English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52049146      Online Users : 239
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/95624
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95624


    Title: 以二維度馬可夫鏈的排隊模型研究客戶服務中心之等候機制
    A queueing model of call center by two-dimensional Markov chain approach in a case study
    Authors: 黃瀚陞
    Contributors: 陸行
    黃瀚陞
    Keywords: 客戶服務中心
    排隊模型
    二維度馬可夫鏈
    Date: 2010
    Issue Date: 2016-05-09 16:39:28 (UTC+8)
    Abstract: 在這篇論文中,藉由一個二維度的馬可夫鏈,
    建立保護VIP線路同時允許重試現象的一般客戶線路的數學模型。
    我們提出一個融合階段演算法以處理此二維度的馬可夫鏈,並且提出管理成本函數以研究在客服中心中最適當的服務人員數目
    。藉由逼近法,找出一般顧客在重試群裡的平均等候時間和等候時間機率分配函數的上界與下界。
    數值結果說明逼近方法對於計算一個很大的系統時可以省下很多計算時間,而且不失準確性。
    最後,我們探討逼近法和實際解之間的誤差,數值結果也說明隨著系統容量或顧客到達率的增加,逼近法將更為準確。
    In this thesis, we model a call center with guard channel scheme for VIP calls and retrial phenomenon
    for regular calls by a 2-dimensional Markov chain.
    We present a phase merging algorithm to solve the 2-dimensional Markov chain and
    a managerial cost function corresponding to studying the optimum number of servers in a call center.
    Also we will obtain upper and lower bounds with probability distribution functions of waiting time by using approximation.
    Numerical results show the approximation can save computational time without losing precision in the case of a call center with
    large capacity. Moreover, errors of the approximation are discussed,
    and it shows that the approximation is more accurate when the capacity of system or the arrival rate is large.
    Abstract
    中文摘要
    List of Figures
    List of Tables
    1. Introduction
    2. System description
    2.1 A queueing model
    2.2 Waiting time
    2.3 Computation of stationary probability distribution
    3. Approximation and its computing procedure
    3.1 Approximation of pi-method
    3.2 Applications
    3.3 Errors between Approximation and pi-method
    4. Conclusion
    Appendix A
    Appendix B
    Bibliography
    Reference: [1] Abate J., Whitt W., Numberical inversion of Laplace transforms of probability
    distribution. ORSA. Journal on computing 7. 1995; 36-43.

    [2] Artalejo J.R., Gomez-corral A, Neuts MF., Numerical analysis of multiserver
    retrial queues operating under a full access policy. In: Latouche G. and Taylor
    P.(Eds), Advances in Algorithmic Methods for Stochastic Models. Notable
    Publications Inc., NJ. 2000; 1-19.

    [3] Artalejo J.R., Orlovsky D.S, Dudin A.N., Multiserver retrial model with variable
    number of active servers. Computer and Industrial Engineering. 2005;
    48(2); 273-288.

    [4] Chen B.P.K., Henderson S.G., Two Issues in Setting Call Centre Staffing Levels.
    Annals of Operations Research. 2001; 108; 157-192.

    [5] Choi B.D., Chang Y., Single server retrial queues with priority calls. Mathematical
    and Computer Modeling. 1999; 30(3); 7-32.

    [6] Choi B.D., Melikov A., Amir velibekov., A simple numerical approximation of
    joint probabilities of calls in service and calls in the retrial group in a picocell.
    Appl. Comput. Math. 7(2008); no.1; 21-30.

    [7] Korolyuk, V.S., Korolyuk, V.V., Stochastic models of systems. Kluwer Academic
    Pluishers, Boston, 2009.
    50

    [8] Liang, C.C., Hsu, P.Y., Leu, J.D., Luh, H., An effective approach for content
    delivery in an evolving intranet environment- a case study of the largest telecom
    company in Taiwan. Lect Notes Comp Sci. 2005; 3806: 740-49.

    [9] Liang, C.C., Wang, C.H., Luh, H., Hsu, P.Y., Disaster Avoidance Mechanism
    for Content-Delivering. Service, Copmputer and Oper Res. 2009; 36(1): 27-39.

    [10] Mushko V.V., Klimenok V.I., Ramakrishnan K.O., Krishnamoorthy A, Dudin
    A.N., Multiserver queue with addressed retrials. Annals of Operations Reserch.
    2006; 141(1); 283-301.

    [11] Matlab 7. The MathWorks, Inc.. 2009.

    [12] Servi L.D., Algorithmic solutions to two-dimensional birth-death processes with
    application to capacity planning. Telecommunication Systems. 2002; 21(2-4);
    205-212.

    [13] Ross S., A First Course in Probability. Sixth edition, by Prentice-Hall, Inc..
    2002.

    [14] Taha H.A., Operations Research an introduction. Seventh edition, by Pearson
    Education, Inc.. 2003.

    [15] Takayuki O., Analysis of a QBD process that depends on backgroumd QBD
    processes. Septemer, CMU-CS-04-163. 2004.
    Description: 碩士
    國立政治大學
    應用數學系
    967510091
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0967510091
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2547View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback