藉由判刑分束硯察部分雨桠性
上述我们以一般民眔的角度去䚌察•看到一些
案件；也可依判刑結果出發，研究判刑的通當性；或是卻䊀特殊判決的案件（如判刑特别重的䅁件）作瞭解。

在刑法明文規定上，都有针對各種犯罪行為設定刑罚的區間，但依各腘案件的不同情形，刑罚仍佑有不同的調整。自由時報電子報 96 年 12 月日）辄覚中提到，法官量刑有公式可循，可依被的犯案次數，危害程度，危险性等莜數，算出被告刑期，以增加判決透明度」，「有公式可以參考，可減少困授，民間司改會律師高涌蔵也表示不反泩此制度，將束法院可以將 TV有罪？無罪？』及 量刑分開辨斒，可更保障當事人權利 \lrcorner° 在目前没有量刑公式的情形下，法官心中仍有一把尺，只是宽期程度不一，所以常會有判刑過軦過重的情形發生。在量刑公式尚未產生前，我们可以提供法官較清禁
去参考過去的判決考量。日後若有貝腙的量刑機制對的分類，以便法官進行嗒索以作為判決各考本系统整䯙功能取向量於司法院法學資料检街［2］所著重部分，新察他们系统可以登理為了找到特定裁判書提供了判決字號，判決日期以及關鍵字等櫊位作為检索倭件，而関謓個别案件

我們則以内容為出發點，粪於裁判書作不同機制分群，以期減少資訊乳度，篙使用者更迅速找到需的資訊，甚至對現有裁判書作進一步分析探討。

6 結語

本系統在基本設計上，如同一般检索介面，先提供
敦定检索條件，選择需要检索的资胶，包含選攞检形索結果的分類形式。接著透過检索程式，將資料庫
著関頝其中的裁判票。

我们在提供資剠上，由简至繁由上而下，透過最精姰的類别資訊，以及相關詞量資訊，到裁判書的摘要資訊，最後裁判書内容和䵒記榇解等資訊盡量使用裁判書本身所提供的資訊去分類• 除了䇐使用者籍由分類唛得更多資訊，也同時協助他们過滤其他䡈不相開，或不感興趣的資訊，增進在関声大量裁判書時的效率

另外提供裁判書進行加上標記，社解等動作储存其纪銯，建立個人化資料庫，以便於日後之查訽•末來我们将加強個人化的部分，對於系統的回借，例如修正詞典，增删相閉詞喿的查訽等功能，以期系統更符合使用者之需求。此功能對於學習法

结找使用者滑去對於相開事件的慮理模式。在橝地上可加上自定類别，方便日後检索及関城讀。

目前完成基本的操作介面及系統建置，且實作分群功能，由使用者決定分類群數，將检索結果分分群功能，由羅事貝相似度者的案由分類，將相似裁判書依案由分類輸出；另外建置詞点共現的索引資料在使用者查訽詞喿時，能提供其相關出現的詞喿未來將维續完成系統功能的建置，修正及整合整個系統，玈使用者能更有效率地進行检索。另外須要設計一個維護系統的介面，基於詞典檔的编蜎修改•裁判書資料的增删及腘人標乱資料的維護分享等，增加系統的弹性及道用性。

致谢

本研究水家编號 NSC－95－2221－E－004－013－MY2 NSC－97－2221－E－004－007－MY2 之園科會研究計並的部分補助，落此致謝。我哬也感謝論文評富的指正，使得我们能多有機會改進本篇埨文興禣強研究工作的内容

参考文献

［1］中研院中文断詞系統
htp：／／ckipsvr．iis．sinica．edu．tw／，最後造勏日期 2008／10／21
［2］司法院法學資料检索系統
http：／／jirs．judicial．gov．tw／，最後造訪日期 2008／10／21。
司法院统竍豦，
http：／／www．judicial．gov．tw／Juds／，最後造施日期 $2008 / 10 / 21^{\circ}$
［4］全國法規資料庫，http：／／law．moj．gov．tw／，最後造施日期 2008／10／21
［5］HowNet 電子詞典 ，http：／／www．keenage．com最後造竝日期 2008／10／21
HSQLDB
［6］HSQLDB 資料庫 http：／／hsqldb．sourceforge．net ，最後造訪日期 2008／10／21 。
［7］Lucene 全文检索引䵓 http：／／lucene．apache．orgl ，最後造施日期 2008／10／21。
SQLite 資料車
［8］SQLite 資料庫，http：／／www．sqlite．org／，最後造訪日期 2008／10／2
［9］呂明欣和王加元，建構一腘簡單的字喿網自然語言豦理學期報告，2007。
［10］何君豪，䇢層式分群法在民事裁判要旨分群上之應用，碩士論文，圆立政治大學資訊科上之愿用，碩士綸文，畋學系，台管，台北， 2007
判書分類成效的影繁，碩士論文，圆立政治大學資訊科學系，台㶅，台北，2007。
［12］竧淳達，利用詞組榆索中文新訟文書之研究碩士碖文，圈立政治大學資訊科學系，台謽台北，2005。
［13］J．Han and M．Kamber，Data Mining：Concept and Techniques，Morgan Kaufmann， 2001.
［14］M．A．Hearst，Clustering Versus Faceted Cate－ gories for Information Exploration，Communi－ cations of the $A C M$ ，volume 49，issue 4，59－61， 2006.
［15］K．S．Jones，A Statistical Interpretation of Term Specificity and Its Application in Retrieval， Journal of Doc
1972. 16］H．P
［16］H．P．Luhn，A Statistical Approach to Mecha－ nized Encoding and Searching of Literary In－ formation，IBM Journal of Research and velopment，volume 1，no．2，309－317， 1957.
［17］T．O＇Reilly，What is Web 2．0－Design Patt and Business Models for the Next Generation of Software，Web 2．0 Report，O＇Reilly， 2005.
［18］E．Schweighofer，G．Haneder，A．Rauber and M．Dittenbach，Improvement of Vector Repre－ sentations of Legal Documents with Legal On－ tologies，Proceedings of the Fifth International 2002.

國際學術會議出席報告

國立政治大學資訊科學系劉昭麟 chaolin＠nccu．edu．tw

摘要

劉昭麟（以下自稱為報告人）於二零零八年六月中赴美國俄亥俄州哥倫布市 （Columbus，Ohio，USA），參與了計算語言學會（Association for Computational Linguis－ tics，簡稱 ACL）的年會，並且在會議中報告論文。這是這一次出席國際學術會議的報告。本報告首先列出出席會議的時間，地點，所參與的會議的基本資料和相關網址；然後報告参與會議所體驗的觀察和心得；最後提出簡短的結論。

1 出訪地點，時間，參與會議

1.1 基本資料

出訪地點：美國俄亥俄州哥倫布市（Columbus，Ohio，USA）
會議時間：二零零八年六月十五日至六月二十日
參與會議：ACL 2008：The Forty Sixth Annual Meeting of the Association for Compu－ tational Linguistics：Human Language Technologies
經費來源：國科會研究經費與政治大學資科系部份補助
發表論文：Using Structural Information for Identifying Similar Chinese Characters（附件五）
相關網址：
ACL：http：／／www．aclweb．org
ACL 2008：http：／／www．ling．ohio－state．edu／acl08／

1.2 参與過程

ACL 的年會是歷史悠久的計算語言學學術會議，會議的時間從六月十五日到二十日，其中十五日是主會議前的教學課程（tutorials），十九日和二十日是主會議之後的工作坊（workshops）。由於距離與時差的問題，報告人必須在台北時間十三日就從台北啟程，於美國當地時間十五日参與了 Building Practical Spoken Dialog Systems 的教學課程，於十六日報告論文，並且於十九日参加了 The Third Workshop on Innovative Use of NLP for Building Educational Applications，最後於美國當地時間二十日離開哥倫布市返國。

參與本次會議的台灣學者明顯偏少，只有遇到前清華大學電機系的蘇克毅教授。我們不能確定這一個低出席率是因為研究經費的限制或者是因為哥倫布市的交通明顯地不是非常方便，須要在美國其他主要都市轉機過來。儘管這些可能的原因，本次會議仍然有許多來自香港，新加坡等亞洲的學者。

2 具體觀察與心得

由於 ACL 在計算語言學界的地位，這一個會議的參與人數非常地多，付費註冊的人數接近 700 人。除了三天的主會議議程之外，有六個會議前的教學課程（參見附件一）和十個會議後的工作坊（參見附件二）。在論文投稿量方面，合計有 470 篇長篇論文的稿件和 275 篇短篇論文的投稿，最後會議接受了 119 篇的長篇論文和 64 篇短篇論文。不管是長篇或者是短篇論文的接受率都僅止於 25% 左右。報告人的論文屬於短篇論文。被接受的長篇論文中，數量最多依序是機器翻譯（machine translation），語意（semantics），語法（syntax），問答系統（questions \＆answering），統計與機器學習（statistical machine learning），資訊檢索（information retrieval）和資訊擷取（information extraction）；這七個領域的論文，合計占了所有長篇論文的 59.66% 。

在議程的安排方面，ACL 的設計與其他學術領域的主要會議相似。除了教學課程和工作坊之外，還有為博士班研究生設計的討論議程，請相關領域的專家為現在進行中的博士論文研究提供建言和相互交流的機會。教學課程則是讓主會議的與會者有機會分享一些相對比較成熟的技術，以報告人所参與的 Building Practical Spoken Dialog Sys－ tems 來說，就是由 Carnegie Mellon University 的教授與研究生介紹他們所建立的語音辨識系統，並且介紹如何包装該系統作為應用系統的核心功能。透過這樣的介紹課程，學習者可以獲得起步所需的知識，以比較低的代價瞭解一個相當複雜的系統。工作坊的主要功能則是提供學者有機會討論一些正在發展中的研究議題，以報告人所參與的 The Third Workshop on Innovative Use of NLP for Building Educational Applications 來說，與會者來自許多不同國家，分享他們如何利用計算語言學的相關技術，建構與各國母語和英語相關的語文教學系統。

機器翻譯的相關研究雖然在國内不屬於主流研究重點，不過卻仍然是今年 ACL 主會議的重點項目。機器翻譯的相關論文是所有領域中數量最多的，佔有長篇論文的 23%和短篇論文的 24% ，此外還有兩個相關的工作坊（Third Workshop on Statistical Machine Translation 和 Workshop on Parsing German）。 Workshop on Parsing German 這一個工作坊相當有趣，未來我們或許可以主辦一些專注於處理亞洲語系語言的工作坊。

如果要看人氣指標的話，資訊檢索和資訊擷取仍然是最容易吸引人的研究議題。比起像機器翻譯，語法研究和語意研究這一些比較基礎的研究，資訊檢索和擷取離應用實務比較接近，因此更容易吸引到人們的注意。

在專題演講（invited talks）方面，我們看到純粹語言學和計算語言學所沒有能多全心注意的一些語文認知歷程問題。Marc Swerts 強調語言的溝通除了文字和聲音之外，透過視覺管道所發出和接收到訊息，也是人們處理語言的重要依據之一。我們的肢體語言和臉部表情是在語音和用字之外的另一種語言；如果只專注於語音訊號處理或者文字所攜带的訊息，則常常不能妥善溝通過程互動各方所試圖傳遞的訊息。

六月十八日的專題演講則是一個與資訊檢索相關的演講。不管是以關鍵詞彙，或者是以搜尋範例（例如以文找文）來搜尋資訊的方式，都比較是屬於一次性的搜尋工作。然而，由於人機溝通的效果通常不是完美的，因此以一個程序逐漸地協助查詢者找到真

正想要的資訊，可能是比較務實的目標。Susan Dumais 介紹了許多往這一方向發展的相關的軟體設計理念和實際系統。

今年的 ACL 學術貢獻講（lifetime achievement award）頒給 University of Sheffield 的 Yorick Wilks。Wilks 的演講介紹了他在自然語言處理與人工智慧研究等多面的研究經驗，常常也觸及更深層的科學研究理念，如果聽者本身没有相當廣博的知識和很好的英文聽力，這様高階的演講可能是不容易立即吸收。附件三是 Wilks 的演講資料。

關於報告者關於個別論文的聽講心得對於本報告的讀者或許沒有特別的吸引力， ACL 所有的論文都公開在網路上面，請參閲附件四的議程，與網路上的電子版論文 （http：／／aclweb．org／anthology－new／）。其他例如六個教學課程和十個工作坊的資料，請分別參考附件一和附件二的簡介。

除了參與學術會議之外，由於出訪經費的拮据，因此報告人所暫住的旅店距離會議的飯店有相當的距離，每次來回開會與住所之間，單程就須要步行大約二十幾分鐘，也因此有許多天的機會來觀察哥倫布市的日常街景。此次由美國而起的世界金融海嘯對於美國人確實有不小的影響，哥倫布市的大眾運輸系統的使用率看起來相當地高，上下班時間有不少等車的民眾。這可能不是一般美國中小型城市所常見的景象。

3 結論

我國致力於推展學術研究國際化，近年以來資訊科學這一方面的國際學術研討會如雨後春简般的蓬勃發起，除了國際學術會的頂級會議之外，例如 AAAI，IJCAI，ACL， ICML，UAI，ITS，AIED，COLING，ACM 各 SIG 的年會等等，我國參與其他的新興的學術研討會的必要性似乎可以做一個整體性的規劃。新興的學術研討會雖然學術知名度不高，但是常常是培養新領域的搖籃，學術價值不可謂不高；然而，如果長期投注在這一類新領域的研討會的邊際效用則是可以檢討的。相對地，參與具有傳統聲譽的學術研討會，則有立竿見影的觀摩效果，可以刺激參與者更加努力，以追求在這一類研討會發表更好論文的機會。

参考附件

附件一：ACL 2008 教學課程簡介
附件二：ACL 2008 工作坊簡介
附件三：http：／／www．companions－project．org／downloads／Wilks＿ACL08．pdf
附件四：ACL 2008 論文議程
附件五：報告人所發表之論文

附件一

ACL 2008 教學課程簡介
 Tutorial Schedule
9：00－10：30 Morning tutorial part 1
9：00－10：30 Morning tutorial part 1
10：30－11：00 morning break
11：00－12：30 Morning tutorial part 2
11：00－12：30 Morning tutorial part 2
2：00－3：30
Afternoon tutorial part 1
$\begin{array}{ll}\text { 3：30－4 } & \text { Afternoon break } \\ \text { 4：00－5：30 } & \text { Afternoon tutorial part 2 }\end{array}$
4：00－5：30 Afternoon tutorial part 2
Introduction to Computational Ad
Introduction to Computational Advertising
（Evgeniy Gabrilovich，Vanja Josifovski，and Bo Pang） Short abstract：
Web advertising is the primary driving force behind many Web activities，including
Internet search as well as sublishing of online content by third－party providers．A
new discipline－Computational Advertisisin－has recently emerged，which studies
the process of advertising on the Internet from a variety of angles．A successful
advertisising campaign should be relevant to the immediate user＇s information need
as well as more generally to user＇s background and personalized interest profile， Poster instructions Call for Papers

Glance
Full Schedule
Workshops
Tutorials Student Research

들 Banquet
－
be economically worthwhile to the advertiser and the intermediaries（e．g．，the
search engine），as well as be aesthetically pleasant and not detrimental to user
experience．
The tutorial does not assume any prior knowledge of Web advertising，and will
begin with a comprehensive background survey of the topic．In this tutorial，we

 demonstrate how to employ a relevance feedback assumption and use Web
deearch results retrieved by the query．This step allows one to use the Web as a

 open research problems in text summarization，natural language generation，
 such as automatically classifying cases when no ads should be shown，hand
geographic names，context modeling for vertical portals，and using natural
language generation to automatically create advertising campaigns． Tutorial outline
 2
2

ACL－08：HLT－Tutorials \square第4頁，共16頁

Most research in machine learning has been focused on binary classification，in which the learned classifier outputs one of two possible answers．Important fundamental questions can be analyzed in terms of binary classification，but real－ world natural language processing problems often involve richer output spaces．In this tutorial，we will focus on classifiers with a large number of possible outputs with interesting structure．Notable examples include information retrieval，part－of－ speech tagging，NP chucking，parsing，entity extraction，and phoneme recognition．
Our algorithmic framework will be that of online learning，for several reasons．First， online algorithms are in general conceptually simple and easy to implement．In particular，online algorithms process one example at a time and thus require little working memory．Second，our example applications have all been treated successfully using online algorithms．Third，the analysis of online algorithms uses simpler mathematical tools than other types of algorithms．Fourth，the online learning framework provides a very general setting which can be applied to a broad setting of problems，where the only machinery assumed is the ability to perform exact inference，which computes a maxima over some score function．
The goals of the tutorial：
1．To provide the audience systematic methods to design，analyze and implement efficiently learning algorithms for their specific complex－output problems：from simple binary classification through multi－class categorization to information extraction，parsing and speech recognition． 2．To introduce new online algorithms which provide state－of－the－art performance in practice backed by interesting theoretical guarantees．
Theory and Algorithms
－The online learning paradigm －Major concepts ：loss function，large margin －The perceptron algorithm and variants －The passive－aggressive approach －The general－margin extension to the passive－aggressive approach for complex problems
Implementation and Practice
－Applications

○ Corpora exploration ○ Visualization of statistical NLP outputs ○ Linguistic analysis ० Visualization of non－textual linguistic data 4．Tools for Visualization ○ Software solutions ○ Programming toolkits ○ Online tools ○ Collaborative visualization tools in development 5．Case Studies in Linguistic Visualization 6．Open Research Problems 7．Closing Tutorial Instructors Christopher Collins PhD Candidate，University of Toronto Computer Science Christopher Collins received his M．Sc．in the area of Computational Linguistics from University of Toronto in 2004．His PhD research focus is inter－disciplinary， combining computational linguistics and information visualization．He is currently in his final year of PhD studies，investigating interactive visualizations of linguistic data with a focus on convergence and coordination of multiple views of data to provide enhanced insight．He has developed various methods for generating， reading，and comparing visual summaries of document thematic content for everyday users and data analysts．Recent publications include a new method for revealing relationships amongst visualizations，and a system for exposing the uncertainty in statistical natural language systems．He recently embarked on a study of visualization use in a team of machine translation researchers and plans to continue collaboration with language engineers to provide them with an enhanced ability to analyse and improve their algorithms． Gerald Penn Associate Professor，University of Toronto Computer Science Gerald Penn＇s research interests are in computational linguistics，theoretical computer science，programming languages，spoken language processing，and human－computer interaction．He is probably best known as the co－designer and maintainer of the ALE programming language，and has published widely on topics

附件二
ACL 2008 工作坊簡介

ACL-08: HLT Workshops
The following workshops will be held in conjunction with the 46th Annual Meeting
of the Association for Computational Linguistics (ACL-08: HLT), June 15-20, 2008,
in Columbus, Ohio, United States. The workshops will be held on June 19 and
June 20, 2008 at the main conference venue.

1. SIGDIAL, ACL08-SIGDIAL
 2. $\frac{\text { ACL Third }}{}$ Aeaching-CL 3. $\frac{\text { ACL08-Teaching-CL }}{\text { Third Workshop on Statistical Machine Translation, ACL08-SMT }}$
2. $\frac{\text { SSST-2: Second Workshop on Syntax and Structure in Statistical }}{\text { Translation }}$ 5. Software engineering, testing, and quality assurance for natural language 0
0
0
0
0
0
0
0
0
0

$\begin{array}{ll}\text { 7. } & \text { Computational Morphology and Phonology(SIGMORPHON) } \\ \text { 8. } \\ \text { 9. ACL2008 Workshop on Mobile Language Processing } \\ \text { 9. } & \text { The 4th Workshop on Innovative Use of NLP for Building Edu }\end{array}$

Changes in plan

$$
\begin{aligned}
& \text { Semantic Evaluations: Recent Achievements and Future Directions,ACL08- } \\
& \underline{\text { Semantic-Evaluation CANCELLED }}
\end{aligned}
$$

d

$$
\begin{aligned}
& \text { ACL08 Workshop Dates } \\
& \begin{array}{|l|l|}
\hline \text { 19th } & \text { 20th } \\
\hline \hline \text { ACL08-SigDial } & \text { SigDial-Continued } \\
\hline \hline & \\
\hline
\end{array}
\end{aligned}
$$

附件三

Yorick Wilks 演講資料

On Whose Shoulders?

Yorick Wilks
University of Sheffield

ntroductio

The title of this piece refers to Newton's only known modest remark: "If I have seen farther than other men, it was because I was standing on the shoulders of giants." Since e himself was so much greater than his predecessors, he was in fact standing on the houlders of dwarfs, a much less attractive metaphor. I intend no comparisons with ewton in what follows: NLP/CL has no Newtons and no Nobel Prizes so far, and quite ightly. I intend only to draw attention to a tendency in our field to ignore its intellectual nheritance and debt; I intend to discharge a little of this debt in this article, partly as an encouragement to others to improve our lack of scholarship and knowledge of our own roots, often driven by the desire for novelty and to name our own systems. Roge lots of students to colonize all major CS departments, although time has not been kind to his many achievements and originalities, even though he did build just such an Empire. But to me one of the most striking losses from our corporate memory is the man who is to me the greatest of the first generation and still with us: Vic Yngve. This is the man ho gave us COMIT, the first NLP programming language; the first random generation fentences; and the first direct link from syntactic structure to parsing processes and torage (the depth hypothesis) I find student row rarely recogize his name, and find at incredible.
This phenomenon is more than corporate bad memory, or being too busy with en Science and Artificial Intelligence, although bottom-up wiki techniques are now filling many historical gaps for those who know where to look, as the generation of pioneer has time to reminisce in retirement. "There are costs to us from this general lack of wareness, though: a difficulty of "standing on the shoulders" of others and acknowl edging debts, let alone passing on software packages. Alan Bundy used to highlight this the field of AI; he also recommended giving obituaries for one's own work, and this paper could be seen in that way, too.

Department of Computer Science, The University of Sheffield, Regent Court, 211 Portobello Stree Shenield, LL ADP, U. E.E-mail: Y.Wilks@dcs.shef
See the video interview with Victor Yngve on my Web site at
http://www dcs. shef. ac. uk/~yorick/YngveInterview. ht

Early Academic Life

My overwhelming emotion on getting this honor was, after surprise, a feeling of inadequacy in measuring up to previous honorees, but nonetheless, I want to grasp at this moment of autobiography, or at what in his own acceptance paper Martin Kay alled: "but one chance for such gross indulgence." I was born in 1939 in London at just about the moment the Second World War started in Europe; this was, briefly, a
severe career slowdown. However the British Government had a policy of exporting evere career slowdown. However, the British Government had a policy of exporting most children out of the range of bombs and I was sent to Torquay, a seaside town in southwest England that happened to have palm trees on all the main streets, a fact it for Boys, which had a very good Cambridge-trained mathematician as its headmaster and eventually I made my way back across England to Pembroke College Cambridge, to study mathematics, a college now for ever associated with my comedian contemporaries: Peter Cook, Clive James, Eric Idle, Tim Brooke-Taylor, and similar wastrels. I began a series of changes of subject of study, downhill towards easier and easier ones: from mathematics to philosophy to (what in the end after graduation became) NLP/AI. It was not that I could not do the mathematics, but rather that I experienced the shock very many do or finding how wide the range of at make one very good at catbridge This is a feeling peculiar to mathematics, I think, because the talent range is so much wider than in most subjects, even at the top level.

Margaret Masterman, who was to become the main intellectual influence in my life, was the philosophy tutor for my college, although her main vocation was running the Institute she had founded, outside the University in a Cambridge suburb: CLRU, the Cambridge Language Research Unit. It was an eccentric and informal outfit, housed in walls. MMB (as she was known) ran the CLRU from the mid 1950s to the early 1980 on a mix of US, UK, and EU grants and did pioneering work in MT, AI, and IR. Of those honored by the ACL with this award over the last five years, three have been graduates of that little Buddhist shed, and include Martin Kay and Karen Spärck Jones, a remarkable tribute to MMB. The lives and work of we three have been quite different but all in different ways stem from MMB's interests and vision: She had been a pupil of Wittgenstein and, had she known it, would have approved of Longuet-Higgins's practical research into the structure of language could give insight into metaphysics, but was in no way other-worldly: She was the daughter of a Cabinet Minister and knew what it was to command.

In a final twist, I found after her death in 1986 that she had made me her literary executor: She had never written a book and wanted me to construct one from her papers posthumously. It took me twenty years to get the required permissions but the volume finally appeared in 2005 (Masterman et al. 2005)

Thesis Building and CLRU

When I started work at CLRU in 1962 to do a doctorate, it had no computer in the normal sense, only a Hollerith card sorter of the sort built for the US census half a century before. Basically, you put a stack of punched cards into one of these thingswhich looked like a metal horse on four legs-and the cards fell into (I think) 10 slots
depending on how you had plugged in a set of wires at the back to identify destination slots for sorted cards with hole patterns on the cards. With some effort, these could be turned into quite interesting Boolean machines; my first task was to take a notion Fred Parker-Rhodes that a Hallidayan grammar could be expressed as a lattice of typed classes, and then program the card sorter so that repeated sorts of punched cards the CLRU owned an ICL 1202 computer with 1,200 registers on a drum, but it was the CLRU owned an ICL 1202 computer with 1,200 registers on a drum, but it was 12 pennies to a shilling, and so the 1,202 has print wheel characters for 10,11 , and 12 (as well as 0-9), a fact on which Parker-Rhodes built a whole world of novel prin (anventions for his research. This was the period at CLRU when Karen Spärck Jones was completing her highly original thesis (published twenty years later as Jones [1986] on unsupervised clustering of thesaurus terms-whose goal was to produce primitives t the University Computing Laboratory, where she eventually created a new career in IR, essentially using the same clump algorithms-created by Parker-Rhodes and her husband Roger Needham-to do IR.
My own interests shifted to notions in an early Masterman paper titled "Semantic message detection using an interlingua" (Masterman 1961), an area in which Martin Kay had also originally worked on an interlingua for MT. My thesis computation was don SDC in Santa Monica, where I was attached loosely in 1966 to the NLP group there run by Bob Simmons. My thesis was to be entitled "Argument and proof in Metaphysics from an empirical point of view" and my advisor was MMB's husband, Richard Braithwaite, Knightbridge Professor of Moral Philosophy at the University. He was a hilosopher of science and a logician, and was given the chair of moral philosophya subject about which he knew nothing - because it was the only one available a ambridge at the time. This produced an extraordinary inaugural lecture in which ee effectively founded Unfor
faror to MMB me he was not interested in my thesis, and took me on only was, if anything, that disterest was the demarcation of metaphysical text: What it nce said that words were "on holiday" in metaphysical text, but also that he wanted "bring words back from their metaphysical to their everyday usage" (Wittgenstein 973). This is exactly what I wanted to capture with computation, and the thesis Moral Sciences-with a large appendix of LISP program code at the back, something hey had never seen before, or since. The thesis was bound in yellow, though the regulations stipulated black or brown bindings; I must have had some extraordinary idea that someone might cruise the long corridors of Cambridge theses looking for one hat stood out by color-the arrogance of youth.
The thesis's starting point was Carnap's monumental Logische Syntax der Sprache (1937) and his claim that meaningfulness in text could be determined by "logical syntax -rules of formation and transformation (a notion which may well sound famil-
ar: Chomsky was a student of Carnap). My claim was that this was a bad demarcation and a better criterion of meaningfulness would be to have one interpretation rather than many, namely, that word-sense discrimination (WSD) was possible for a given text. On that view, the "meaningless" text had too many interpretations rather than none (or
one). A word in isolation is thus often meaningless. Preference Semantics was a WSD program to do just that, and to provide a new sense where WSD failed.

The other starting point of the thesis was a slim paper by Bosanquet on the nature of metaphysical discourse, entled 'sornarks on rhetorical, not logical: imposing a new sense on the reader. The system as implemented was, of course, a toy system, in the sense that all symbolic NLP systems were in that era. It consisted of an analysis of five metaphysical texts (by Wittgenstein, Spinoza, Descartes, Kant, and Leibniz) along with five randomly chosen passages from editorials in the London Times, as some sort of control texts.

The vocabulary was only about 500 words, but this was many years before 36 words. The semantic structures derived via what we would nows call to be parsing- Tonsisted of tree structures of primitives (from a set of about 80) che tree for each participating word sense in the text chunk, that fitted into preformed triples called templates. These templates were subject-predicate-object triples that defined well-formed sequences of the triples of trees (i.e., the first tree for the sense of the subject, the second for the action and so on), whose tree-heads had to fit those of the template's three primitive items in order. The overall system selected the word senses that fitted into these structures by means of a notion of "semantic preference" (see words, thus doing a primitive kind of WSD

There was in the thesis an additional "sense constructor" mode, called if the WSD did not work, which tried to identify some sense of a word in the text whose representation would fit in the overall structure derived, and so could be declared a suitable "new" sense for the word which had previously failed to fit in. Unsurprisingly, it identified, say, a sense of "God" in the Spinoza text with an existing sense of "Nature" so that, after this substitution, the whole thing fitted together and WSD could proceed, and thus the passage be declared meaningful, given the criterion of having a single, ambiguity-free, im, whether he knew it or not, was to persuade us that the word "God" could have he sense of "Nature" and that this was the real point of his philosophy-exactly in line with what Bosanquet had predicted.

The philosophy work was never really published, outside an obscure McGill Uniarsity philosophy journal, athough the meaningrulness criterion appeared in Mind in 971 under the title "Decidability and Natural Language" (Wilks 1971). Since publishing Mind was, at the time, the ambition of every young philosopher, I was now satisfied peared as my firstbook, Grammar. Meaning and the Machine Analysis of Language (Wilks 1972); the title was intended as a variation on the title of some strange German play, popular at the time, and whose actual name I can no longer remember.

reference Semantics

returned from California to CLRU but left again for the Stanford AI Lab in 1969 had fantasized at CLRU about all the things one could do with a methodology of trying to base a fairly complex compositional semantics on a foundation of superficial Text searching with this had earlier produced speculations like my 1964 CLRU paper
I. 1 ((*ANI 1) ((SELF IN) (MOVE CAUSE)) (*REAL 2)) $\rightarrow(1(* J U D G) 2)$ Or, in semi-English
(1) cause-to-move-in-self real-object-2] $\rightarrow[1$ *judges 2]

Or, again:
[1 is good] $\leftrightarrow[$ animate-2 wants 1]
Figure 1
Inference
erence rules in Preference Semantics.
ut with the machines then available, but which I now choose to see as wanting to do Information Extraction: though, of course, it was Naomi Sager who did IE first on man 1975)
as a post-doc, I was on the same corridor as Winograd, just arrived from is large team building the PARRY dialogue system, whidency empire; and Colby and
 e Apple software architect. Schank and I agreed on far more than we disagreed on and ar we would be stronger together than separately, but neither of us wanted to give up our notation: He realized, rightly, that there was more persuasive power in diagrams than in talk of processes like "preference." It was an extraordinary period, when AI and
NLP were probably closer than ever before or since: Around 1972 Colmerauer passed NLP were probably closer than ever before or since: Around 1972 Colmerauer passed hough the Stanford AILab, describing Prolog for the first time but, as you may or may expanding the coherence-based semantics underlying my thesis, calling it "Preference Semantics" (PS), adding larger scale structures such as inference rules (see Figure 1) and thesauri, and building it into the core of a small semantics-based English-to-French machine translation system programmed in LISP. At one point the code of this MT system ended up in the Boston Compute
The principles behind PS were as follow

- an emphasis on processes, not diagrams;
the notion of affinity and repulsion between sense representations (cf. Waltz and Pollack's WSD connectionism [1985]);
seeking the "best fit" interpretation-the one with most satisfied preferences (normally of verbs, prepositions and adjectives);
- yielding the least informative/effort interpretation;
- using no explicit syntax, only segmentation and order of items;
- meaningfulness as being connected to a unique interpretation/sense choice;
meaning seen as represented in other words, since no other equivalent for the notion works (e.g., objects or concepts);
- gists or templates of utterances as core underlying entities; and
- there is no correct interpretation or set of primitive concepts, only the best available.

One could put some of these, admittedly programmatic and imprecise, points as
follows:
Semantics is not necessarily deep but also superficial (see more recent results on the in
and Wilks [2001]).

- Quantitative phenomena are unavoidable in language: John McCarthy thought they had no place anywhere in AI, except perhaps in low-leve computer vision.
- Reference structures (like lexicons) are only temporary snapshots of a language in a particular state (of expansion or contraction).
- What is important is to locate the update mechanism of language, including crucially the creation of word ses which is not Chomsky's sense of the creativity of language

Constructible Belief Systems

I returned to Europe in the mid 1970s, first to the ISSCO institute in Lugano, where Charniak was and Schank had just left, and then to Edinburgh as a visitor before taking a job at Essex. I began a long period of interest in belief systems, in particular seeking some representation of the beliefs of others, down to any required degree of nestingfor example A's belief about B^{\prime} s belief about C -that could be constructed recursively at need, rather than being set out in advance, as in the pioneering systems emerging
from the Toronto group under Ray Perrault (Allen and Perrault 1980). I began thinking about this with Janusz Bien of the University of Warsaw, who had also published a paper arguing that CL/NLP should consider "least effort" methods: in the sense that the brain might well, due to evolution, be a lazy processor and seek methods for understanding that minimized some value that could be identified with processing effort. I had argued in PS for choosing shortest chains of inferences between templates, and that the most connected/preferred template structure for a piece of text should be the one found first. I am not sure we ever proved any of this: It was just speculation, representation with the least information. All this is really only elementary information theory: a random string of words contains the maximum information, but that is not very helpful. Clearly, the preferred interpretation of "He was named after his father" (i.e., named the same rather than later in time) is not the least informative, since the latter contains no information at all-being necessarily true-so one would have to adapt any such slogan to: "prefer the interpretation with the least information, unless it is
zero!" zero!"

The belief work, first with Bien, later with Afzal Ballim (Wilks and Ballim 1987) and John Barnden, has not been a successful paradigm in terms of take-up, in that it has not got into the general discourse, even in the way that Fauconnier's "Mental Spaces" (Fauconnier 1985) has. That approach uses the same spatial metaphor, but for belief paradigm, as it became, had virtues, and I want to exploit this opportunity to belief paradigm, as it became, had virtues, and I want to exploit this opportunity to
remind people of it. It was meant to capture the intuition that if we want, for language
understanding purposes, to construct X 's beliefs about Y 's beliefs-what I called the environment of Y-for- X-then:

1. It must be a construction that can be done in real time to any level of nesting required, because we cannot imagine it pre-stored for all future nestings, as Perrault el al. in effect assumed.
2. It must capture the intuition that much of our belief is accepted by defaul from others: As VIEWGEN expresses it, I will accept as a belief what you alone refuting, the things you tell me, e.g. that you had eggs for breakfast yesterday. As someone in politics once put it, "There is no alternative." Unless, that is, what you say contradicts something I believe or can easily prove from what I believe.
3. We must be able to maintain apparently contradictory beliefs, provided they are held in separate spaces and will never meet as contradictions. I can thus maintain within my
me) that I do not in fact hold.

In VIEWGEN, belief construction is done in terms of a "push down" metaphor: A permeable "container" of your beliefs is pushed into a "container" of my beliefs and to you, unless it is explicitly contradicted, namely, by some contrary belief I already ascribe to you, and which, as it were, keeps mine from percolating through. The idea is to construct the appropriate "inner belief space" at the relevant level of nesting, so that inference can be done, and to derive consequences (within that constrained content space) that also serve to model, in this case, you the belief holder in terms of goals and desires, in addition to beliefs. This approach is quite different not only from the Perrault/Toronto system of belief-relevant plans but also to AI theories that make use quite distinct from linguistic theories like Wilson and Sperber's Relevance Theory which take no account at all of belief as relative to individuals, but perform all operation in some space that is the same for everyone, which is an essentially Chomskyan ideal competence-style notion of belief that is not relative to individuals-which is of course bsurd
Mark Lee and a number of my students have created implementations of this approach and linked it to dialogue and other applications, but there has been no major complex belief states are created in real time. However, the field is, I believe, now moving in that direction (e.g., with POMDP theories [Williams and Young 2007]) since the possibility of populating belief theories with a realistic base from text by means of Information Extraction or Semantic Web parsing to RDF format is now real (a matter we hall return to subsequently)
There were, for me at least, two connections between the VIEWGEN belief work and Preference Semantics, in terms of meaning and its relation to processes. First ing interpretation for a text was no more than a choice of the best available among alternatives, because preference implies choice, in a way that generative linguisticsthough not of course traditions like Halliday's-always displayed alternatives but considered choice between them a matter for mere performance. What was dispensable
to generative linguistics was the heart of the matter, I argued, to NLP/CL. Secondly, VIEWGEN suggested a view of meaning, consistent locally with PS, dependent on which individuals or classes one chose to see in terms of each other-the key notion here was seeing one thing as another and its consequences for meaning. So, if one chose
to identify (as being the same person under two names) Joe (and what one believed to identify (as being the same person under two names) Joe (and what one believed
about him) with Fred's father (and what one knew about him), the hypothesis was that a belief environment should be constructed for Joe-as-Fred's-father by percolating one set of beliefs into the other, just as was done by the basic algorithm for creating A's-beliefs-about-B's-beliefs from the component beliefs of A and B. This process created a hybrid entity, with intensional meaning captured by the set of propositions in that inner environment of belief space, but which was now neither Joe nor Fred's father but rather the system's point of view of their directional amalgamation: Joe-as-Fred's-father (which might contain different propositions from the result of Fred's-father-as-Joe)

More natural, and fundable, scenarios were constructed for this technique in those as to whether ship-in-my-viewfinder-now was or was not to be identified with the stored representation for enemy-ship-number-X. The important underlying notion was one going back to Frege, and which first had an outing in Winograd's thesis (Winograd 1972), where he showed you could have representations for blocks that did not in fact exist on the Blocks World table. A semantics must be able to represent things without er they exist or not, hat is a basic requirement.
Later, and working with John Barnden and Afzal Ballim, this same underlying process of conflating two belief objects was extended to the representation of as A-viewed-as-B (e.g., an atom viewed as a billiard ball). The metaphorical object atom-as-billiard-ball was again created by the same push-down or fusion of belief sets as in the basic belief point-of-view procedure. All this may well have been fanciful, and was never fully exploited in published work with programs, but it did have a certain intellectual appeal in wanting to treat belief, points of view, metaphor and as being modellable by the same simple underlying process (see Ballim, Wilks, and Barnden 1991). One novel element that did emerge from this analysis was that, in the construction of these complex intensional identifications, such as between "today's Wimbledon winner" and "the top male tennis seed," one could choose directions of viewing as" with the belief sets that led to objects which were neither the classic de re nor de dicto outcomes: Those became just two among a range of choices, and the others of course had no handy Latin names.

Adapting to the "Empirical Wave" in NLP

For me, as with many others, especially in Europe, the beginning of the empirical wave in NLP was the work of Leech and his colleagues at Lancaster: CLAWS4 (a name which hides a UK political joke), their part-of-speech tagger based on large-scale annotation of corpora. Such tagging is now the standard first stage of almost every NLP process and it may be hard for some to realize the skepticsm its arrival provoked: "What could anyone syntax or semantics. That system was sold to IBM, whose speech group, under Jelinek Mercer, and Brown, subsequently astonished the CL/NLP world with their statistical machine translation system CANDIDE. I wrote critical papers about it at the time, not totally unconnected to the fact that I was funded by DARPA on the PANGLOSS project
t NMSU (along with CMU and ISI/USC) to do MT by competing, but non-statistical, ethods.
In one paper, I used the metaphor of "Stone soup" (Wilks 1996): A reference to the ld peasant folk-tale of the traveler who arrives at a house seeking food and claiming to have a stone that makes soup from water. He begs a ham bone to stir the water
and stone and eventually cons out of his hosts all the ingredients for real soup. The aspect of the story I was focusing on was that, in the CANDIDE system, I was not sure hat the "stone," namely IBM's "fundamental equation of MT," was in fact producing the results, and suggested that something else they were doing was, giving them their remarkable success rate of about 50% of sentences correctly translated. As their general nethodology has penetrated the whole of NLP/CL, I no longer stand by my early andy were of course right, and had everything to teach the rest of u.
Early critics of data-driven, alias empirical, CL found it hard to accept, whateve emantics and pragmatics. Like others, I came to see this assumption was quite untrue and myself moved towards Machine Learning (ML) approaches to word-sense disambiguation (e.g., Stevenson and Wilks 2001) and I now work in ML methods applied to dialogue corpora (as I shall mention subsequently). But the overall shift in approache ML in particular, but also in the unexpected advantages that have been gained from what one might call non-statistical empirical linguistics, and in particular Information Extraction (IE; see Wilks 1997).
I referred earlier to the fact that my early work that could be called, in a general ense, semantic parsing, and that it was in fact some form of superficial pattern matching onto language chunks that was then transformed to different layers of compositional semantic representation. There were obvious relations between that general approach hat, when honed by many teams, and especially when ML techniques were added to it later, had remarkable success and a range of applications; it also expanded out into other, traditionally separate, NLP areas such as question answering and summarization This approach is not in essence statistical at all, however, although it is in a clea ense "superficial," with the assumption that semantics is not necessarily a "deep" phenomenon but present on the language surface. I believe the IE movement is also ne of the drivers behind the Semantic Web movement, to which I now turn, and which think has brought NLP back to a position nearer the core of AI, from which it drifted

Meaning and the Semantic Web

The Semantic Web (SW; Berners-Lee, Hendler, and Lassila 2001) is what one could call Berners-Lee's second big idea, after the World Wide Web; it can be described briefly as turning the Web into something that can also be understood by computers in the way titude to this enterprise, already well-funded by the European Commission at least, it can be described as any of the following

1. As a revival of the traditional AI goal (at least since McCarthy and Haye [1969]) of replacing language, with all its vagueness, by some form of logical representation upon which inference can be done.
2. As a hierarchy of forms of annotation-or what I shall call augmentation of content-reaching up from simple POS tagging to semantic class logical forms. DARPA/MUC/NIST competitions have worked their way up precisely this hierarchy over the years and many now consider that content can be "annotated onto language" reliably up to any required level. This can be thought of as extending IE techniques to any linguistic level by varieties of ML and annotation.
3. As a system of access to trusted databases that ground the meanings of terms in language; your telephone or social security number might ground you uniquely (in what is called a URI), or better still-and this is now the tandard view-a unique identifying object number for you over and above phones and so

There is also a fourth view, much harder to express, that says roughly that, if we keep our heads, the SW can come into being with any system of coding that will tolerate the expansion of scale of the system, in the way that, miraculously, the hardware under-
pinnings of the World Wide Web have tolerated its extraordinary expansion without major breakdown. This is an engineering view that believes there are no fundamental problems about the meanings and reference of SW terms in, for example, the ontologies within the SW, and everything will be all right if we just hold tight.

This view may turn out to be true but it is impossible to discuss it. Similarly, view (3) has no special privilege because it is the World Wide Web founder's own view: Marx was notoriously not a very consistent Marxist, and one can find multiple examples of this phenomenon. View (3) is highly interesting and close to philosophical views
of meaning expressed over many years by Putnam, which can be summarized as the dea that scientists (and Berners-Lee was by origin a database expert and physicist) are "guardians of meaning" in some sense because they know what terms really mean, in a way that ordinary speakers do not. Putnam's standard example is that of metals like molybdenum and aluminum, which look alike and, to the man in the street, have the same conceptual, intensional meaning, namely light, white, shiny metal. But only the scientist (says Putnam) knows the real meanings of those words because he knows the atomic weights of the two metals and methods for distinguishing them

No one who takes Wittgenstein-and his view that we, the users of the language, are in charge of what terms mean, and not any expert-at all seriously can even consider in a public language, just as water and heavy water are, and any evidence to the contrary is a private matter for science, not for meaning.
View (1) of the Semantic Web is a well-supported one, particularly by recycled AI researchers: They have, of course, changed tack considerably and produced formalisms for the SW, some of which are far closer to the surface of language than logic (what
is known as RDF triples), as well as inference mechanisms like DAML-OLL that gain advantages over traditional AI methods on the large and practical scale the SW is advantages over traditional AI methods on the large and practical scale the SW is
intended to work over. On the other hand there are those in AI who say they have intended to work over. On the other hand there are those in AI who say they have
ignored much of the last 40 years of AI research that would have helped them. This dispute has a conventional flavor and it must be admitted that, in more than 40 years, AI itself did not come up with such formalisms that stood any chance at all of working on a large scale on unstructured material (i.e., text).

This leaves us with View (2), which is my own: namely, that we should see the SW partially in NLP terms, however much Berners-Lee rejects such a view and says NLP is irrelevant to the SW. The whole trend of SW research, in Europe at least, has been to build up to higher and higher levels of semantic annotation-a technology that has grown directly out of IE's success in NLP-as a way of adding content to surface text. by some such method, and that method is basically a form of large-scale NLP, which now takes the form of transducers from text to RDF (such as the recently advertised Reuters API). The idea that the SW can start from scratch in some other place, ignoring he existing World Wide Web, seems to me unthinkable; successful natural evolution always adapts the function of what is available and almost never starts again afresh. I have set out my views on this recently in more detail (Wilks 2008), but it is seem pretty close to the way research in it is currently being funded, under calls and titles like "semantic content"-is one that links to the themes already developed in this paper in several ways, and which correspond closely to issues in my own early work, but which have not gone away

1. The SW takes semantic annotation of content as being a method-whether done by humans or after machine learning-of recoding content with special terms, terms close to what have traditionally been called seman primitives. It is exactly this that was denied by the early forms of, say, statistical MT, where there was nothing available to the mechanism excep the words themselves. This is also quite explicit in traditional IR, where, content recoding, including the SW. As she put it: "One of these [simple revolutionary IR] ideas is taking words as they stand" (Jones 2003).
2. The SW accords a key role to ontologies as knowledge structures: partially hie ther guise whese meaning must be made clear, particularly at more abstract levels. The old AI tradition in logic-based knowledge structuring-descending from McCarthy and Hayes (1969)-was simply to declare what these primitive predicates meant. The problem was that predicates, normally English words written in capital letters (as all linguistic primitives in the end seem to be), became affected by their inferential roles over time and the process of coding itsell. This beca predicates changed their meanings over 30 years of coding, but the no way of describing that fact within the system, so as to guarantee consistency. In Nirenburg and Wilks (2000), Nirenburg and I debate issue in depth, and I defend the position that one cannot simply maintain the meanings of such terms by fiat and independent of their usage--they look like words and they function like words because, in the end, they are words. The SW offers a way out of this classic AI dilemma by building induction from corpora (e.g., ABRAXAS; see Iria et al. 2006); in this the meanings of higher level terms are connected back directly to text usage. Braithwaite, my thesis advisor, described in his classic "Scientific explanation" (Braithwaite 1953) a process in the philosophy of science he
called "semantic ascent" by which the abstract high-level terms in a scientific theory, seen as a logical hierarchy of deductive processes-term such as "neutron," possibly corresponding to unobservables-acquired meaning by an ascent of semantic interpretation up the theory hierarchy such grounding process I envisage the SW as providing for the meanings of primitive ontological terms in a knowledge structure.
3. The RDF forms, based on triples of surface items, as a knowledge
 Predicate Logic (FOPL) They have a clear relationship back to the crude templates of my early work and the later templates of IE. I claim no precedence here, but only note the return of a functioning but plausible notion of "superficial semantics." It seems to me not untrue historically to claim that RDF, the representational base of the SW, is a return of the leve of representation that Schank (under the name Conceptual Dependency, in
Schank [1975]) and I (under the name Preference Semantics) developed in the late 1960s and early 1970s (Wilks 1975). I remember that at the Stanford AI Lab at that time, John McCarthy, a strong advocate of FOPL as the right level of representation of language content, would comment that formalisms like these two might have a role as a halfway house on a route from language to a full logic representation. On one view of the SW that intermediate stage may prove to be the right stage, because full AI tractability Time will tell, and fairly soon. tractability. Time will tell, and fairly soon.

The most important interest of the SW, from the point of view of this paper, is that it provides at last a real possibility of a large-scale test of semantic and knowledge coding: One thing the empirical movement has taught us is the vital importance of scale and the need to move away from toy systems and illustrative examples. I mentioned
earlier the freely available Reuters API for RDF translation which Slashdot advertised under the title "Is the Semantic Web a Reality at Last?" This is exactly the kind of move to the large scale that we can hope will settle definitively some of these ancient issues about meaning and knowledge

A Late Interest in Dialogue: The Companions Project

My only early exposure to dialogue systems was Colby's PARRY: As I noted earlier, his team was on the same corridor as me at Stanford AI Lab in the early 1970s. I was a reat admirer of the PARRY system: It seemed to me then, and still does, probably the most robust dialogue system ever written. It was available over the early ARPANET nd down; making allowances for the fact it was supposed to be paranoid, it was plausible ELIZA and it is ofe of the known. PARRY remembered what you had said, had elementary emotion parameters and, above all, had something to say, which chatbots never do. John McCarthy, who ran the AI Lab, would never admit that PARRY was AI, even though he tolerated it under his roof, as it were, for many years; he would say "It doesn't even know who
he President is," as if most of the world's population did! PARRY was in fact a semi it plainly knew nothing; what had was primitive "intention

My own introduction to
e late 1990s by David Levy, who had written 40 books on chess and ran a contacted in that made chess machines. He already had a footnote in AI as the man who had bet McCarthy , Michie, and other AI leaders that a chess machine would not beat him within ten years, and he won the bet more than once. In the 1990s he conceived a desire to win the Loebner Prize ${ }^{2}$ for the best dialogue program of the year, and came to us at Sheffield upon my memories of PARRY, along with obvious advances in the role of knowledge bases and inference, and the importance of corpora and machine learning. For example, we took the whole set of winning Loebner dialogues off the Web so as to learn the kinds of things that the journalist-testers actually said to the trial systems to see if they were really humans or machines.
Our system, called CONVERSE (see Levy et al. 1997), claimed to be Catherine, a 34-year old female British journalist living in New York, and it owed something to PARRY, certainly in Catherine's desire to tell people things. It was driven by frames death, God, clothes, make-up, sex, abortion, and so on. It was far too top-down and unwilling to shift from topic to topic but it could seem quite smart on a good day, and probably won because we had built in news from the night before the competition of a meeting Bill Clinton had had that day at the White House with Ellen de Generes, a esbian actress. This gave a certain immediacy to the responses intended to sway the judges, as in "Did you see that meeting Ellen had with Clinton last night?"

This was all great fun and gave me an interest in modeling dialogue that ha arge EU 15 -site four-year project that I run. COMPANIONS aims to change the way we think about the relationships of people to computers and the Internet by developing a virtual conversational "Companion." This will be an agent or "presence" that stays with the user for long periods of time, developing a relationship and "knowing" its owner's preferences and wishes. It will communicate with the user primarily by using and unerstanding speech, but also using other technologies such as touch screens and sensors. Another general motivation for the project is the belief that the current Internet (including the non-technical, the disabled, and the elderly) with a new kind of interface based on language technologies. The vision of the Senior Companion-currently our main prototype-is that of an artificial agent that communicates with its user on a long-term basis, adapting to their voice, needs, and interests: A companion that would entertain, inform, and react to emergencies. It aims to provide access to information and services as well as company for the elderly by chatting, remembering past conversations, and organizing (and making sense of) the owner 's photographic and image
memories. This Companion would assume a user with a low level of technical knowledge, and who might have lost the ability to read or produce documents themselves unaided, but who might need help dealing with letters, messages, bills, and getting information from the Internet. During its conversations with its user or owner, the system
builds up a knowledge inventory of family relations, family events in photos, places visited, and so on. This knowledge base is currently stored in RDF, the Semantic Web format, which has two advantages: first, a very simple inference scheme with which to drive further conversational inferences, and second, the possibility, not yet fulfilled, in RDF, which could not possibly have been pre-coded in the dialogue manager, nor elicited in a conversation of reasonable length. So, if the user says a photo was taken in Paris, the Companion should be able to ask a question about Paris without needing that knowledge pre-coded, but only using rapidly accessed Wikipedia RDFs about Paris. An ultimate aim of this aspect of the Senior Compantion is the provision of a life narrative, an assisted autobiography for everyone, one that could be given to relatives later if the script-like structures-called DAFs or Dialogue Action Forms-designed to capture the course of dialogues on specific topics or individuals or images, and these DAFs we are trying to learn from tiled corpora. The DAFs are pushed and popped on a single stack, and that simple virtual machine is the Dialogue Manager, where DAFs being pushed, popped, or reentered at a lower stack point are intended to capture the exits from, and returns to, abandoned topics and the movement of conversational initiative between prototype Companions: The other, based not at Sheffield but at Tampere, is a Health and Fitness Companion (HFC). ${ }^{3}$ It is more task-oriented than the Senior Companion and aims to advise on exercise and diet. The HFC is on a mobile phone architecture as well as a PC, and we may seek to combine the two prototypes later. The central notion of a Companion is that of the same "personality," with its memory and voice being presen no matter what the platform. It is not a robot, and could be embodied later in something like a chatty furry handbag, being held on a sofa and perhaps reminding you about the previous episodes of your favorite TV program.

Finale

This article has had something of the form of a life story, and everyone wants to believe their life is some kind of narrative rather than a random chase from funding agency to funding agency, with occasional pauses to carry out a successful proposal. But let us return to Newton for a moment in closing; for us in CL he is the great counter-example, of why we do not do science or engineering in that classic solitary manner:

The emphasis there for me is on alone, which is pretty much unthinkable in our research world of teams and research groups. Our form of research is essentially corporate and

Sheffield, my work would not have been possible without a wide range of colleagues nd former students in the NLP group there over many years and including Louise Guthrie, Rob Gaizauskas, Hamish Cunningham, Fabio Ciravegna, Mark Stevenson, Mark Hepple, Kalina Bontcheva, Christopher Brewster, Nick Webb and many others. In subtly mixed-as well as the careat repositories of software and data like LDC and ELRA, have gone a long way to mitigate the personal and group isolation in the field.
But we do have to face the fact that, in many ways, we do not do classic science: We have no Newtons and will never have any. That is not to deny that we need real ideas and innovations, and now may be a time for fresh ones. We have stood on the shoulders of Fred Jelinek, Ken Church, and others for nearly two decades now, and the strain is beginning to tell as papers still strive to gain that extra 1% in their scores on some small to some of the places where that might be even if that will mean a partial return to older, unfashionable, ideas; for there is nothing new under the sun. But locating them and exploiting them will not be in my hands but in yours, readers of Computational Linguistics!

Acknowledgments

irst of course to all those who have worked with me over many years and to whom I
we so much, particularly in connection with this award. Then to my current spons his work was funded by the Companions project (www. companions-project.org)
sponsored by the European Commission part of the Information Society Technologies T) programme under EC grant number

References
Allen, James F. and C. Raymond Perrault.
1980. Analyzing intention in utterances Artificial Intelligence, 15:143-178. Ballim, Afzal, Yorick Wilks, and John A.
Barnden. 1991. Belief ascription metap and intensional identification. Cognitive Science, 15(1):133-171 Berners-Lee, T.,.,. Hendler, and O. Lassila
2001. The semantic web. Scientific American, 28-37.
Braithwaite, Richard Bevan. 1953.
Scientific Explanation. A Study of the
Function of Theory, Probability and Law Function of Theory, Probability and Law in
Science. Cambridge University Press, Carnap, Rudolf. 1937. The Logical Syntax of Language. Kegan Paul, London.
Fauconnier, Gilles. 1985 . Mental Spaces. Cambonier, Gilles. 1985. Mental Cambridge Uni
Cambridge, UK
Iria, José, Christopher Brewster. Fabio
Ciravegna, and Yorick Wilks. 2006. An incremental incremental tri-partite approach to
ontology learning. In Procedings of the

Language Resources and Evaluation
Conference LLREC-O6), 22-28 May.
semantic classififatition. Edinburgh
University Press, Edinburgh, Scotland.
Jones, Karen Spärck. 2003. Document
retrieval: Shallow data, deep theorie retrieval: Shallow data, deep theories;
historical reflections, potential direction In Advances in Information Retrieval, Lectur Notes in Computer Science. Springer,
Berlin/Heidelberg
Lenat, Douglas B. 1995. CYC: A large-scale
investment in knowledge infarst investment in knowledge infrastructure Communications of the ACM, $\mathrm{AC(11):33-38}$.
Levy, D., R. Catizone, B. Battacharia,
A. Krotov, and Y. Wiks. 1997. Converse: A conversational companion. . message detection for machine translation, using an interlingua. In Proceedings of the First International
Conference of Machine Translation of Languages and Applied Language Analysis, pages 438-475. HMSO. asterman, Margaret, Yorick Wilks, Branimir Boguraev, Steven Bird, Don
Hindle, Martin Kay, David McDonald, and
Hans Uszkoreit. 2005. Language, Cohesion Hans Uszkoreit. 2005. Language, Cohesion
and Form (Studies in Netugl and
Processing). Cambridge University Press,
New York.
New York.
McCarthy, J. and P. J. Hayes. 1969. Some McCarthy J. and P.J. Hayes. 1969. Son
philosophical problems from the philosophical problems from the
standpoint of artififial intelligence. In
B. Meltzer and Di. Michie, editors, Machine
Intelligence, volume 4. Edinburgh Intelligence, volume 4. Edinburg
University Press, Edinburgh, University Press
pages $463-502$.

IEEE Expert: Intelligent Systems and Their Applications, 11(2):12-18. a core language technology. In Internation a core language technology. In International Multidisciplinary Approach to an Emerging Information Technology, volume 12 Ue,
Lecture Notes In Computer Science, pages 1-9.
Wilks, Yorick. 2004. Artificial companions. In Machine Learning for Multtimodal Interaction:
First International Workshop, pages 36-45. Wilks, Yorick. 2008. The semantic web: Apotheosis of annotation, but what are

$$
\begin{aligned}
& \text { semantics? IEEE Intelligent Systems, } \\
& \text { 23(3):41-49. } \\
& \text { Wilks. Yorick and Afzal Ballim. } 1987 \text {. } \\
& \text { Multiple agents and the heuristic }
\end{aligned}
$$ semantics?

23(3):41-4.
Wilks. Yorick an

$$
\begin{aligned}
& \text { Multiple agents and the heuristic } \\
& \text { ascription of eflief. In Procecedings }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Williams, Jason D. and Steve Young. 2007. } \\
& \text { Partially observable Markov decision } \\
& \text { nrocacsoc for maken }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Partialy observable Markov decisiot } \\
& \text { processes for spoken dialog systems } \\
& \text { Computer Speech and Lancurge. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 21(2):393-422. } \\
& \text { Winanad Terry. } 1972 \text {. Understanding Natural } \\
& \text { Language. Academic Pres, orlando, F.L. } \\
& \text { Wittgenstein, Ludwig. 1973. Prilosophical }
\end{aligned}
$$ Wittgenstein, Ludwig. 1973. Philosphic

Investigations. Blackwell Publishers.

| Wilks, Yorick. 1996. Statistical versus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| knowledge-based machine translation. |

附件四

ACL 2008 論文議程

Monday，June 16， 2008

9：00－9：10 Opening Session

9：10－10：10 Invited Talk：Marc Swerts，＂Facial Expressions in Human－Human and Human－Machine Interactions＂

10：10－10：40 Break

Session 1A：Information Extraction 1

10：40－11：05：Richman，Alexander E．；Patrick Schone Mining Wiki Resources for Multilingual Named Entity Recognition 1：05－11：30：Bergsma，Shane；Dekang Lin；Randy Goebel Distributional Identification of Non－Referential Pronouns 1：30－11：55：Pasca，Marius；Benjamin Van Durme Weakly－Supervised Acquisition of Open－Domain Classes and Class 1：55－12：20：Banko，Michele；Oren Etzioni The

Session 1B：Language Resources and Evaluation

10：40－11：05：Mírovsk＇y，Jirí PDT 2．0 Requirements on a Query Language
1：05－11：30：Miyao，Yusuke；Rune Stre；Kenji Sagae；Takuya Matsuzaki；Jun＇ichi Tsujii Task－oriented Evaluation of
Syntactic Parsers and Their Representations
1：30－11：55：Chan，Yee Seng；Hwee Tou Ng MAXSIM：A Maximum Similarity Metric for Machine Translation Evaluation 11：55－12：20：Voorhees，Ellen M．Contradictions and Justifications：Extensions to the Textual Entailment Task

Session 1C：Machine Translation 1

0：40－11：05：Cherry，Colin Cohesive Phrase－Based Decoding for Statistical Machine Translation
11：05－11：30：Deng，Yonggang；Jia Xu；Yuqing Gao Phrase Table Training for Precision and Recall：What Makes a Good Phrase and a Good Phrase Pair．
11：30－11：55：Zhang，Dongdong；Mu Li；Nan Duan；Chi－Ho Li；Ming Zhou Measure Word Generation for English－Chinese SMT Systems
11．55－12：20：
hang，Hao；Chris Quirk；Robert C．Moore；Daniel Gildea Bayesian Learning of Non－Compositional Phrases with Synchronous Parsing

Session 1D：Speech Processing

0：40－11：05：Kaufmann，Tobias；Beat Pfister Applying a Grammar－Based Language Model to a Simplified Broadcast－News Transcription Task
$11.05-11 \cdot 30$ ：Bis
1：05－11：30：Bisani，Maximilian；Paul Vozila；Olivier Divay；Jeff Adams Automatic Editing in a Back－End Speech－to－Text
1：30－11：55：Fleischman，Michael；Deb Roy Grounded Language Modeling for Automatic Speech Recognition of Sports Video
11：55－12：20：Fleck，Margaret M．Lexicalized Phonotactic Word Segmentation

12：20－2：00 Lunch

Session 2A：Information Retrieval 1

2：00－2：25：Fang，Hui A Re－examination of Query Expansion Using Lexical Resources
http：／／www．ling．ohio－state．edu／acl08／schedule．html

Proceedings
第3頁，共 9 頁
00 －5：25：Vickrey，David；Daphne Koller Sentence Simplification for Semantic Role Labeling
3：45－5：50 Session 3D：Student Research Workshop

[^0]
Poster Session Student Research Workshop（6：00－8：30）

Fossati，Davide The Role of Positive Feedback in Intelligent Tutoring Systems
Heintz，Ilana Arabic Language Modeling with Finite State Transducers
McInnes，Bridget An Unsupervised Vector Approach to Biomedical Term Disambiguation：Integrating UMLS and Medine
Messiant，Cédric A Subcategorization Acquisition System for French Verbs
Trnka，Keith Adaptive Language Modeling for Word Prediction
Zhang，Yitao A Hierarchical Approach to Encoding Medical Concepts for Clinical Notes

5：25－6：00 Break

Poster and Demo Session（6：00－8：30）

Batista，Fermando；Nuno Mamede；Isabel Trancoso Language Dynamics and Capitalization using Maximum Entropy Boston，Marisa Ferrara；John T．Hale；Reinhold Kliegl；Shravan Vasishth Surprising Parser Actions and Reading Diffficulty Carenimi，Giusesfic Reproing the Performace of the Random Walk Model for Answering Complex Quabectiviy Chen，Wei Dimensions of Subjectivity in Natural Language
Chitturi，Rahul；John Hansen Dialect Classification for Online Podcasts Fusing Acoustic and Language Based Structural and Semantic Information
DeNero，John；Dan Klein The Complexity of Phrase Alignment Problems
Dickinson，Markus Ad Hoc Treebank Structures
ta la Chica，Sebastian；Faisal Ahmad；James H．Martin；Tamara Sumner Extractive Surnmaries for Educational Science Content
Digach，Dmitriy；Martha Palmer Novel Semantic Features for Verb Sense Disambiguatio
Dredze，Mark；Joel Wallenberg Icelandic Data Driven Part of Speech Tagging
Eun，Kevin，Katrin Kirchhoff Beyond Log－Linear Models：Boosted Minimum Enal
Einnel，Jishny Rose；Christopher D．Manning Enforcing Transitivity in Coreference Resolution
 with Sooken Dialogue Systems
Goldberg，Yoav；Reut Tsarfaty A Single Generative Model for Toint Morphological Seomentation and Syytactic Parsing Goldwasser，Dan；Dan Roth Active Sample Selection for Named Entity Transliteration
Goldwater，Sharon；Dan Jurafsky；Christopher D．Manning Which Words Are Hard to Recognize？Prosodic，Lexical，and Disfluency Factors that Increase ASR Error Rates
HaCohen－Kerner，Yaakov；Ariel Kass；Ariel Peretz Combined One Sense Disambiguation of Abbreviations
Habash，Nizar Four Techniques for Online Handling of Out－of－Vocabulary Words in Arabic－English Statistical Machine Translation
Haertel，Robbie；Eric Ringger，Kevin Seppi；Carroll James；McClanahan Peter Assessing the Costs of Sampling Methods in
Active Learning for Annotation
Hashimoto，Chikara；Sadao Kurohashi Blog Categorization Exploiting Domain Dictionary and Dynamically Estimated Domains
Hendersonn，James；Oliver Lemon Mixture Model POMDPs for Efficient Handling of Uncertainty in Dialogue Management Hermjakob，Ulf；Kevin Knight；Hal Daumé III Name Translation in Statistical Machine Translation－Learning When to

2：25－2：50：Cao，Guihong；Stephen Robertson；Jian－Yun Nie Selecting Query Term Alternations for Web Search by Exploiting Query Contexts
2：50－3：15：Duan，Huizhong；Yunbo Cao；Chin－Yew Lin；Yong Yu Searching Questions by Identifying Question Topic and Question Focus

Session 2B：Language Generation

2：00－2：25：Mairesse，François；Marilyn Walker Trainable Generation of Big－Five Personality Styles through Data－Driven 2：25－2：50：Lee，John；Stephanie Seneff Correcting Misuse of Verb Forms
2：50－3：15：Espinosa，Dominic；Michael White；Dennis Mehay Hypertagging：Supertagging for Surface Realization with CCG

Session 2C：Machine Translation 2

2：00－2：25：Mi，Haitao；Liang Huang：Qun Liu Forest－Based Translation
2：25－2：50：Blunsom，Phil；Trevor Cohn；Miles Osborne A Discrimininative Latent Variable Model for Statistical Machine Translation

Session 2D：Semantics 1

2：00－2：25：Koller，Alexander，Michaela Regneri；Stefan Thater Regular Tree Grammars as a Formalism for Scope Inderspecification
2：25－2：50：Davidov，Dmitry；Ari Rappoport Classification of Semantic Relationships between Nominals Using Pattern 2：50－3：15：Mitchell，Jeff；Mirella Lapata Vector－based Models of Semantic Composition

3：15－3：45 Break
Session 3A：Information Extraction 2

3：45－4：10：Arnold，Andrew；Ramesh Nallapati；William W．Cohen Exploiting Feature Hierarchy for Transfer Learning in amed Entity Recognition
4：35－5：00：Branavan，S．R．K．：Harr Chen；Jacob Fisenstein：Regina Barzilay Learning Documment－Level Semantic Properties from Free－Text Annotations
5：00－5：25：Feng，Yansong；Mirella Lapata Automatic Image Annotation Using Auxiliary Text Information
Session 3B：Sentiment Analysis

3：45－4：10：Szarvas，György Hedge Classification in Biomedical Texts with a Weakly Supervised Selection of Keywords 10－4：35：Andreevskaia，Alina；Sabine Bergler When Specialists and Generalists Work Together：Overcoming Domain Dependence in Sentiment Tagging
4：35－5：00：Nomoto，Tadashi A Generic Sentence Trimmer with CRF
5：00－5：25：Titov，Ivan；Ryan McDonald A Joint Model of Text and Aspect Ratings for Sentiment Summarization

Session 3C：Syntax \＆Parsing 1

3：45－4：10：Agirre，Eneko；Timothy Baldwin；David Martinez Improving Parsing and PP Attachment Performance with Sense
4：10－4：35：Hoyt，Frederick；Jason Baldridge A Logical Basis for the D Combinator and Normal Form in CCG 4：35－5：00：Vadas，David；James R．Curran Parsing Noun Phrase Structure with CCG
http：／／www．ling．ohio－state．edu／acl08／schedule．html

Proceedings

Fildebrand，Almut Silja；Kay Rottmann；Mohamed Noamany；Quin Gao；Sanjka Hewavitharana；Nguyen Bach；Stephan vogel Recent Improvements in the CMU Large Scale Chinese－English SMT System
 Karakos，Damianos；Jason Eisner；Sanjeev Khudanpur；Markus Dreyer Machine Translation System Combination using ITG
based Alignments
Kazama，Jun＇ichi；K
Kennedy，Alistarr；Stan Szpakowicz Evaluating Roget＇s Thesauri
Kulkarni，Anagha；Jamie Callan Dictionary Definitions based Homograph Identification using a Generative Hierarchical Model
Li，Wenjie；Peng Zhang；Furu Wei；Yuexian Hou；Qin Lu A Novel Feature－based Approach to Chinese Entity Relation Extraction
Thifei：David Yarowsky Unsupervised Translation Induction for Chinese Abbreviations using Monolingual Corpor Li，Jianguo；Chris Brew Which Are the Best Features for Automatic Verb Classification
iu，Chao－Lin；Jen－Hsiang Lin Using Structural Information for Identifying Similar Chinese Characters
Liu，Yandong；Eugene Agichtein You＇ve Got Answers：Towards Personalized Models for Predicting Success in Community Question Answering
McClosky，David；Eugene Charniak Self－Training for Biomedical Parsing
Miller，Tim；William Schuler A Unified Syntactic Model for Parsing Fluent and Disfluent Speech
Moilanen，Karo；Stephen Pulman The Good，the Bad，and the Unknown：Morphosyllabic Sentiment Tagging of Unseen Words Moschitti，Alessandro；Silvia Quarteroni Kernels on Linguistic Structures for Answer Extraction
Mrozinski，Joanna；Edward Whittaker；Sadaoki Furui Collecting a Why－Ouestion Corpus for Development and Evaluation of an Automatic QA－System
akov，Preslav；Marti A．Hearst Solving Relational Similarity Problems Using the Web as a Corpus
isson，J．Scott；Douglas W．Oard Combining Speech Retrieval Results with Generalized Additive Models
Penn，Gerald；Xiaodan Zhu A Critical Reassessment of Evaluation Baselines for Speech Summmarization
Polifroni，Joseph；Marilyn Walker Intensional Summmaries as Cooperative Responses in Dialogue：Automation and Evaluation Roth，Ryan；Owen Rambow；Nizar Habash；Mona Diab；Cynthia Rudin Arabic Morphological Tagging，Diacritization，and Lemmatization Using Lexeme Models and Feature Ranking
Saha，Sujan Kumar；Pabitra Mitra；Sudeshna Sarkar Word Clustering and Word Selection Based Feature Reduction for MaxEnt
Based Hindi NER
chulte im Walde，Sabine；Christian Hying；Christian Scheible；Helmut Schmid Combbining EM Training and the MDL Principle for an Automatic Verb Classification Incorporating Selectional Preferences
Syed，Umar；Jason Williams Using Automatically Transcribed Dialogs to Learn User Models in a Spoken Dialog System Talbot，David；Thorsten Brants Randomized Language Models via Perfect Hash Functions
Toutanova，Kristina；Hisami Suzuki；Achim Ruopp Applying Morphology Generation Models to Machine Translation suchiya，Masatoshi；Shinya Hida；Seiichi Nakagawa Robust Extraction of Named Entity Including Unfamiliar Word eale，Tony；Yanfen Hao；Guofu Li Multilingual Harvesting of Cross－Cultural Stereotypes
Wan，Stephen；Cecile Paris In－Browser Summarisation：Generating Elaborative Summaries Biased Towards the Reading
Wang，Qin Iris，Dale Schuurmans；Dekang Lin Semmi－Supervised Convex Training for Dependency Parssing
Xia，Yunqing；Linlin Wang；Kam－Fai Wong；Mingxing Xu Lyric－based Song Sentiment Classification with Sentiment Vector Space Model
Yamangil，Elif；Rani Nelken Mining Wikipedia Revision Histories for Improving Sentence Compression Yang，Fan；Jun Zhao；Bo Zou；Kang Liu；Feifan Liu Chinese－English Backward Transliteration Assisted with Mining Monolingual Web Pages
Zure，Deniz Smoothing a Tera－word Language Model Zhang，Min；Hongfei Jiang；Aiti Aw；Haizhou Li；Chew Lim Tan；Sheng Li A Tree Sequence Alignment－based Tree－to－Tree Translation Model

Demos（6：00－8：30）

6：00－8：30：Williams，Jason Demonstration of a POMDP Voice Dialer
6：00－8：30：Siddharthan，Advaith；Ann Copestake Generating Research Websites Using Summmarisation Techniques 6：00－8：30：Versley，Yannick；Simone Paolo Ponzetto；Massimo Poesio；Vladimir Eidelman；Alan Jern；Jason Smith；Xiaofeng Yang；Alessandro Moschitti BART：A Modular Toolkit for Coreference Resolution
6：00－8：30：O^{\prime} Donnell，Mick Demonstration of the UAM CorpusTool for Text and Image Annotation
6：00－8：30：Huggins－Daines，David；Alexander I．Rudnicky Interactive ASR Error Correction for Touchscreen Devices ：00－8：30：Germann，Ulrich Yawat：Yet Another Word Alignment Too
6：00－8：30：Kang，Moonyoung；Sourish Chaudhuri；Mahesh Joshi；Carolyn P．Rosé SIDE：The Summmarization Integrated
6：00－8：30：Yarrington，Debra；John Gray；Chris Pennington；H．Timothy Bunnell；Allegra Cornaglia；Jason Lilley；Kyoko

Nagao；James Polikoff ModelTalker Voice Recorder－An Interface Systemn for Recording a Corpus of Speech for Synthesis 6：00－8：30：Kaisser，Michael The QuALiM Question Answering Demo：Supplementing Answers with Paragraphs drawn from
Wikipedia

Tuesday，June 17， 2008

Session：Outstanding Paper Award Presentations
9：00－9：10 Presentation of Awards

9：10－9：35：Bartlett，Susan；Grzegorz Kondrak；Colin Cherry Automatic Syllabification with Structured SVMs for Letter－to－
Phoneme Conversion
9：35－10：00：Shen，Libin；Jinxi Xu；Ralph Weischedel A New String－to－Dependency Machine Translation Algorithm with a Target Dependency Language Model
10：25－10：40：Bikel，Daniel M．；Vittorio Castelli Event Matching Using the Transitive Closure of Dependency Relations
10：40－11：10 Break
Session 4A：Syntax \＆Parsing 2

1：10－11：35：Koo，Terry；Xavier Carreras；Michael Collins Simple Semi－supervised Dependency Parsing 11：35－12：00：Nesson，Rebecca；Giorgio Satta；Stuart M．Shieber Optimal SkS－arization of Synchronous Tree－Adjoining Grammar

Session 4B：Dialogue

1：10－11：35：Ai，Hua；Diane J．Litman Assessing Dialog System User Simulation Evaluation Measures Using Human Judges 11：35－12：00：Lee，Cheongjae；Sangkeun Jung；Gary Geunbae Lee Robust Dialog Management with N－Best Hypotheses Using Dialog Examples and Agenda
位

Session 4C：Machine Learning 2

11：10－11：35：Milidiú，Ruy Luiz；Cícero Nogueira dos Santos；Julio C．Duarte Phrase Chunking Using Entropy Guided Transformation Learning
ooin；Andrew B．Goldberg：Michael Rabbat；Robert Nowak Learning Bigrams from Unigrams 2：00－12：25：Suzuki，Jun；Hideki Isozaki Semi－Supervised Sequential Labeling and Segmentation Using Giga－Word Scale

Session 4D：Semantics 2

11：10－11：35：Bhagat，Rahul；Deepak Ravichandran Large Scale Acquisition of Paraphrases for Learning Surface Patterns 11：35－12：00：Szpektor，Idan；Ido Dagan；Roy Bar－Haim；Jacob Goldberger Contextual Preferences 12：00－12：25：Davidov，Dmitry；Ari Rappoport Unsupervised Discovery of Generic Relationships Using Pattern Clusters and its Evaluation by Automatically Generated SAT Analogy Questions

12：25－2：00 Lunch
http：／／www．ling．ohio－state．edu／acl08／schedule．html 2009／1／24
Proceedings 第7頁，共9頁

Computation for NLP Applications
Session 5G：Short Papers 3 （Semantics／Phonology）
：15－3：30：Nielsen，Rodney D．；Wayne Ward；James H．Martin；Martha Palmer Extracting a Representation from Text for Semantic Analysi

Representaions
4：00－4：15：Alfonseca，Enrique；Slaven Bilac；Stefan Pharies Decompounding query keywords from compounding languages

Session 5H：Short Papers 4 （IR／Sentiment Analysis）

3：15－3：30：Li，Shoushan；Chengqing Zong Multi－domain Sentiment Classification
30 －3：45：Tmka，Keith；Kathleen McCoy Evaluating Word Prediction：Framing Keystroke Saving
3：45－4：00：Elsayed，Tamer；Jimmy Lin；Douglas Oard Pairwise Document Similarity in Large Collections with MapReduce 4：00－4：15：Sun，Qi；Runxin Li；Dingsheng Luo；Xihong Wu Text Seqmentation with LDA－Based Fisher Kernel

4：15－4：45 Break

Session 6A：Question Answering

4：45－5：10：Kaisser，Michael；Marti A．Hearst；John B．Lowe Improving Search Results Quality by Customizing Summary
Lengths－5：35：Ding，Shilin；Gao Cong；Chin－Yew Lin；Xiaoyan Zhu Using Conditional Random Fields to Extract Contexts and Answers of Questions from Online Forums
535 －6：00：Surdeanu，Mihai；Massimiliano Ciaramita；Hugo Zaragoza Learning to Rank Answers on Large Online Q Collections

Session 6B：Phonology，Morphology 1

4：45－5：10：Adler，Meni；Yoav Goldberg；David Gabay；Michael Elhadad Unsupervised Lexicon－Based Resolution of Unknown Words for Full Morphological Analysi
5：10－5：35：Snyder Benimin．Regina Barzilay Unsuervised Multilingual Learning for Morphological Segmentation 5：35－6：00：Goldberg，Yoav；Meni Adler；Michael Elhadad EM Can Find Pretty Good HMM POS－Taggers（When Given Good Start）

Session 6C：Machine Translation 3

4：45－5：10：Uszkoreit，Jakob；Thorsten Brants Distributed Word Clustering for Large Scale Class－Based Language Modeling in Machine Translation
in Machine Iransiation 5：10－5：35：Avramidis，Eleftherios；Philipp Koehn Enriching Morphologically Poor Languages for Statistical Machine

5：35－6：00：Haghighi，Aria；Percy Liang；Taylor Berg－Kirkpatrick；Dan Klein Learning Bilingual Lexicons from Monolingual Corpora

Session 6D：Semantics 3

4：45－5：10：Zhao，Shiqi；Haifeng Wang，Ting Liu；Sheng Li Pivot Approach for Extracting Paraphrase Patterms from Bilingual
Corpora
5：10－ $5: 35$ ：Chambers，Nathanael；Dan Jurafsky Unsupervised Learning of Narrative Event Chains
5：35－6：00：Diab，Mona；Alessandro Moschitti；Daniele Pighin Semantic Role Labeling Systems for Arabic using Kernel

Session 5A：Short Papers 1 （Machine Translation）

2：00－2：15：Xiong，Deyi；Min Zhang；Aiti Aw；Haizhou Li A Lingusitically Annotated Reordering Model for BTG－based Statistical Machine Translation
2．15－2：30：Badr，Ibrahim；Rabih Zoib，James Glass Segmentation for English－－o－Arabic Statistical Machine Translation ．30－2：45：Chen，Boxing；Min Zhang；Aiti Aw；Haizhou Li Exploiting N－best Hypotheses for SMT Self－Enhancement

Session 5B：Short Papers 2 （Speech）

2：00－2：15：Varadarajan，Balakrishnan；Sanjeev Khudanpur；Emmanuel Dupoux Unsupervised Learning of Acoustic Sub－word Units ：30－2：45：McMillian，Yolanda；Juan Gilbert Distributed Listening：A Parallel Processing Approach to Automatic Speech Recognition

Session 5C：Short Papers 3 （Semantics）

2：00－2：15：Bethard，Steven；James H．Martin Learning Semantic Links from a Corpus of Parallel Temporal and Causal
Relations
2：15－2：30：Snajder，Jan；Bojana Dalbelo Basic；Sasa Petrovic；Ivan Sikiric Evolving New Lexical Association Measures． Using Genetic Progrannming
．30－2：45：Katrenko，Sophia；Pieter Adriaans Semantic Types of Some Generic Relation Arguments：Detection and
2：45－3：00：Roa，Sergio；Valia Kordoni；Yi Zhang Mapping between Compositional Semantic Representations and Lexical Semantic Resources：Towards Accurate Deep Semantic Parsing

Session 5D：Short Papers 4 （Generation／Summarization）

2：00－2：15：Krahmer，Emiel；Erwin Marsi；Paul van Pelt Query－based Senlence Fusion is Better Defined and Leads to More Preferred Results than Generic Sentence Fusion
2：15－2：30：Belz，Anja；Albert Gatt Intrinsic vs．Extrinsic Evaluation Measures for Referring Expression Generation 2：30－2：45：Liu，Feifan；Yang Liu Correlation between ROUGE and Human Evaluation of Extractive Meeting Summaries

3：00－3：15 Break

Session 5E：Short Papers 1 （Syntax）

．15－3：30：Gabbard，Ryan；Seth Kulick Construct State Modifcation in the Arabic Treebank
3：30－3：45：Musillo，Gabriele Antonio；Paola Merlo Unlexicalised Hidden Variable Models of Split Dependency Grammars 3：45－4：00：Lin，Feng；Fuliang Weng Computing Confidence Scores for All Sub Parse Trees
4：00－4：15：Foster，Jennifer；Joachim Wagner；Josef van Genabith Adapting a WSJ－Trained Parser to Grammatically Noisy Text
Session 5F：Short Papers 2 （Dialog／Statistical Methods）
．15－3：30：Rangarajan Sridhar，Vivek Kumar；Srinivas Bangalore；Shrikanth Narayanan Enriching Spoken Language Translation with Dialog Acts
3：30－3：45：Kim，Donghyun；Hyunjung Lee；Choong－Nyoung Seon；Harksoo Kim；Jungyun Seo Speakers＇Intention Prediction Using Statistics of Multi－level Features in a Schedule Management Domain
4：00－4：15：Goldberg，Yoav；Michael Elhadad splitSVM：Fast，Space－Efficient，non－Heuristic，Polynomial Kerne
http：／／www．ling．ohio－state．edu／acl08／schedule．html

Proceedings
第 8 頁，共 9 頁

Methods
7：00－11：00 Banquet
Wednesday，June 18， 2008

9：00－10：10 Invited Talk：Susan Dumais，＂Supporting Searchers in Searching＂
10：10－10：30 Break
Session 7A：Summarization

10：30－10：55：Biadsy，Fadi；Julia Hirschberg；Elena Filatova An Unsupervised Approach to Biography Production Using Wikipedia

11：20－11：45：Nenkova，Ani；Annie Louis Can You Summarize This？？Identifying Correlates of Input Difficulty for Multi Document Summarization

Session 7B：Discourse \＆Pragmatics

10：30－10：55：Elsner，Micha；Eugene Charmiak You Talking to Me？A Corpus and Algorithm for Conversation
Disentanglement
10：55－11：20：Yang，Xiaofeng；Jian Su；Jun Lang；Chew Lim Tan；Ting Liu；Sheng Li An Entity－Mention Model for Coreference Resolution with Inductive Logic Programming
1：20－11：45：Eisenstein，Jacob；Regina Barzilay；Randall Davis Gestural Cohesion for Topic Segmentation
Session 7C：Machine Learning 2

10：30－10：55：Reichart，Roi；Katrin Tomanek；Udo Hahn；Ari Rappoport Multh－Task Active Learning for Lingustic Annotatio
10：55－11：20：Mann，Gideon S．；Andrew McCallum Generalized Expectation Criteria for Semi－Supervised Learning of Conditional Random Fields
11．20－11：45：Liang，Percy：Dan Klein Analyzing the Errors of Unsupervised Learning

Session 7D：Phonology，Morphology 2

10：30－10：55：Zhang，Yue；Stephen Clark Joint Word Segmentation and POS Tagging Using a Single Perceptron
10：55－11：20：Jiang，Wenbin；Liang Huang；Qun Liu；Yajuan Lui A Cascaded Linear Model for Joint Chinese Word
Segmentation and Part－of－Speech Tagging
1：20－11：45：Jiampojamarn，Sittichai；Colin Cherry；Grzegorz Kondrak Joint Processing and Discriminative Training for Letter－to－Phoneme Conversion

11：45－12：50 Lunch
12：50－2：20 ACL Business Meeting
Session 8A：Information Retrieval 2

Session 8B：Syntax \＆Parsing 3

2：30－2：55：Nivre，Joakim；Ryan McDonald Integrating Graph－Based and Transition－Based Dependency Parser
55－3：20：Finkel，Jenny Rose；Alex Kleeman；Christopher D．Manning Efficient，Feature－based，Conditional Random Field
Parsing
20－3：45：Gómez－Rodríguez，Carlos；John Carroll；David Weir A Deductive Approach to Dependency Parsing
Session 8C：Machine Translation 2

2：30－2：55：Ganchev，Kuzman；João V．Graça；Ben Taskar Better Alignments $=$ Better Translations？
2：55－3：20：Lin，Dekang；Shaojun Zhao；Benjamin Van Durme；Marius Pasca Mining Parenthetical Translations from the Web by Word Alignment
$20-3: 45$ ：Marton，Yuval；Philip Resnik Soft Syntactic Constraints for Hierarchical Phrased－Based Translation －4．10：Dyer，Christopher，Smaranda Muresan；Philip Resnik Generaizing Word Lattice Translation

Session 8D：Semantics 4

2：30－2：55：Zhao，Shiqi；Cheng Niu；Ming Zhou；Ting Liu；Sheng Li Combining Multiple Resources to Improve SMT－based Paraphrasing Model
2：55－3：20：Srikumar，Vivek；Roi Reichart；Mark Sammons；Ari Rappoport；Dan Roth Extraction of Entailed Semantic Relations Through Syntax－Based Comma Resolution
3：20－3：45：de Marneffe，Marie－Catherine；Anna N．Rafferty；Christopher D．Manning Finding Contradictions in Tex 3：45－4：10：Kozareva，Zornitsa；Ellen Riloff；Eduard Hovy Semantic Class Learning from the Web with Hyponym Pattern Linkage Graph

4：40－6：10 Lifetime Achievement Award Presentation and Closing Session

附件五
報告人所發表的論文

\author{
Chao－Lin Liu
 Jen－Hsiang Lin
 Department of Computer Science，National Chengchi University，Taipei 11605，Taiwan
 \｛chaolin，g9429\}@cs.nccu.edu.tw

}

Abstract
Chinese characters that are similar in their
pronunciations or in their internal structures pronuche useful for computer－assisted language
are learning and for psycholinguistic studies．Al－ though it is possible for us to employ image－ based methods to identify visually similar
characters，the resulting compuational costs characters，the resulting computational costs
can be very high．We propose methods for can be very high．We propose methods for
identifying visually similar Chinese characters by adopting and extending the basic concepts of a proven Chinese input method－－Cangiie． We present the methods，illustrate how they

1 Introduction

A Chinese sentence consists of a sequence of char acters that are not separated by spaces．The func fion of a Chinese character is not exactly the same as the function of an English word．Normally，two
or more Chinese characters form a Chinese word to carry a meaning，although there are Chinese word that contain only one Chinese character．For in stance，a translation for＂＂onference＂is＂研討會＂，
and a translation for＂go＂is＂去＂．Here＂研討會＂ is a word formed by three characters，and＂去＂is a word with only one character．
Just like that there are English words that are spelled similarly，there are Chinese characters tha are pronounced or written alike．For instance，in English，the sentence＂John plays an important rol
in this event．＂contains an incorrect word should replace＂roll＂with＂role＂．In Chinese，the sentence＂今天上午我們束試場貿菜＂contains an incorrect word．We should replace＂試場＂（a plac for taking examinations）with＂市場＂（a market） These two words have the same pronunciation，
shi (4) chang $(3)^{\dagger}$ ，and both represent locations．The sentence＂經理要我構買一部計算機＂also con－

We use Arabic digits to denote the four tones in Mandarin．

 but can be confused with＂購買＂because the first
characters in these words characters in these words look similar．
Characters that are similar in
es or in their pronunciations are useful for computer－assisted language learning（cf．Burstein \＆Leacock，2005）．When preparing test items for testing students＇knowledge about correct words in a computer－assisted environment，a teacher pro－
vides a sentence which contains the character that will be replaced by an incorrect character．The teacher needs to specify the answer character，and the software will provide two types of incorrect characters which the teachers will use as distracters in the test items．The first type includes characters that look similar to the answer character，and the second includes characters that have the same
similar pronunciations with the answer character． Similar characters are also useful for studies in Psycholinguistics．Yeh and Li（2002）studied how similar characters influenced the judgments made by skilled readers of Chinese．Taft，Zhu，and Peng（1999）investigated the effects of positions of responses．Computer programs that can automati－ cally provide similar characters are thus potentially helpful for designing related experiments．
2 Identifying Similar Characters with In－ formation about the Internal Structures

We present some similar Chinese characters in the first subsection，illustrate how we encode Chinese
characters in the second subsection，elaborate how we improve the current encoding method to facili－ tate the identification of similar characters in the third subsection，and discuss the weakness of our
current approach in the last subsection

2．1 Examples of Similar Chinese Characters
We show three categories of confusing Chinese characters in Figures 1，2，and 3．Groups of similar

母母土エチ千 成成成男男由甲申
頍勁 捵溝 陪倍 硯現裸棵搞筑
Figure 2．Some similar Chinese characters that have different pronunciations

形刑型 踵種腫䐟䐟構搆紀記計

Figure 3．Homophones with a shared componen
characters are separated by spaces in these figures． In Figure 1，characters in each group differ at the俍 he shared part is not the radical of these chart，but Similar characters in every group in the second ow in Figure 2 share a common part，which is the radical of these characters．Similar characters in every group in Figure 2 have different pronuncia－ tions．We show six groups of homophones that also share a component in Figure 3．Characters that are similar in both pronunciations and internal
structures are most confusing to new learners． It is not difficult to list all of those characte that have the same or similar pronunciations，e．g．，
＂試場＂and＂市場＂，if we have a machine readable lexicon that provides information about pronuncia－ tions of characters and when we ignore special pa terns for tone sandhi in Chinese（Chen，2000）．
In contrast，it is relatively difficult to fi
racters that are written in similar ways，eg， ＂構＂with＂購＂，in an efficient way．It is intriguing to resort to image processing methods to find such structurally similar words，but the computational costs can be very high，considering that there can be tens of thousands of Chinese characters．There corpus of Chinese documents（Juang et al．，2005）， so directly computing the similarity between im－ ages of these characters demands a lot of computa－ tion．There can be more than 4.9 billion combinations of character pairs．The Ministry of
Education in Taiwan suggests that about 5000 Education in Taiwan suggests that about 5000
characters are needed for ordinary usage．In this characters are needed for ordinary ust
case，there are about 25 million pairs．

The quantity of combinations
the bottlenecks．We may have to shift the positions of the characters＂appropriately＂to find the com－ mon part of a character pair．The appropriateness
for shifting characters is not easy to define the image－based method less directly useful；for
instance，the common part of the characters in the right group in the second row in Figure 3 appears
in different places in the characters． Lexicographers employ radic characters to organize Chinese characters into sec－ tions in dictionaries．Hence，the information should be useful．The groups in the second row in Figure 2 show some examples．The shared components in these groups are radicals of the characters，so we
can find the characters of the same group in the same section in a Chinese dictionary．However， information about radicals as they are defined by the lexicographers is not sufficient．The groups of characters shown in the first row in Figure 2 have shared components．Nevertheless，the shared com－
ponents are not considered as radicals，so the char－ acters，eg．＂輀＂and＂勁＂，are listed in different sections in the dictionary．

2．2 Encoding the Chinese Characters

The Cangiie ${ }^{t}$ method is one of the most popular methods for people to enter Chinese into com－
puters．The designer of the Cangie method，Mr Bong－Foo Chu，selected a set of 24 basic elements in Chinese characters，and proposed a set of rules to decompose Chinese characters into elements 2008）．Hence，it is possible to define the similarity 2008）．Hence，it is possible to define the similarity larity between their Cangjie codes．

${ }^{\ddagger}$ htp：／／en．wikipedia．org／wiki／Cangii＿method
sections，each showing the Cangie codes for some
characters in Figures 1，2，and 3．Every Chinese character is decomposed into an ordered sequence these elements comes from a major component of a character，shortly．）Evidently，computing the num－ ber of shared elements provides a viable way to determine＂visually similar＂characters for charac－ ters that appeared in Figure 2 and Figure 3．For instance，we can tell that＂搞＂and＂管＂are similar in fact represent＂＂高＂ fact represent＂高＂
pear to be as helpful for identifying the similaritie between characters that differ subtly at the stroke level，e．g．，＂士土工干＂and other characters listed in Figure 1．There are special rules for decompos－ ing these relatively basic characters in the Cangjie
method，and these special encodings make the re－ sulting codes less useful for our tasks．
The Cangjie codes for characters that contain multiple components were intentionally simplified to allow users to input Chinese characters more efficiently．The longest Cangiie code for any Chi－
nese character contains no more than five elements． In the Cangiie codes for＂脛＂and＂婹＂，we see＂－女一＂for the component＂㜽＂，but this compone is represented only by＂－－＂in the Cangjie codes for＂㛲＂and＂勁＂．The simplification makes it elatively harder to identify visually similar charac ters by comparing the actual Cangjie codes．

2．3 Engineering the Original Cangjie Codes

Although useful for the sake of designing input method，the simplification of Cangjie codes causes
difficulties when we use the codes to find similar characters．Hence，we choose to use the complete codes for the components in our database．For in－ stance，in our database，the codes for＂㜽＂，＂脮＂ ＂徑＂＂＂黷＂，and＂劲＂are，respectively，＂一女女一＂，山金＂，and＂一女女一大户＂，
f the Chinese characters（cf graphical structures of the Chinese characters（cf．Juang et al．， 2005
Lee，2008）can be instrumental as well．Conside the examples in Figure 2．Some characters can be decomposed vertically；e．g．，＂虫＂can be split into two smaller components，i．e．，＂中＂＂and＂m＂．Some characters can be decomposed horizontally；e．g．，
＂現＂is consisted of＂王＂and＂見＂Some have ＂現＂is consisted of＂王＂and＂見＂．Some have ＂口＂in＂囚＂．Hence，we can consider the location of the components as well as the number of shared

components in determining the similarity between characters．

Figure 4 illustrates possible layouts of the components in Chinese characters that were adopted by the Cangjie method（cf．Lee，2008）．A layouts．A box in a layout indicates a component in a character，and there can be at most three compo－ nents in a character．We use digits to indicate the
ordering the components．Notice that，in the sec－ ordering the components．Notice that，in the sec－
ond row，there are two boxes in the second to the rightmost layout．A larger box contains a smaller one．There are three boxes in the rightmost layout， and two smaller boxes are inside the outer box． Due to space limits，we do not show＂ 1 ＂for this outer box．
After

After recovering the simplified Cangjie code for a character，we can associate the character with nents，and separate the code sequence of the char－ acter according to the layout of its components． Hence，the information about a character includes
the tag for its layout and between one to three se the tag for its layout and between one to three se－

tated and expanded codes of the sample characters in Figure 4 and the codes for some characters that we will discuss．The layouts are numbered from Elements that do not belong to the original Canie codes of the characters are shown in smaller font．

Recovering the elements that were dropped out by the Cangjie method and organizing the sub－ sequences of elements into parts facilitate the iden－ tification of similar characters．It is now easier to
find that the character（ （ 鰂）that is represented by ＂ind that the character（顡）that is represented by character（垤）that is represented by＂竹人＂and ＂一女一＂in our database than using their origi－ nal Cangjie codes in Table 1．Checking the codes for＂員＂and＂圆＂in Table 1 and Table 2 will offer an additional support for our design decisions．
In the worst case，we have to compare
In the worst case，we have to compare nine both have three components．Since we do not sim－ plify codes for components and all components have no more than five elements，conducting the
comparisons operations are simple． comparisons operations are simple．

2．4 Drawbacks of Using the Cangiie Codes

Using the Cangjie codes as the basis for comparing he similarity between characters introduces some potential problems．
It appears that the Cangjie codes for some
characters，particular those simple ones，were not assigned without ambiguous principles．Relying on Cangjie codes to compute the similarity between such characters can be difficult．For instance，＂分＂ uses the fifth layout，but＂兌＂uses the first layout in Figure 4．The first section in Table 1shows the ficult to compare－that are dif Due to the d
an be at most one component at the left hand side and at most one component at the top in the layouts． The last three entries in Table 2 provide an exam－ ple for these constraints．As a standalone character， ＂相＂，the＂相＂in＂箱＂was divided into two parts． However，in＂想＂，＂相＂is treated as an individual component because it is on top of＂想＂．Similar problems may occur elsewhere，e．g．，＂森焚＂and ＂恩因＂．There are also some exceptional cases；e．．．．，品＂uses the sixth layout，but＂闆＂uses the fifth layout．

3 Concluding Remarks

We adopt the Cangjie alphabet to encode Chinese characters，but choose not to simplify the code se－ quences，and annotate the characters with the lay－
out information of their components．The resulting method is not perfect，but allows us to find visually similar characters more efficient than employing the image－based methods．

Trying to find conceptually similar but con－ textually inappropriate characters should be a natu－ ral step after being able to find characters that have

Acknowledgments

Work reported in this paper was supported in part by the plan NSC－95－2221－E－004－013－MY2 from plan ATU－NCCU－96H061 from the Ministry of Education of Taiwan．

References

Jill Burstein and Claudia Leacock．editors．2005．Pro－
ceedings of the ceedings of the Second Workshop on Bu．
tional Applications Using NLP，ACL．
Matthew Y．Chen．2000．Tone Sandhi：Patterns across
Chinese Dialects．（Cambridge．Studies in Linguistics Chinese Dialects．（Cambrigge．Studies in Liss．
92．）Cambridge：Cambridge University Press． Bong－Foo Chu．2008．Handbook of the Fifth Generation
of the Cangie Inyut Method，web version，available of the Cangiie Input Method，web version，available at http：／／www．cbflabs．com／book／ocj5／ocj5／index．html．
Last visited on 14 Mar．2008． Last visited on 14 Mar． 2008.
http：／／input．foruto．com／cidict／Selthods in 30 Days， http：／／input．foruto．com／cjdict／Search＿1．php，Foruto
Company，Hong Kong．Last visited on 14 Mar． 2008. Derming Juang，Jenq－Haur Wang，Chen－Yu Lai，Ching－ Chun Hsieh，Lee－－Eeng CCiien，and Jun－Ming Ho
2005．Resolving the unencoded character problem for 2005．Resolving the unencoded character problem for ACM／IEEE Joint Conference on Digital Libraries， A11－319．
Marcus Taff，Xiaoping Zhu，and Danling Peng． 1999. Positional specificity of radicals in Chinese character
recognition，Journal of Memory and Language，40， recognitio
$498-519$.
u－Ling Yeh and Jing－Ling Li．2002．Role of structure and component in judgments of visual similarity of Chinese characters，Journal of Experimental Psy－
chology：Human Perception and Performance，28（4），
chology: Human Perception and Performance, 28(4),

[^0]: 3：45－4：10
 4：10－4：35：Banik，Eva An Integrated Architecture for Generating Parenthetical Constructions
 4：35－5：00：Eidelman，Vladimir Inferring Activity Time in News through Event Modeling
 5：00－5：25：Liao，Shasha Combining Source and Target Language Information for Name Tagging of Machine Translation
 Output
 5：25－5：50：Sun，Shuqi；Yin Chen；Jufeng Li A Re－examination on Features in Regression Based Approach to Automatic M Evaluation

