政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/149594
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 110206/141131 (78%)
造訪人次 : 46887052      線上人數 : 528
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/149594
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/149594


    題名: 機器學習下信用卡詐欺之預測分析: 以美國市場為例
    Predictive Analysis of Credit Card Fraud via Machine Learning : Evidence from the United State
    作者: 陳彥霖
    Chen, Yen-Lin
    貢獻者: 洪芷漪
    林士貴

    Hong, Jyy-I
    Lin, Shih-Kuei

    陳彥霖
    Chen, Yen-Lin
    關鍵詞: 信用卡詐欺模型
    機器學習
    非線性問題
    召回率
    Credit Card Fraud Model
    Machine Learning
    Nonlinear Problem
    Recall
    日期: 2024
    上傳時間: 2024-02-01 11:25:27 (UTC+8)
    摘要: 本研究採用包含 180 萬筆美國信用卡詐欺資料集,旨在深入探討消費詐
    欺行為。透過對客戶消費行為與個人資料這兩大類變數進行建模,我們試
    圖探究各項變數對詐欺消費之影響。本研究比較機器學習中樹模型與邏輯
    斯迴歸模型的表現,結果顯示在這類非線性問題中,隨機森林與 XGBoost
    展現出優異預測能力。同時,我們發現消費金額、店家種類以及消費日期
    為星期幾這三個變數對於預測詐欺行為具有重要影響,並成功建立出召回
    率較高的模型。
    This study employs a dataset containing 1.8 million instances of credit card fraud in the United States to delve into fraudulent transaction behaviors. By modeling two major categories of variables—customer transaction behaviors and personal information—we aim to explore the influence of various factors on fraudulent transactions. Comparative analysis between tree-based models and logistic regression in machine learning reveals that in such non-linear scenarios, Random Forest and XGBoost demonstrate superior predictive performance. Additionally, we identified four significant variables—transaction amount, merchant type, and the day of the week of the transaction —as influential factors in predicting fraudulent behavior, resulting in the development of a model with higher recall rates.
    參考文獻: Alexandrov, A., Bedre-Defolie, Ö., and Grodzicki, D. (2017). Consumer demand for credit
    card services.

    Apley, D. W., . Z. J. (2020). Visualizing the effects of predictor variables in black box supervised
    learning models. Journal of the Royal Statistical Society Series B: Statistical Methodology,
    82(4):1059–1086.

    Attivilli, R. and Jothi, A. A. (2023). Serverless stream-based processing for real time credit
    card fraud detection using machine learning. In 2023 IEEE World AI IoT Congress (AIIoT),
    pages 0434–0439. IEEE.

    Barbaglia, L., Manzan, S., and Tosetti, E. (2023). Forecasting loan default in europe with
    machine learning. Journal of Financial Econometrics, 21(2):569–596.

    Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine
    learning algorithms. Pattern Recognition, 30(7):1145–1159.
    Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

    Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic
    minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357.

    Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
    of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
    Mining, pages 785–794.

    Consulting, B. (2022). Digital Payment Market- Global Industry Size, Share, Trend Analysis
    and Forecast Report, 2018-2028, Segmented By Offering (Solution and Service) By Mode of
    Payment (Digital Currencies, Bank Cards, Digital Wallets, Net Banking, Point of Sale, and
    Others), By Deployment (On-Premise and Cloud), By Organization Size (Small Enterprises,
    Medium Enterprises, and Large Enterprises), By Sector (Banking, Financial Services and
    Insurance (BFSI), Retail/E-Commerce, Healthcare, Hospitality/Travel, Logistics and Transportation, Others), By Region (North America, Europe, Asia-Pacific (APAC), Latin America
    (LATAM), Middle East Africa (MEA). https://www.blueweaveconsulting.com/report/
    digital-payment-market/report-sample.
    27

    Consulting, M. C. (2023). Credit Card Fraud Statistics (2024).
    https://merchantcostconsulting.com/lower-credit-card-processing-fees/
    credit-card-fraud-statistics/.

    Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc curves.
    In Proceedings of the 23rd International Conference on Machine Learning, pages 233–240.

    Ganong, P. and Noel, P. (2019). Consumer spending during unemployment: Positive and normative implications. American Economic Review, 109(7):2383–2424.

    Hajek, P. and Henriques, R. (2017). Mining corporate annual reports for intelligent detection of
    financial statement fraud: A comparative study of machine learning methods. KnowledgeBased Systems, 128:139–152.

    Horvath, A., Kay, B., and Wix, C. (2023). The covid-19 shock and consumer credit: Evidence
    from credit card data. Journal of Banking & Finance, 152:106854.

    Huang, J. and Ling, C. X. (2005). Using auc and accuracy in evaluating learning algorithms.
    IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310.

    Huddleston, D., Liu, F., and Stentoft, L. (2023). Intraday market predictability: A machine
    learning approach. Journal of Financial Econometrics, 21(2):485–527.

    Hundtofte, S., Olafsson, A., and Pagel, M. (2019). Credit smoothing. Technical report, National
    Bureau of Economic Research.

    Karpoff, J. M. (2021). The future of financial fraud. Journal of Corporate Finance, 66:101694.

    KAZANINS, J. (2022). Notes on VISA FY Q4 2022 results: U.S. credit card holders drive payments volume up. https://www.popularfintech.com/p/notes-on-visa-fy-q4-2022-results.

    Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I. (2015).
    Machine learning applications in cancer prognosis and prediction. Computational and Structural biotechnology journal, 13:8–17.

    Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019). Interpretable
    machine learning: Definitions, methods, and applications.

    arXiv preprint arXiv:1901.04592.
    Nobre, J. and Neves, R. F. (2019). Combining principal component analysis, discrete wavelet
    transform and xgboost to trade in the financial markets. Expert Systems with Applications,
    125:181–194.

    Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine
    learning algorithms. Auditing: A Journal of Practice & Theory, 30(2):19–50.
    28

    Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why should i trust you?” explaining
    the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
    Conference on Knowledge Discovery and Data Mining, pages 1135–1144.

    Sadgali, I., Sael, N., and Benabbou, F. (2019). Performance of machine learning techniques in
    the detection of financial frauds. Procedia Computer Science, 148:45–54.

    Schiltz, F., Masci, C., Agasisti, T., and Horn, D. (2018). Using regression tree ensembles to
    model interaction effects: A graphical approach. Applied Economics, 50(58):6341–6354.

    Scholnick, B., Massoud, N., Saunders, A., Carbo-Valverde, S., and Rodríguez-Fernández, F.
    (2008). The economics of credit cards, debit cards and atms: A survey and some new evidence. Journal of Banking & Finance, 32(8):1468–1483.

    Shou, M., Bao, X., and Yu, J. (2023). An optimal weighted machine learning model for detecting
    financial fraud. Applied Economics Letters, 30(4):410–415.

    Spathis, C., Doumpos, M., and Zopounidis, C. (2002). Detecting falsified financial statements:
    A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review, 11(3):509–535.

    Yee, O. S., Sagadevan, S., and Malim, N. H. A. H. (2018). Credit card fraud detection using
    machine learning as data mining technique. Journal of Telecommunication, Electronic and
    Computer Engineering (JTEC), 10(1-4):23–27.

    Yin, M., Wortman Vaughan, J., and Wallach, H. (2019). Understanding the effect of accuracy
    on trust in machine learning models. In Proceedings of the 2019 Chi Conference on Human
    Factors in Computing Systems, pages 1–12.

    Zhao, Q. and Hastie, T. (2021). Causal interpretations of black-box models. Journal of Business
    & Economic Statistics, 39(1):272–281.
    描述: 碩士
    國立政治大學
    應用數學系
    110751015
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110751015
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101501.pdf4342KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋