English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118575/149625 (79%)
Visitors : 79476192      Online Users : 2500
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158489


    Title: 具情緒識別與反應能力之AI虛擬導覽員於元宇宙數位策展成效的影響研究
    A Study on the Effects of an AI Virtual Tour Guide with Emotion Recognition and Response Capabilities on Metaverse Digital Curation Performance
    Authors: 張添輔
    Chang, Tien-Fu
    Contributors: 陳志銘
    Chen, Chih-Ming
    張添輔
    Chang, Tien-Fu
    Keywords: 元宇宙數位策展
    AI虛擬導覽員
    情緒辨識
    情緒智力
    語音導覽
    Metaverse Digital Curation
    AI Virtual Tour Guide
    Emotion Recognition
    Emotional intelligence
    Audio Guide
    Date: 2025
    Issue Date: 2025-08-04 14:03:34 (UTC+8)
    Abstract: 隨著數位科技與元宇宙技術的快速發展,數位策展已成為圖書館、博物館,以及美術館等文化機構的重要文化傳播模式,元宇宙的擬真場域更進一步提供觀展者沉浸式的虛擬互動空間,使其能透過虛擬化身與展品、角色,抑或他人互動,可突破時間與空間的限制,進而提升觀展體驗。文化機構亦逐漸導入具互動性的數位導覽系統,尤其是結合自然語言處理與機器學習技術的AI虛擬導覽員,進而提升觀展者的學習體驗。此外,情緒亦在觀展過程中扮演關鍵角色,觀展者可能因展覽內容,抑或個人情感狀態產生情緒反應,而這些情緒將影響其對於展覽的感受、理解,以及記憶深度。因此,本研究旨在開發應用於元宇宙數位策展平台的「具情緒識別與反應能力之AI虛擬導覽員」,其可透過自然語言問答與語音回饋,提供具同理心的回覆內容,進而提升觀展學習者的情感共鳴與知識內化。
    本研究採用真實驗研究法,選取高中在校以及應屆畢業生共計60名,並隨機分派各30名受試者,分別使用有/無「情緒辨識與反應能力之AI虛擬導覽員」搭配語音輔以進行「白色恐怖」的元宇宙數位策展,並據此探討此兩種不同觀展學習模式在學習成效感受、內在學習動機、沉浸經驗感受、科技接受度,以及情感投入上是否具有顯著的差異。此外,亦進一步探討高低不同情緒智力觀展學習者使用這兩種不同觀展學習模式,在學習成效感受、內在學習動機、沉浸經驗感受、科技接受度,以及情感投入上是否具有顯著的差異。最後,也透過與AI虛擬導覽員之問答互動內容與提問行為分析,以及半結構式訪談蒐集受試者在觀展過程中的學習互動歷程、想法、感受,以及建議。
    研究結果發現,對於低情緒智力觀展學習者而言,使用「不具情緒辨識與反應能力」之「AI虛擬導覽員」輔以進行「白色恐怖」元宇宙數位策展之觀展學習模式,有顯著較佳的學習成效感受,但使用「具情緒辨識與反應能力」之「AI虛擬導覽員」觀展模式能顯著減緩觀展學習的焦慮與壓力。至於其他面向則兩種觀展學習模式均未達顯著的差異。
    根據訪談結果,多數觀展學習者認為搭配「具情緒識別與反應能力之AI虛擬導覽員」輔以觀展學習,有助於加深對白色恐怖歷史事件的理解與記憶。這種具同理心的互動模式,有助於提升觀展者之參與意願與投入感,進一步強化其觀展的學習成效,特別是在情緒支持方面發揮了積極作用。此外,觀展學習者普遍肯定情緒識別功能所帶來的擬真感受與情緒支持,尤其當AI虛擬導覽員能配合觀展情境調整語氣與回應時,更能激發觀展學習者的情感覺察與主動學習意願,進而提升其知識吸收的深度。
    本研究根據研究結果針對「具情緒辨識與反應能力之AI虛擬導覽員」輔以進行元宇宙數位策展之優化建議,也提供未來可繼續延伸及擴展的研究方向,以作為實質策展與學術研究之參考。
    With the rapid advancement of digital technologies and metaverse-related innovations, digital curation has emerged as a vital mode of cultural dissemination for institutions such as libraries, museums, and art galleries. The immersive environments enabled by the metaverse offer visitors interactive virtual spaces that transcend the limitations of time and space, allowing them to engage with exhibits, characters, and other users through their virtual avatars. In response to these developments, cultural institutions have increasingly adopted interactive digital guide systems—most notably, AI-powered virtual tour guides that integrate natural language processing and machine learning technologies—to enhance the educational experiences of exhibition visitors. Moreover, emotion plays a critical role in the exhibition experience, as visitors may exhibit emotional responses triggered either by the exhibition content or by their own affective states. These emotional reactions significantly influence how they perceive, understand, and remember the exhibition. Accordingly, this study aims to develop an AI virtual tour guide with emotion recognition and response capabilities for application within a metaverse-based digital curation platform. Through natural language dialogue and voice-based feedback, the system provides empathetic responses, thereby fostering emotional resonance and supporting deeper knowledge internalization among exhibition learners.
    This study employed a true experimental research design involving a total of 60 participants, comprising current and recently graduated high school students. Participants were randomly assigned into two groups of 30 individuals each. One group experienced a metaverse-based digital curation of the “White Terror” exhibition assisted by an AI virtual tour guide equipped with emotion recognition and response capabilities alongside voice interaction, while the other group engaged with the same exhibition without such AI emotional features. The study aimed to examine whether these two different exhibition-based learning models yielded significant differences in perceived learning effectiveness, intrinsic learning motivation, immersive experience, technology acceptance, and emotional engagement. Furthermore, the study investigated whether learners with varying levels of emotional intelligence demonstrated significant differences in these five dimensions when interacting with the two learning models. Finally, the research incorporated an analysis of user–AI interaction content and questioning behavior, as well as data collected through semi-structured interviews to explore participants’ learning processes, perceptions, emotional responses, and suggestions during the exhibition experience.
    The results of the study revealed that, for exhibition learners with low emotional intelligence, engaging with the “White Terror” metaverse-based digital curation using an AI virtual tour guide without emotion recognition and response capabilities led to significantly higher perceived learning effectiveness. However, the use of an AI virtual tour guide with emotion recognition and response capabilities was found to significantly alleviate learners’ anxiety and stress during the exhibition experience. For other dimensions—namely intrinsic learning motivation, immersive experience, technology acceptance, and emotional engagement—no statistically significant differences were observed between the two learning models.
    According to the interview findings, most exhibition learners perceived that engaging with the exhibition through an AI virtual tour guide equipped with emotion recognition and response capabilities enhanced their understanding and memory of the historical events related to the White Terror. This empathetic mode of interaction was found to increase participants' willingness to engage and their sense of involvement, thereby reinforcing the effectiveness of their learning experience—particularly in terms of emotional support. Moreover, participants generally affirmed the value of the emotion recognition function in enhancing the sense of realism and emotional resonance. Notably, when the AI virtual guide adapted its tone and responses to match the exhibition context, it further stimulated learners’ emotional awareness and motivation for active learning, contributing to a deeper absorption of knowledge.
    Based on the research findings, this study offers recommendations for optimizing the use of AI virtual tour guides with emotion recognition and response capabilities in metaverse-based digital curation. Additionally, it proposes future research directions that can be further explored and expanded, serving as a valuable reference for both practical curation initiatives and academic inquiry.
    Reference: 中文文獻
    孫育智(2004)。青少年的依附品質、情緒智力與適應之關係。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/93pmg8
    吳紹群. (2018). 檔案數位互動展之觀眾滿意度與教育效果研究:以「同安潮新媒體藝術展」為例. 圖資與檔案學刊, 3, 43–74. https://doi.org/10.6575/JILA.201812_(93).0003
    英文文獻
    Ali, M. (2024). AI ChatGPT Applications in Libraries—Challenges and Opportunities. Bilgi ve Belge Araştırmaları Dergisi / The Journal of Information and Documentation Studies, 0(20), 18–26. https://doi.org/10.26650/bba.2023.20.1364582
    Alm, C. O., Roth, D., & Sproat, R. (2005). Emotions from text: Machine learning for text-based emotion prediction. Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, 579–586. https://doi.org/10.3115/1220575.1220648
    Al-Zubaide, H., & Issa, A. A. (2011). OntBot: Ontology based chatbot. International Symposium on Innovations in Information and Communications Technology, 7–12. https://doi.org/10.1109/ISIICT.2011.6149594
    Andrade-Arenas L., Yactayo-Arias C., & Pucuhuayla-Revatta F. (2024). Therapy and Emotional Support through a Chatbot. | EBSCOhost. https://doi.org/10.3991/ijoe.v20i02.45377
    Ashfaque, M. W. (2022). Analysis of Different Trends in Chatbot Designing and Development: A Review. ECS Transactions, 107(1), 7215. https://doi.org/10.1149/10701.7215ecst
    Augustyniak, R. A., Ables, A. Z., Guilford, P., Lujan, H. L., Cortright, R. N., & DiCarlo, S. E. (2016). Intrinsic Motivation: An Overlooked Component for Student Success. Advances in Physiology Education, 40(4), 465–466. https://doi.org/10.1152/advan.00072.2016
    Bar-On, R. (2000). Emotional and social intelligence: Insights from the Emotional Quotient Inventory. In R. Bar-On & J. D. A. Parker (Eds.), The handbook of emotional intelligence: Theory, development, assessment, and application at home, school, and in the workplace (pp. 363–388). Jossey-Bass/Wiley.
    Behera, S. K., & M Nayak, M. (2020). Natural Language Processing for Text and Speech Processing: A Review Paper (SSRN Scholarly Paper 3878634). Social Science Research Network. https://papers.ssrn.com/abstract=3878634
    Behzadi, F. (2015). Natural Language Processing and Machine Learning: A Review. 13(9).
    Ben-Zion, Z., Witte, K., Jagadish, A. K., Duek, O., Harpaz-Rotem, I., Khorsandian, M.-C., Burrer, A., Seifritz, E., Homan, P., Schulz, E., & Spiller, T. R. (2025). Assessing and alleviating state anxiety in large language models. Npj Digital Medicine, 8(1), 132. https://doi.org/10.1038/s41746-025-01512-6
    Bertens, L., & Polak, S. (2019). Using Museum Audio Guides in the Construction of Prosthetic Memory. JOURNAL OF CONSERVATION AND MUSEUM STUDIES, 17(1). https://doi.org/10.5334/jcms.182
    Bhargava, R. (2012). How Curation Could Save the Internet (and Your Brand). Communication World, 29(1), 20–23.
    Bickmore, T. W., Vardoulakis, L. M. P., & Schulman, D. (2013). Tinker: A relational agent museum guide. Autonomous Agents and Multi-Agent Systems, 27(2), 254–276. https://doi.org/10.1007/s10458-012-9216-7
    Bilquise, G., Ibrahim, S., & Shaalan, K. (2022). Emotionally Intelligent Chatbots: A Systematic Literature Review. Human Behavior and Emerging Technologies, 2022(1), 9601630. https://doi.org/10.1155/2022/9601630
    Biswas, S. S. (2023). Role of Chat GPT in Public Health. Annals of Biomedical Engineering, 51(5), 868–869. https://doi.org/10.1007/s10439-023-03172-7
    Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638–663. https://doi.org/10.1002/acp.1473
    Brown, S. (2007). A Critique of Generic Learning Outcomes. Journal of Learning Design, 2(2), 22–30.
    Buragohain, D., Meng, Y., Deng, C., Li, Q., & Chaudhary, S. (2024). Digitalizing cultural heritage through metaverse applications: Challenges, opportunities, and strategies. Heritage Science, 12(1), 295. https://doi.org/10.1186/s40494-024-01403-1
    Burggräf, P., Beyer, M., Ganser, J., Adlon, T., Müller, K., Riess, C., Zollner, K., Sassmannshausen, T., & Kammerer, V. (2022). Preferences for Single-Turn vs. Multiturn Voice Dialogs in Automotive Use Cases-Results of an Interactive User Survey in Germany. IEEE ACCESS, 10, 55020–55033. https://doi.org/10.1109/ACCESS.2022.3174592
    Cantor, G. (2015). Emotional Reactions to the Great Exhibition of 1851. JOURNAL OF VICTORIAN CULTURE, 20(2), 230–245. https://doi.org/10.1080/13555502.2015.1023686
    Chaix, B., Bibault, J., Pienkowski, A., Delamon, G., Guillemassé, A., Nectoux, P., & Brouard, B. (2019). When Chatbots Meet Patients: One-Year Prospective Study of Conversations Between Patients With Breast Cancer and a Chatbot. JMIR CANCER, 5(1). https://doi.org/10.2196/12856
    Chang, Y.-C., & Hsing, Y.-C. (2021). Emotion-infused deep neural network for emotionally resonant conversation. Applied Soft Computing, 113, 107861. https://doi.org/10.1016/j.asoc.2021.107861
    Chen, C.-A., & Lai, H.-I. (2021). Application of augmented reality in museums – Factors influencing the learning motivation and effectiveness. Science Progress, 104(3_suppl), 00368504211059045. https://doi.org/10.1177/00368504211059045
    Chen, C.-M., Li, M.-C., & Chen, T.-C. (2018). A Collaborative Reading Annotation System with Gamification Mechanisms to Improve Reading Performance. 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI), 188–193. https://doi.org/10.1109/IIAI-AAI.2018.00044
    Chen, X. (2023). ChatGPT and Its Possible Impact on Library Reference Services. Internet Reference Services Quarterly, 27(2), 121–129. https://doi.org/10.1080/10875301.2023.2181262
    Cheng, M.-T., She, H.-C., & Annetta, L. a. (2015). Game immersion experience: Its hierarchical structure and impact on game-based science learning. Journal of Computer Assisted Learning, 31(3), 232–253. https://doi.org/10.1111/jcal.12066
    Chhabra, S., Kaushal, V., & Girija, S. (2024). Determining the causes of user frustration in the case of conversational chatbots. Behaviour & Information Technology, 0(0), 1–19. https://doi.org/10.1080/0144929X.2024.2362956
    Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of Individual Differences in Visual Versus Verbal Information Processing. Journal of Consumer Research, 12(2), 125–134. https://doi.org/10.1086/208501
    Chin, H., Song, H., Baek, G., Shin, M., Jung, C., Cha, M., Choi, J., & Cha, C. (2023). The Potential of Chatbots for Emotional Support and Promoting Mental Well-Being in Different Cultures: Mixed Methods Study. Journal of Medical Internet Research, 25(1), e51712. https://doi.org/10.2196/51712
    Constantopoulos, P., & Dallas, C. (2008). Aspects of a digital curation agenda for cultural heritage.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
    Denecke, K., Vaaheesan, S., & Arulnathan, A. (2021). A Mental Health Chatbot for Regulating Emotions (SERMO)—Concept and Usability Test. IEEE Transactions on Emerging Topics in Computing, 9(3), 1170–1182. IEEE Transactions on Emerging Topics in Computing. https://doi.org/10.1109/TETC.2020.2974478
    Doherty, D., & Curran, K. (2019). Chatbots for online banking services. WEB INTELLIGENCE, 17(4), 327–342. https://doi.org/10.3233/WEB-190422
    Dumitrescu, G., Lepadatu, C., & Ciurea, C. (2014). Creating Virtual Exhibitions for Educational and Cultural Development. Informatica Economica, 18(1/2014), 102–110. https://doi.org/10.12948/issn14531305/18.1.2014.09
    Eftekhari, F., Mannan, M., & Torres, C. (2025). Bother Me: Understanding Learner Perceptions and Behaviors with Virtual Users in Interview Training. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION. https://doi.org/10.1080/10447318.2025.2482736
    Ehtesham-Ul-Haque, M., D’Rozario, J., Adnin, R., Utshaw, F., Tasneem, F., Shefa, I., & Al Islam, A. (2024). EmoBot: Artificial emotion generation through an emotional chatbot during general-purpose conversations. COGNITIVE SYSTEMS RESEARCH, 83. https://doi.org/10.1016/j.cogsys.2023.101168
    Elmaadaway, M., El-Naggar, M., & Abouhashesh, M. (2025). Improving Primary School Students’ Oral Reading Fluency Through Voice Chatbot-Based AI. JOURNAL OF COMPUTER ASSISTED LEARNING, 41(2). https://doi.org/10.1111/jcal.70019
    Elyoseph, Z., Hadar-Shoval, D., Asraf, K., & Lvovsky, M. (2023). ChatGPT outperforms humans in emotional awareness evaluations. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1199058
    Fatahi, S., Vassileva, J., & Roy, C. K. (2024). Comparing emotions in ChatGPT answers and human answers to the coding questions on Stack Overflow. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1393903
    Forkosh Baruch, A., & Gadot, R. (2021). Social Curation Experience: Towards Authentic Learning in Preservice Teacher Training. Technology, Knowledge and Learning, 26(1), 105–122. https://doi.org/10.1007/s10758-020-09449-3
    Frost, M., Towne-Anderson, C., & Ferguson, K. (2019). The Positive Side of Eliciting Negative Emotions: Survey Results of Visitor Responses to a Library Exhibit. RBM: A Journal of Rare Books, Manuscripts, and Cultural Heritage, 20(2), 84. https://doi.org/10.5860/rbm.20.2.84
    Galuk, M. B. (2018). Conversations with Art: The use of chatbots in museums. https://www.academia.edu/66758599/Conversations_with_Art_The_use_of_chatbots_in_museums
    Gan, W., Ouyang, J., She, G., Xue, Z., Zhu, L., Lin, A., Mou, W., Jiang, A., Qi, C., Cheng, Q., Luo, P., Li, H., & Zheng, X. (2025). ChatGPT’s role in alleviating anxiety in total knee arthroplasty consent process: A randomized controlled trial pilot study. International Journal of Surgery, 111(3), 2546. https://doi.org/10.1097/JS9.0000000000002223
    Goleman, D. (1995). Emotional intelligence. New York: Bantam Books.
    Graham, C., & Stough, R. (2025). Consumer perceptions of AI chatbots on Twitter (X) and Reddit: An analysis of social media sentiment and interactive marketing strategies. JOURNAL OF RESEARCH IN INTERACTIVE MARKETING. https://doi.org/10.1108/JRIM-05-2024-0237
    Grammer, K., & Oberzaucher, E. (2006). The Reconstruction of Facial Expressions in Embodied Systems.
    Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y. K., Luo, F., Xiong, Y., & Liang, W. (2024). DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence (arXiv:2401.14196). arXiv. https://doi.org/10.48550/arXiv.2401.14196
    Hajba, A.-M. (2019). ‘It’s a Long Way to Tipperary’: Using an estate collection to develop an online presence. Archives and Records, 40(1), 55–72. https://doi.org/10.1080/23257962.2019.1567306
    Hamdoun, S., Monteleone, R., Bookman, T., & Michael, K. (2023). AI-Based and Digital Mental Health Apps: Balancing Need and Risk. IEEE TECHNOLOGY AND SOCIETY MAGAZINE, 42(1), 25–36. https://doi.org/10.1109/MTS.2023.3241309
    Haristiani, N. (2019). Artificial Intelligence (AI) Chatbot as Language Learning Medium: An inquiry. Journal of Physics: Conference Series, 1387(1), 012020. https://doi.org/10.1088/1742-6596/1387/1/012020
    Herther, N. K. (2012). Content Curation. Searcher, 20(7), 30–41.
    Higgins, S. (2018). Digital curation: The development of a discipline within information science. Journal of Documentation, 74(6), 1318–1338. https://doi.org/10.1108/JD-02-2018-0024
    Hu, J. (2024). Individually Integrated Virtual/Augmented Reality Environment for Interactive Perception of Cultural Heritage. ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE, 17(1). https://doi.org/10.1145/3631145
    Hutchinson, R., & Eardley, A. (2021). Inclusive museum audio guides: 「guided looking」 through audio description enhances memorability of artworks for sighted audiences. MUSEUM MANAGEMENT AND CURATORSHIP, 36(4), 427–446. https://doi.org/10.1080/09647775.2021.1891563
    Hwang, Y. (2023). When makers meet the metaverse: Effects of creating NFT metaverse exhibition in maker education. Computers & Education, 194, 104693. https://doi.org/10.1016/j.compedu.2022.104693
    Ivanov, R. (2023). ExhibitXplorer: Enabling Personalized Content Delivery in Museums Using Contextual Geofencing and Artificial Intelligence. ISPRS International Journal of Geo-Information, 12(10), 434. https://doi.org/10.3390/ijgi12100434
    Jafarpour, S., & Burges, C. J. C. (2010). Filter, Rank, and Transfer the Knowledge: Learning to Chat. https://www.microsoft.com/en-us/research/publication/filter-rank-and-transfer-the-knowledge-learning-to-chat/
    Katsantonis, I., McLellan, R., & Torres, P. E. (2023). Unraveling the complexity of the associations between students’ science achievement, motivation, and teachers’ feedback. Frontiers in Psychology, 14, 1124189. https://doi.org/10.3389/fpsyg.2023.1124189
    Kim, H., Yang, H., Shin, D., & Lee, J. (2022). Design principles and architecture of a second language learning chatbot. LANGUAGE LEARNING & TECHNOLOGY, 26(1).
    Kim, S. (2018). Virtual exhibitions and communication factors. Museum Management and Curatorship, 33(3), 243–260. https://doi.org/10.1080/09647775.2018.1466190
    Kim, S., & Hong, S. (2020). How Virtual Exhibition Presentation Affects Visitor Communication and Enjoyment: An Exploration of 2D versus 3D. The Design Journal, 23(5), 677–696. https://doi.org/10.1080/14606925.2020.1806580
    Kolbe, D. L. M., & Brendel, D. A. B. (2019). Diederich, S., Brendel, A.B., & Kolbe, L.M. (2019). On Conversational Agents in Information Systems Research: Analyzing the Past to Guide Future Work. In Proceedings of Internationale Tagung Wirtschaftsinformatik, Siegen, Germany.
    Kollöffel, B. (2012). Exploring the relation between visualizer–verbalizer cognitive styles and performance with visual or verbal learning material. Computers & Education, 58(2), 697–706. https://doi.org/10.1016/j.compedu.2011.09.016
    Krause, A. E., & Davidson, J. W. (2022). An exploratory study of historical representations of love in an art gallery exhibition. Psychology of Aesthetics, Creativity, and the Arts, 16(3), 455–467. https://doi.org/10.1037/aca0000391
    Laing, J. H., & Frost, W. (2019). Presenting narratives of empathy through dark commemorative exhibitions during the Centenary of World War One. Tourism Management, 74, 190–199. https://doi.org/10.1016/j.tourman.2019.03.007
    Lake-Hammond, A., & Waite, N. (2010). Exhibition Design: Bridging the Knowledge Gap. The Design Journal, 13(1), 77–98. https://doi.org/10.2752/146069210X12580336766400
    Lane, R. D., Quinlan, D. M., Schwartz, G. E., Walker, P. A., & Zeitlin, S. B. (1990). The Levels of Emotional Awareness Scale: A cognitive-developmental measure of emotion. Journal of Personality Assessment, 55(1–2), 124–134. https://doi.org/10.1080/00223891.1990.9674052
    Latham, K. (2022). Infecting Museums with Joy: Seven Ways. LIBRARY TRENDS, 70(4), 616–634. https://doi.org/10.1353/lib.2022.0022
    Legrenzi, L., & Troilo, G. (2005). The Impact of Exhibit Arrangement on Visitors’ Emotions: A Study at the Victoria & Albert Museum.
    Li, X., Yu, R., & Su, X. (2021). Environmental Beliefs and Pro-Environmental Behavioral Intention of an Environmentally Themed Exhibition Audience: The Mediation Role of Exhibition Attachment. SAGE OPEN, 11(2). https://doi.org/10.1177/21582440211027966
    Lieto, A., Pozzato, G., Striani, M., Zoia, S., & Damiano, R. (2023). DEGARI 2.0: A diversity-seeking, explainable, and affective art recommender for social inclusion. COGNITIVE SYSTEMS RESEARCH, 77, 1–17. https://doi.org/10.1016/j.cogsys.2022.10.001
    Lilian, A. (2022). Motivational beliefs, an important contrivance in elevating digital literacy among university students. Heliyon, 8(12), e11913. https://doi.org/10.1016/j.heliyon.2022.e11913
    Lin, H., Pryor, M. (2020). A Motivational 3D EdTech in Online Education: Digital Exhibition Space. In: Cheung, S., Li, R., Phusavat, K., Paoprasert, N., Kwok, L. (eds) Blended Learning. Education in a Smart Learning Environment. ICBL 2020. Lecture Notes in Computer Science(), vol 12218. Springer, Cham. https://doi.org/10.1007/978-3-030-51968-1_15
    Liu, C., & Chang, S. (2021). A Pilot Tool of the Virtual Scenario Initial Dementia Cognitive Screening (VSIDCS) with a Cultural Exhibition for Improving the Standard Traditional Test. HEALTHCARE, 9(9). https://doi.org/10.3390/healthcare9091160
    Liu, T., Giorgi, S., Aich, A., Lahnala, A., Curtis, B., Ungar, L., & Sedoc, J. (2025). The Illusion of Empathy: How AI Chatbots Shape Conversation Perception. Proceedings of the AAAI Conference on Artificial Intelligence, 39(13), Article 13. https://doi.org/10.1609/aaai.v39i13.33569
    Lozzi, R. (2016). THE NEW TABLET FOR THE FRUITION AND MUSEUM ACCESSIBILITY. ARCHEOMATICA-TECNOLOGIE PER I BENI CULTURALI, 7(3), 22–24.
    Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26–29. https://doi.org/10.1108/LHTN-01-2023-0009
    Machidon, O.-M., Tavčar, A., Gams, M., & Duguleană, M. (2020). CulturalERICA: A conversational agent improving the exploration of European cultural heritage. Journal of Cultural Heritage, 41, 152–165. https://doi.org/10.1016/j.culher.2019.07.010
    Mata, P., Mata, M. N., & Martins, J. N. (2020). Sentiment analysis: A literature review. http://hdl.handle.net/10400.21/13108
    Mata, P. N., Mata, M. N., de Lisboa, A., Martins, J. N., Rita, J. X., de Lisboa, A., Correia, A. B., & de Lisboa, A. (2021). SENTIMENT ANALYSIS – A LITERATURE REVIEW. 27(2).
    Mayer, J. D., Caruso, D. R., & Salovey, P. (1999). Emotional intelligence meets traditional standards for an intelligence. Intelligence, 27(4), 267–298. https://doi.org/10.1016/S0160-2896(99)00016-1
    Mayer, J. D., DiPaolo ,Maria, & and Salovey, P. (1990). Perceiving Affective Content in Ambiguous Visual Stimuli: A Component of Emotional Intelligence. Journal of Personality Assessment, 54(3–4), 772–781. https://doi.org/10.1080/00223891.1990.9674037
    Mayer, J. D., & Cobb, C. D. (2000). Educational Policy on Emotional Intelligence: Does It Make Sense? Educational Psychology Review, 12(2), 163–183. https://doi.org/10.1023/A:1009093231445
    Mayer, J. D., & Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. J. Sluyter (Eds.), Emotional development and emotional intelligence: Educational implications(pp. 3-34). New York: Basic Books.
    McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric Properties of the Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confirmatory Factor Analysis. Research Quarterly for Exercise and Sport, 60(1), 48–58. https://doi.org/10.1080/02701367.1989.10607413
    Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. The MIT Press.
    Miniero, G., Rurale, A., & Addis, M. (2014). Effects of Arousal, Dominance, and Their Interaction on Pleasure in a Cultural Environment. Psychology & Marketing, 31(8), 628–634. https://doi.org/10.1002/mar.20723
    Mocanu, B., Filip, I., Ungureanu, R., Negru, C., Dascalu, M., Toma, S., Balan, T., Bica, I., & Pop, F. (2022). ODIN IVR-Interactive Solution for Emergency Calls Handling. APPLIED SCIENCES-BASEL, 12(21). https://doi.org/10.3390/app122110844
    Nanli, Z., Ping, Z., Weiguo, L., & Meng, C. (2012). Sentiment analysis: A literature review. 2012 International Symposium on Management of Technology (ISMOT), 572–576. https://doi.org/10.1109/ISMOT.2012.6679538
    Navarrete, T. (2019). Digital heritage tourism: Innovations in museums. World Leisure Journal, 61(3), 200–214. https://doi.org/10.1080/16078055.2019.1639920
    Noor, U., Younas, M., Saleh Aldayel, H., Menhas, R., & Qingyu, X. (2022). Learning behavior, digital platforms for learning and its impact on university student’s motivations and knowledge development. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.933974
    Novey, L., & Hall, T. (2007). The effect of audio tours on learning and social interaction: An evaluation at Carlsbad Caverns National Park. SCIENCE EDUCATION, 91(2), 260–277. https://doi.org/10.1002/sce.20184
    Pan, P. (2021). Curating Multisensory Experiences: The Possibilities of Immersive Exhibitions [Masters, OCAD University]. https://openresearch.ocadu.ca/id/eprint/3271/
    Pawlik, L., Plaza, M., Deniziak, S., & Boksa, E. (2022). A method for improving bot effectiveness by recognising implicit customer intent in contact centre conversations. SPEECH COMMUNICATION, 143, 33–45. https://doi.org/10.1016/j.specom.2022.07.003
    Perumal, D. S. (2020). LITERATURE REVIEW ON SENTIMENT ANALYSIS. 9(04).
    Plaza, M., Kazala, R., Koruba, Z., Kozlowski, M., Lucinska, M., Sitek, K., & Spyrka, J. (2022). Emotion Recognition Method for Call/Contact Centre Systems. APPLIED SCIENCES-BASEL, 12(21). https://doi.org/10.3390/app122110951
    Poole, A. H. (2016). The conceptual landscape of digital curation. Journal of Documentation, 72(5), 961–986. https://doi.org/10.1108/JD-10-2015-0123
    Remington, N. A., Fabrigar, L. R., & Visser, P. S. (2000). Reexamining the circumplex model of affect. Journal of Personality and Social Psychology, 79(2), 286–300. https://doi.org/10.1037/0022-3514.79.2.286
    Rodriguez, S., & Mune, C. (2022). Uncoding library chatbots: Deploying a new virtual reference tool at the San Jose State University library. Reference Services Review, 50(3/4), 392–405. https://doi.org/10.1108/RSR-05-2022-0020
    Rosenbaum, S. C. (with Internet Archive). (2011). Curation nation: How to win in a world where consumers are creators. New York : McGraw-Hill. http://archive.org/details/curationnationho2011rose_t8y2
    Rostami, M., & Navabinejad, S. (2023). Artificial Empathy: User Experiences with Emotionally Intelligent Chatbots. AI and Tech in Behavioral and Social Sciences, 1(3), 19–27. https://doi.org/10.61838/kman.aitech.1.3.4
    Rusbridge, C., Burnhill, P., Ross, S., Buneman, P., Giaretta, D., Lyon, L., & Atkinson, M. (2005). The Digital Curation Centre: A vision for digital curation. 2005 IEEE International Symposium on Mass Storage Systems and Technology, 31–41. https://doi.org/10.1109/LGDI.2005.1612461
    Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714
    Rzepka, C., Berger, B., & Hess, T. (2022). Voice Assistant vs. Chatbot—Examining the Fit Between Conversational Agents’ Interaction Modalities and Information Search Tasks. INFORMATION SYSTEMS FRONTIERS, 24(3), 839–856. https://doi.org/10.1007/s10796-021-10226-5
    Salovey, P., & Mayer, J. D. (1990). Emotional Intelligence. Imagination, Cognition and Personality, 9(3), 185–211. https://doi.org/10.2190/DUGG-P24E-52WK-6CDG
    Samaroudi, M., Echavarria, K. R., & Perry, L. (2020). Heritage in lockdown: Digital provision of memory institutions in the UK and US of America during the COVID-19 pandemic. Museum Management and Curatorship, 35(4), 337–361. https://doi.org/10.1080/09647775.2020.1810483
    Sandstead, M., & Kibler, A. (2025). Voice in L2 writing in the age of AI. JOURNAL OF SECOND LANGUAGE WRITING, 69. https://doi.org/10.1016/j.jslw.2025.101212
    Seeber, I., Waizenegger, L., Seidel, S., Morana, S., Benbasat, I., & Lowry, P. B. (2020). Collaborating with technology-based autonomous agents: Issues and research opportunities. Internet Research, 30(1), 1–18. https://doi.org/10.1108/INTR-12-2019-0503
    Senapati, A., & Phapale, A. (2023). Psychological Emotion Recognition of Students Based Chatbot. International Journal of Applied and Advanced Multidisciplinary Research, 1(3), Article 3. https://doi.org/10.59890/ijaamr.v1i3.565
    Sestino, A., Rizzo, C., Irgang, L., & Stehlíková, B. (2025). Redesigning healthcare service delivery processes through medical chatbot integrations: Balancing chatbot features and patients’ individual differences. BUSINESS PROCESS MANAGEMENT JOURNAL. https://doi.org/10.1108/BPMJ-07-2024-0655
    Shawar, B. A., & Atwell, E. (2007). Chatbots: Are they Really Useful? Journal for Language Technology and Computational Linguistics, 22(1), Article 1. https://doi.org/10.21248/jlcl.22.2007.88
    Sommer, L., Swim, J., Keller, E., & Klöckner, C. (2019). 「Pollution Pods」: The merging of art and psychology to engage the public in climate change. GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 59. https://doi.org/10.1016/j.gloenvcha.2019.101992
    Steinbeck, S., & Munar, A. M. (2024). Affective atmospheres in children’s museum experiences. Leisure Studies, 43(3), 378–394. https://doi.org/10.1080/02614367.2023.2183981
    Striegl, J., Richter, J. W., Grossmann, L., Bråstad, B., Gotthardt, M., Rück, C., Wallert, J., & Loitsch, C. (2024). Deep learning-based dimensional emotion recognition for conversational agent-based cognitive behavioral therapy. PeerJ Computer Science, 10, e2104. https://doi.org/10.7717/peerj-cs.2104
    Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican, K., Silver, D., Johnson, M., Antonoglou, I., Schrittwieser, J., Glaese, A., Chen, J., Pitler, E., Lillicrap, T., Lazaridou, A., … Vinyals, O. (2024). Gemini: A Family of Highly Capable Multimodal Models (arXiv:2312.11805). arXiv. https://doi.org/10.48550/arXiv.2312.11805
    Terblanche, N., Wallis, G., & Kidd, M. (2023). Talk or Text? The Role of Communication Modalities in the Adoption of a Non-directive, Goal-Attainment Coaching Chatbot. INTERACTING WITH COMPUTERS, 35(4), 511–518. https://doi.org/10.1093/iwc/iwad039
    Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., Monés, A. M., & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools’ digital capacity and transformation: A literature review. Education and Information Technologies, 28(6), 6695–6726. https://doi.org/10.1007/s10639-022-11431-8
    Tran, A. D., Pallant, J., & Johnson, L. W. (2021). Exploring the impact of chatbots on consumer sentiment and expectations in retail. JOURNAL OF RETAILING AND CONSUMER SERVICES, 63, 102718. https://doi.org/10.1016/j.jretconser.2021.102718
    Tran, D. (2020). The First Vietnamese FOSD-Tacotron-2-based Text-to-Speech Model Dataset. DATA IN BRIEF, 31. https://doi.org/10.1016/j.dib.2020.105775
    Van den Broeck, E., Zarouali, B., & Poels, K. (2019). Chatbot advertising effectiveness: When does the message get through? Computers in Human Behavior, 98, 150–157. https://doi.org/10.1016/j.chb.2019.04.009
    Varutti, M. (2021). Affective Encounters in Museums. Heritage Ecologies, 129.
    Wang, H. (2024). Enhancing Art Museum Experience With a Chatbot Tour Guide. KTH Royal Institute of Technology. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-350934
    Wang, M., Liu, S., Hu, L., & Lee, J. (2023). A Study of Metaverse Exhibition Sustainability on the Perspective of the Experience Economy. SUSTAINABILITY, 15(12). https://doi.org/10.3390/su15129153
    Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
    Wermelinger, M. (2023). Using GitHub Copilot to Solve Simple Programming Problems. Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, 172–178. https://doi.org/10.1145/3545945.3569830
    Xing, Y., Kar, P., Bird, J., Sumich, A., Knight, A., Lotfi, A., & van Barthold, B. (2024). Developing an AI-Based Digital Biophilic Art Curation to Enhance Mental Health in Intelligent Buildings. SUSTAINABILITY, 16(22). https://doi.org/10.3390/su16229790
    Yakel, E. (2007). Digital curation. OCLC Systems & Services: International digital library perspectives, 23(4), 335–340. https://doi.org/10.1108/10650750710831466
    Yang, H., Kim, H., Lee, J., & Shin, D. (2022). Implementation of an AI chatbot as an English conversation partner in EFL speaking classes. RECALL, 34(3), 327–343. https://doi.org/10.1017/S0958344022000039
    Yin, J., Goh, T.-T., Yang, B., & Xiaobin, Y. (2021). Conversation Technology With Micro-Learning: The Impact of Chatbot-Based Learning on Students’ Learning Motivation and Performance. Journal of Educational Computing Research, 59(1), 154–177. https://doi.org/10.1177/0735633120952067
    Yu, Z.-H., Li, M.-C., Chen, C.-M., & Lin, M.-F. (2020). A Video-Annotated Learning Review System with Vocabulary Learning Mechanism to Facilitate English Listening Comprehension. 2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI), 234–237. https://doi.org/10.1109/IIAI-AAI50415.2020.00053
    Zarouali, B., Van den Broeck, E., Walrave, M., & Poels, K. (2018). Predicting Consumer Responses to a Chatbot on Facebook. Cyberpsychology, Behavior, and Social Networking, 21(8), 491–497. https://doi.org/10.1089/cyber.2017.0518
    Zhao, L., Cao, C., Li, Y., & Li, Y. (2022). Determinants of the digital outcome divide in E-learning between rural and urban students: Empirical evidence from the COVID-19 pandemic based on capital theory. Computers in Human Behavior, 130, 107177. https://doi.org/10.1016/j.chb.2021.107177
    Zhao, Y., Xie, D., Zhou, R., Wang, N., & Yang, B. (2022). Evaluating Users’ Emotional Experience in Mobile Libraries: An Emotional Model Based on the Pleasure-Arousal-Dominance Emotion Model and the Five Factor Model. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.942198
    Zhu, C., Sun, M., Luo, J., Li, T., & Wang, M. (2023). How to Harness the Potential of ChatGPT in Education? Knowledge Management & E-Learning, 15(2), 133–152.
    Zumstein, D., & Hundertmark, S. (2018). Chatbots: An interactive technology for personalized communication and transaction. IADIS International Journal on WWW/Internet, 15(1), 96–109. http://www.iadisportal.org/ijwi/papers/2017151107.pdf
    Description: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    112155018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112155018
    Data Type: thesis
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    501801.pdf4515KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback