English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 111316/142225 (78%)
造訪人次 : 48396735      線上人數 : 716
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141618


    題名: 多重品質評估機制的樣品影像分類
    Sample image classification with multiple quality evaluation mechanism
    作者: 林庭漪
    Lin, Ting-Yi
    貢獻者: 羅崇銘
    Lo,Chung-Ming
    林庭漪
    Lin,Ting-Yi
    關鍵詞: 瑕疵檢測
    深度學習
    機器學習
    合成式學習
    集成式學習
    Defect detection
    Deep learning
    Machine learning
    Synthetic learning
    Ensemble learning
    日期: 2022
    上傳時間: 2022-09-02 15:00:17 (UTC+8)
    摘要: 德國提出工業4.0,其他國家進而也提出類似概念,融合實體與虛擬達到垂直與平行的整合,以智慧製造來實現工業4.0,其中,品質檢測在產品交付前占有重要的地位,為了快速且準確的全面檢測各種產品,基於影像辨識的高度自動化檢測是智慧製造中不可或缺的一環,本研究使用工廠實際量產中的6000張端子台零件樣本影像並建立一自動化人工智慧辨識模型。不同於過去文獻只使用單一分類器,本研究使用多重評估機制來建立辨識模型,透過紋理特徵擷取,形成機器學習模型,透過使用遷移式學習訓練不同卷積神經網路形成深度學習模型,並提出合成式學習,結合機器學習分類與深度學習分類的優點,同時評估使用機器學習、深度學習以及不同多重評估機制的比較。結果顯示以合成式學習中的Confidence進行多重評估機制的分類能將準確率提升最多,由96.00%提升至97.83%,集成式Bagging則是提供相對穩定的準確率提升,都比單一分類器提升0.7%左右,透過本研究得知,使用合成式學習與集成式學習建立的分類模型皆可達到提升準確率的目的,合成式學習在瑕疵檢測能夠達到最高準確率並實現智慧製造中的自動化。
    Not only Germany proposed Industry 4.0, but also other countries have proposed similar concepts. Industry 4.0 is realized by integrating physical and virtual to achieve vertical and parallel integration and smart manufacturing. Quality inspection plays an important role before product delivery. In order to quickly and accurately inspect all kinds of products, highly automated inspection based on image recognition is an indispensable part of smart manufacturing. This study uses 6000 sample images of printed circuit board (PCB) connectors from actual mass production in factories and builds an automated artificial intelligence recognition model. Unlike previous literature that only uses a single classifier, this study uses multiple evaluation mechanisms to build the recognition model, which forms a machine learning model through texture feature extraction and a deep learning model through training different convolutional neural networks using transfer learning. This study proposes synthetic learning, which combines the advantages of machine learning and deep learning, and evaluates the comparison of using machine learning, deep learning, and different multiple evaluation mechanisms. The results show that using Confidence in synthetic learning to classify multiple evaluation mechanisms can improve the accuracy rate the most, from 96.00% to 97.83%, while Bagging provides a relatively stable accuracy rate improvement, both of which are about 0.7% higher than that of a single classifier. The synthetic learning can achieve the highest accuracy rate in defect detection and make the automation in smart manufacturing become practical.
    參考文獻: Agarwal, K., & Shivpuri, R. (2015). On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. Journal of Intelligent Manufacturing, 26(4), 785-800. https://doi.org/10.1007/s10845-013-0834-y
    Aghdam, S. R., Amid, E., & Imani, M. F. (2012, 18-20 July 2012). A fast method of steel surface defect detection using decision trees applied to LBP based features. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA),
    Allee, V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of intellectual capital.
    Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on systems, man, and cybernetics, 19(5), 1264-1274.
    Amid, E., Aghdam, S. R., & Amindavar, H. (2012). Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection. International Journal of Electrical and Computer Engineering, 6(7), 693-697.
    Argyriou, A., Maurer, A., & Pontil, M. (2008, 2008//). An Algorithm for Transfer Learning in a Heterogeneous Environment. Machine Learning and Knowledge Discovery in Databases, Berlin, Heidelberg.
    Bakır, B., Batmaz, İ., Güntürkün, F., İpekçi, İ. A., Köksal, G., & Özdemirel, N. (2006). Defect cause modeling with decision tree and regression analysis. World Acad Sci Eng Technoly, 24, 1-4.
    Ballard, D. H., & Brown, C. M. (1982). Computer vision. englewood cliffs. J: Prentice Hall.
    Bhandari, S. H., Deshpande, S., & Deshpande, S. (2008). A simple approach to surface defect detection. 2008 IEEE Region, 10, 8-10.
    Boumahdi, M., Dron, J.-P., Rechak, S., & Cousinard, O. (2010). On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree. Expert Systems with Applications, 37(8), 5887-5894. https://doi.org/https://doi.org/10.1016/j.eswa.2010.02.017
    Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. https://doi.org/https://doi.org/10.1016/S0260-8774(03)00183-3
    Choi, K., Koo, K., & Lee, J. S. (2006, 18-21 Oct. 2006). Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System. 2006 SICE-ICASE International Joint Conference,
    Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY. Sensors, 20(5). https://doi.org/10.3390/s20051459
    Damacharla, P., A. R. M, V., Ringenberg, J., & Javaid, A. Y. (2021, 19-21 May 2021). TLU-Net: A Deep Learning Approach for Automatic Steel Surface Defect Detection. 2021 International Conference on Applied Artificial Intelligence (ICAPAI),
    DARPA Information Processing Technology Office. (2005). Transfer Learning Proposer Information Pamphlet (PIP) for Broad Agency Announcement 05-29. http://logic.stanford.edu/tl/TransferLearningPIP.pdf
    Diaz, R., Faus, G., Blasco, M., Blasco, J., & Moltó, E. (2000). The application of a fast algorithm for the classification of olives by machine vision. Food Research International, 33(3), 305-309. https://doi.org/https://doi.org/10.1016/S0963-9969(00)00041-7
    Durden, J. M., Hosking, B., Bett, B. J., Cline, D., & Ruhl, H. A. (2021). Automated classification of fauna in seabed photographs: The impact of training and validation dataset size, with considerations for the class imbalance. Progress in Oceanography, 196, 102612. https://doi.org/https://doi.org/10.1016/j.pocean.2021.102612
    Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the Boundaries.
    Fadli, V. F., & Herlistiono, I. O. (2020). Steel Surface Defect Detection using Deep Learning. Int. J. Innov. Sci. Res. Technol, 5, 244-250.
    Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer graphics and image processing, 4(2), 172-179.
    Ghosh, B., Bhuyan, M. K., Sasmal, P., Iwahori, Y., & Gadde, P. (2018, 7-9 Dec. 2018). Defect Classification of Printed Circuit Boards based on Transfer Learning. 2018 IEEE Applied Signal Processing Conference (ASPCON),
    Grosan, C., & Abraham, A. (2011). Intelligent systems. Springer.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Hemdan, E. E.-D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
    Henning, K. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
    Hongbin, J., Murphey, Y. L., Jinajun, S., & Tzyy-Shuh, C. (2004, 26-26 Aug. 2004). An intelligent real-time vision system for surface defect detection. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
    Hou, D., Liu, T., Pan, Y., & Hou, J. (2019, 7-9 Jan. 2019). AI on edge device for laser chip defect detection. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
    Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 39(15), 5682-5689. https://doi.org/10.1080/07391102.2020.1788642
    Jiang, B. C., Wang, C. C., & Chen, P. L. (2004). Logistic regression tree applied to classify PCB golden finger defects. The International Journal of Advanced Manufacturing Technology, 24(7), 496-502. https://doi.org/10.1007/s00170-002-1500-2
    Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0 -- Securing the Future of German Manufacturing Industry. http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
    Khanh, V., Hua, K. A., & Tavanapong, W. (2003). Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1045-1049. https://doi.org/10.1109/TKDE.2003.1209021
    Kibira, D., Morris, K. C., & Kumaraguru, S. (2016). Methods and Tools for Performance Assurance of Smart Manufacturing Systems. Journal of research of the National Institute of Standards and Technology, 121, 282-313. https://doi.org/10.6028/jres.121.013
    Kim, J., Kim, S., Kwon, N., Kang, H., Kim, Y., & Lee, C. (2018, 30 April-3 May 2018). Deep learning based automatic defect classification in through-silicon Via process: FA: Factory automation. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
    Kumar, A., & Jain, M. (2020). Why Ensemble Techniques Are Needed. In A. Kumar & M. Jain (Eds.), Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases (pp. 1-10). Apress. https://doi.org/10.1007/978-1-4842-5940-5_1
    Kumaresan, S., Aultrin, K. S. J., Kumar, S. S., & Anand, M. D. (2021). Transfer Learning With CNN for Classification of Weld Defect. IEEE Access, 9, 95097-95108. https://doi.org/10.1109/ACCESS.2021.3093487
    Kyoung Min, K., Byung Jin, L., Kyoung, L., & Gwi Tae, P. (1999, 22-25 Aug. 1999). Design of a binary decision tree using the genetic algorithm and K-means algorithm for recognition of the defect patterns of cold mill strip. FUZZ-IEEE`99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315),
    Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. Proc. VLDB Endow., 5(12), 2032–2033. https://doi.org/10.14778/2367502.2367572
    Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
    Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
    Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008
    Lee, S. M., Lee, D., & Kim, Y. S. (2019). The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1), 4. https://doi.org/10.1186/s40887-019-0029-5
    Li, B.-h., Hou, B.-c., Yu, W.-t., Lu, X.-b., & Yang, C.-w. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885
    Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C.-F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless Networks, 23(1), 23-41. https://doi.org/10.1007/s11276-015-1133-7
    Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8). https://doi.org/10.3390/s18082674
    Lien, P. C., & Zhao, Q. (2018, 12-15 Aug. 2018). Product Surface Defect Detection Based on Deep Learning. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
    Lu, T., Han, B., Chen, L., Yu, F., & Xue, C. (2021). A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning. Scientific Reports, 11(1), 15824. https://doi.org/10.1038/s41598-021-95218-w
    Nakashima, K., Nagata, F., Ochi, H., Otsuka, A., Ikeda, T., Watanabe, K., & Habib, M. K. (2021). Detection of minute defects using transfer learning-based CNN models. Artificial Life and Robotics, 26(1), 35-41. https://doi.org/10.1007/s10015-020-00618-2
    Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563-597. https://doi.org/10.1007/s10844-015-0368-1
    Narayanan, B. N., Beigh, K., Loughnane, G., & Powar, N. (2019). Support vector machine and convolutional neural network based approaches for defect detection in fused filament fabrication. Applications of Machine Learning,
    NIST, N. I. o. S. a. T. (2021). Product Definitions for Smart Manufacturing. https://www.nist.gov/programs-projects/product-definitions-smart-manufacturing
    Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
    Patel, K. K., Kar, A., Jha, S. N., & Khan, M. A. (2012). Machine vision system: a tool for quality inspection of food and agricultural products. Journal of Food Science and Technology, 49(2), 123-141. https://doi.org/10.1007/s13197-011-0321-4
    Patel, S. V., & Jokhakar, V. N. (2016, 15-17 Dec. 2016). A random forest based machine learning approach for mild steel defect diagnosis. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC),
    Pernkopf, F. (2004). Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Analysis and Applications, 7(3), 333-342. https://doi.org/10.1007/BF02683998
    Petrou, M. M., & Petrou, C. (2010). Image processing: the fundamentals. John Wiley & Sons.
    ping Tian, D. (2013). A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385-396.
    Porter, M. E., & Porter, M. E. (1983). Cases in competitive strategy / Michael E. Porter. Free Press.
    Qiang, Z., He, L., & Dai, F. (2019, 2019//). Identification of Plant Leaf Diseases Based on Inception V3 Transfer Learning and Fine-Tuning. Smart City and Informatization, Singapore.
    Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532-538.
    Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171-182. https://doi.org/10.1109/TSM.2019.2904306
    Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder, R. M., & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080. https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.09.031
    Shen, Z., & Yu, J. (2019, 15-18 Dec. 2019). Wafer Map Defect Recognition Based on Deep Transfer Learning. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
    Su, K., Zhao, Q., & Lien, P. C. (2019, 5-8 Aug. 2019). Product Surface Defect Detection Based on CNN Ensemble with Rejection. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
    Sun, C., & Wee, W. G. (1983). Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics, and Image Processing, 23(3), 341-352.
    Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI conference on artificial intelligence,
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Thalagala, S., & Walgampaya, C. (2021, 16-16 Sept. 2021). Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE),
    Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Lévy, N., Sequeira, J., & Mari, J.-L. (2009). Texture indexes and gray level size zone matrix. Application to cell nuclei classification. 10th International Conference on Pattern Recognition and Information Processing, PRIP 2009,
    van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104. https://doi.org/10.1158/0008-5472.CAN-17-0339
    van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104-e107. https://doi.org/10.1158/0008-5472.Can-17-0339
    Wagner, S. (2014, 7-10 July 2014). Combination of convolutional feature extraction and support vector machines for radar ATR. 17th International Conference on Information Fusion (FUSION),
    Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039-2047. https://doi.org/10.1109/TII.2017.2670505
    Wang, Y., Xia, H., Yuan, X., Li, L., & Sun, B. (2018). Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimedia Tools and Applications, 77(13), 16741-16770. https://doi.org/10.1007/s11042-017-5238-0
    Wu, H., Zhang, X., Xie, H., Kuang, Y., & Ouyang, G. (2013). Classification of Solder Joint Using Feature Selection Based on Bayes and Support Vector Machine. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(3), 516-522. https://doi.org/10.1109/TCPMT.2012.2231902
    Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75-86. https://doi.org/https://doi.org/10.1016/j.rcim.2011.07.002
    Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24). https://doi.org/10.3390/ma13245755
    Zhang, H., Chen, Z., Zhang, C., Xi, J., & Le, X. (2019, 22-26 Aug. 2019). Weld Defect Detection Based on Deep Learning Method. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE),
    Zhang, Z., Yang, Z., Ren, W., & Wen, G. (2019). Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum. Journal of Manufacturing Processes, 42, 51-59. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.04.023
    Zhou, J. (2015). Intelligent Manufacturing——Main Direction of" Made in China 2025". China Mechanical Engineering, 26(17), 2273.
    Zhu, H., Ge, W., & Liu, Z. (2019). Deep Learning-Based Classification of Weld Surface Defects. Applied Sciences, 9(16). https://doi.org/10.3390/app9163312
    Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/jproc.2020.3004555
    町洋企業股份有限公司. (2021). 產業應用. https://www.dinkle.com/tw/application/application.php
    描述: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    109155019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109155019
    資料類型: thesis
    DOI: 10.6814/NCCU202201201
    顯示於類別:[圖書資訊與檔案學研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    501901.pdf3263KbAdobe PDF279檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋