English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89683/119504 (75%)
Visitors : 23941732      Online Users : 72
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/52850
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/52850

    Title: A 類半純函數之某些值分佈
    Some value distribution of Meromorphic functions of Class A
    Authors: 陳盈穎
    Chen, Ying Ying
    Contributors: 陳天進
    Chen, Ten Ging
    Chen, Ying Ying
    Keywords: 值分佈理論
    Value Distribution Theory
    Meromorphic Function
    Meromorphic Function of Class A
    Date: 2011
    Issue Date: 2012-04-17 10:27:45 (UTC+8)
    Abstract: 在這篇論文裡,我們探討 $\mathcal{A}$ 類半純函數的值分佈基本理論。我們證明了每一個 $\mathcal{A}$ 類半純函數最多有兩個重值,而這個結果是最佳的情形。進而,我們證明若一個 $\mathcal{A}$ 類半純函數 $f$ 與其導數 $f^{(k)}$ 共非零的複數值,則 $f\equiv f^{(k)}$。
    In this thesis, we study the basic theory of value distribution of meromorphic function of class $\mathcal{A}$. We prove that every meromorphic function of class $\mathcal{A}$ has at most two multiple values and the result is sharp. Also, we prove that if a meromorphic function $f$ of class $\mathcal{A}$ and its derivative $f^{(k)}$ share a non-zero complex value, then $f\equiv f^{(k)}$.
    Reference: [1] C.-T. Chuang and C.-C. Yang, Fix-points and factorization of meromorphic functions, World Scienti c Publishing Co. Inc., Teaneck, NJ, 1990. Translated from the Chinese.
    [2] G. Frank and G. Wei enborn, Meromorphe Funktionen, die mit einer ihrer Ableitungen Werte teilen, Complex Variables Theory Appl., 7 (1986), pp. 33{43.
    [3] F. Gross, Factorization of meromorphic functions, Mathematics Research Center, Naval Research Laboratory, Washington, D. C., 1972.
    [4] G. G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc. (2), 20 (1979), pp. 457{466.
    [5] , Meromorphic functions that share four values, Trans. Amer. Math. Soc., 277 (1983), pp. 545{567.
    [6] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
    [7] H. Milloux, Les fonctions m eromorphes et leurs d eriv ees. Extensions d'un th eor eme de M. R. Nevanlinna. Applications, Actualit es Sci. Ind., no. 888, Hermann et Cie., Paris, 1940.
    [8] R. Nevanlinna, Le th eor eme de Picard-Borel et la th eorie des fonctions m eromorphes, Chelsea Publishing Co., New York, 1974. Reprinting of the 1929 original.
    [9] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, vol. 557 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 2003.
    [10] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. Translated and revised from the 1982 Chinese original.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0987510031
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    003101.pdf688KbAdobe PDF735View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback