政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/158683
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 117629/148660 (79%)
造访人次 : 71643310      在线人数 : 11225
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158683


    题名: 生成式AI輔助工具應用於高中Python程式設計教學對於學生學習成效、自我效能、運算思維與學習焦慮之影響研究
    The Effects of Integrating Generative AI-Assisted Tools into High School Python Programming Instruction on Students’ Learning Performance, Self-Efficacy, Computational Thinking, and Learning Anxiety
    作者: 陳顗元
    Chen, Yi-Yuan
    贡献者: 陳志銘
    Chen, Chih-Ming
    陳顗元
    Chen, Yi-Yuan
    关键词: 生成式人工智慧
    程式設計教學
    AI 助手
    學習成效
    自我效能
    運算思維
    學習焦慮
    高中資訊教育
    Generative Artificial Intelligence
    Programming Instruction
    AI Assistant
    Learning Achievement
    Self-Efficacy
    Computational Thinking
    Learning Anxiety
    High School Informatics Education
    日期: 2025
    上传时间: 2025-08-04 15:01:31 (UTC+8)
    摘要: 隨著生成式人工智慧(Generative AI)技術的快速發展,AI 在教育領域中的應用已日益普及,尤其在程式設計教學方面的應用具有極大的發展潛力。高中程式設計課程長期以來面臨學習門檻高、個別差異大與教師負擔重等挑戰,傳統教學模式難以兼顧學生的多元學習需求。為回應此一困境,本研究發展以 ChatGPT API 為基礎之「程式設計 AI 助手」,作為高中 Python程式設計課程的輔助學習工具,探討相較於傳統教師講授教學法,其作為傳統教師講授教學法外加之輔助學習工具,對於學生的程式設計學習成效、自我效能、運算思維,以及程式設計焦慮的影響,也進一步探討其對於高低不同程式設計先備能力學生的程式設計學習成效、自我效能、運算思維,以及程式設計焦慮影響。
    本研究採準實驗研究設計,以新竹縣某高中一年級兩個班級(共67人)為研究對象,兩組皆由同一位教師進行授課,本研究將兩個班級隨機分派為實驗組(教師講授、AI助手)與控制組(僅教師講授),並進行歷時十一週之教學。研究結果發現,實驗組與控制組在教學實驗進行前的程式設計先備能力、自我效能、運算思維能力相近,不具有顯著差異。在教學實驗進行後,實驗組學生在程式設計學習成效、自我效能、運算思維上均顯著優於控制組學生,但是在程式設計學習焦慮上不具有顯著的差異。此外,高先備程式設計能力的實驗組學生在程式設計學習成效及自我效能上,均顯著優於高先備程式設計能力的控制組學生,但是在運算思維與程式設計學習焦慮上則不具有顯著的差異;而低先備程式設計能力的兩組學習者,在學習成效、自我效能、運算思維與程式設計學習焦慮上,則不具有顯著的差異,顯示程式設計AI助手對於低先備程式設計能力學生的輔助效果有限。
    最後基於本研究之研究結果,提出未來可延長教學期程並深化課程內容,結合縱貫追蹤設計,來持續觀察AI助手對於學生程式設計之高階認知與長期成長的影響。此外,應擴大研究對象至資訊科或高動機學習族群,並發展針對於低先備程式設計能力學生的個別化補救教學模式,以提升其學習動機與突破其學習瓶頸。同時,持續優化程式設計AI助手互動介面與回饋設計,並推動教師與AI助手之協作教學模式,以補足情感支持之不足。再則,在系統層面則可導入外部記憶及多代理AI助手架構,提升回應精準度與知識支持,以進一步發揮程式設計AI助手於教學現場之最大效益。
    With the rapid development of Generative Artificial Intelligence (Generative AI) technologies, AI applications in the field of education have become increasingly widespread, especially showing tremendous potential for development in programming instruction. High school programming courses have long faced challenges such as high learning barriers, large individual differences, and heavy teacher workload. Traditional instructional models often struggle to meet the diverse learning needs of students. In response to these issues, this study developed a “Programming AI Assistant” based on the ChatGPT API as a supplementary learning tool for high school Python programming courses. The research explored, compared with traditional lecture-based instruction, the effects of using the AI assistant—added to regular classroom teaching—on students’ programming learning achievement, self-efficacy, computational thinking, and programming anxiety. Further, the study investigated its impact on students with different levels of prior programming ability.
    This study adopted a quasi-experimental research design. Two first-year classes from a high school in Hsinchu County (a total of 67 students) were selected as research subjects. Both classes were taught by the same teacher and randomly assigned to the experimental group (teacher instruction plus AI assistant) or the control group (teacher instruction only) for eleven weeks. Results showed that, before the intervention, the experimental and control groups did not differ significantly in programming prior knowledge, self-efficacy, or computational thinking. After the intervention, the experimental group demonstrated significantly greater improvements than the control group in programming learning achievement, self-efficacy, and computational thinking, but not in programming anxiety. Further analysis revealed that among students with higher prior programming ability, those in the experimental group outperformed those in the control group in both programming achievement and self-efficacy, but there were no significant differences in computational thinking and programming anxiety. Among students with lower prior programming ability, there were no significant differences between the two groups in any of the measured outcomes, indicating that the support provided by the AI assistant was limited for students with weaker foundations.
    Based on these findings, this study suggests that future research could extend the instructional period and deepen course content, using longitudinal designs to continuously observe the effects of AI assistants on students’ advanced cognitive development and long-term growth in programming. It is also recommended to broaden the research population to include information science or highly motivated student groups, and to develop individualized remedial instruction models for students with lower prior programming ability, to enhance their motivation and help them overcome learning bottlenecks. Furthermore, continuous optimization of the interaction interface and feedback design of the programming AI assistant is needed, as well as the promotion of collaborative teaching models involving both teachers and AI assistants, to address the lack of emotional support. Furthermore, at the system level, external memory modules and multi-agent AI assistant architectures can be incorporated to enhance response accuracy and knowledge support, thereby further maximizing the effectiveness of programming AI assistants in classroom settings.
    參考文獻: 一、 中文文獻
    Vinci AI Academy. (2024). 中國教育部發文:2030 年前中小學基本普及人工智能教育. Vinci AI Academy. https://vinciai.academy/中國教育部發文:2030-年前中小學基本普及人工智能/

    李敏嘉(2024)。運用生成式AI提升學生學習策略與學習成效。國立中央大學資訊工程學系。https://hdl.handle.net/11296/2g7255

    邱柏升、鍾華栩(2021)。國中小學實施程式教育之問題與建議。台灣教育研究期刊,2(1),325–334。

    邱華慧(2020)。大班教學環境中即時反饋及適性化學習系統的應用對大學生學習成效和投入的影響。《師資培育與教師專業發展期刊》,13(1),101–128。

    許祐群(2018)。DebugamO:以遊戲為本之除錯學習系統及其對程式設計學習動機影響之研究(碩士論文)。國立臺灣大學。http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70437

    教育部(2024)。《中小學數位教學指引3.0版》。教育部。https://pads.moe.edu.tw/pads_front/index.php?action=download

    陳奕慈(2024)。《整合生成式與知識型人工智慧聊天機器人於影片自主學習之成效影響研究》。國立政治大學圖書資訊與檔案學研究所碩士論文。

    蔡進雄(2019年12月30日)。未來教育新趨勢—各國程式設計教育的動態。國家教育研究院電子報,181。https://epaper.naer.edu.tw/edm.php?content_no=3188&edm_no=181&grp_no=3

    二、 英文文獻
    Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

    Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for distributed computational thinking. International Journal of Game-Based Learning, 1(2), 65–81. https://doi.org/10.4018/ijgbl.2011040105

    Bishop, J., & Verleger, M. A. (2013). The flipped classroom: A survey of the research. 2013 ASEE Annual Conference & Exposition. https://peer.asee.org/the-flipped-classroom-a-survey-of-the-research

    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://arxiv.org/abs/2005.14165

    Cabo, C. (2021, October). Matthew Effects in Learning Computer Programming Concepts. In 2021 IEEE Frontiers in Education Conference (FIE) (pp. …). IEEE. https://doi.org/10.1109/FIE49875.2021.9637280

    Çela, E., Fonkam, M., & Potluri, R. M. (2024). Risks of AI-assisted learning on student critical thinking: A case study of Albania. International Journal of Risk and Contingency Management, 12(1). https://www.researchgate.net/publication/382878289

    Connolly, C., Murphy, E., & Moore, S. (2009). Programming anxiety amongst computing students—A key in the retention debate? IEEE Transactions on Education, 52(1), 52–56. https://doi.org/10.1109/TE.2008.917193

    da Silva, C. A. G., Ramos, F. N., de Moraes, R. V., & dos Santos, E. L. (2024). ChatGPT: Challenges and benefits in software programming for higher education. Sustainability, 16(3), 1245. https://doi.org/10.3390/su16031245

    Davis, J. A. (1966). The campus as a frog pond: An application of the theory of relative deprivation to career decisions of college men. American Journal of Sociology, 72(1), 17–31. https://doi.org/10.1086/224257

    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423

    Elida, Y., Oktadela, R., & Hadiyanti, P. O. (2025). Enhancing elementary school English learning: The power of AI-based problem-based learning (PBL) model. Journal of English Language and Education, 10(2), 1–9. https://jele.or.id/index.php/jele/article/view/679

    Falkner, K., Vivian, R., & Falkner, N. (2014). The Australian Digital Technologies Curriculum: Challenge and Opportunity. Sixteenth Australasian Computing Education Conference. https://www.researchgate.net/publication/264978853_The_Australian_Digital_Technologies_Curriculum_Challenge_and_Opportunity

    Ferguson, C., van den Broek, E. L., & van Oostendorp, H. (2022). AI-induced guidance: Preserving the optimal Zone of Proximal Development. Computers and Education: Artificial Intelligence, 3, 100089. https://doi.org/10.1016/j.caeai.2022.100089

    Finnie‑Ansley, J., Denny, P., Becker, B. A., Luxton‑Reilly, A., & Prather, J. (2022). The Robots Are Coming: Exploring the Implications of OpenAI Codex on Introductory Programming. In Proceedings of the 43rd Australasian Computing Education Conference (ACE ’22) (pp. 10–19). ACM. https://doi.org/10.1145/3511861.3511863

    Fowler, B., & Vegas, E. (2021). How England implemented its computer science education program. The Brookings Institution. https://www.brookings.edu/wp-content/uploads/2021/01/How-England-implemented-its-computer-science-education-program-FINAL.pdf

    Ge, X., Wang, J., Li, Y., Chen, X., & Liu, S. (2025). SRLAgent: Enhancing self-regulated learning skills through gamification and LLM assistance. arXiv. https://arxiv.org/abs/2506.09968

    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

    Grubaugh, S., Levitt, G., & Deever, D. (2023). Harnessing AI to Power Constructivist Learning: An Evolution in Educational Methodologies. EIKI Journal of Effective Teaching Methods, 1(3). https://doi.org/10.59652/jetm.v1i3.43

    Heilala, V., Araya, R., & Hämäläinen, R. (2025). Beyond text-to-text: An overview of multimodal and generative artificial intelligence for education using topic modeling. In The 40th ACM/SIGAPP Symposium on Applied Computing (SAC ’25), March 31–April 4, 2025, Catania, Italy. ACM. https://doi.org/10.1145/3672608.3707764

    Holmes, W. (2020). Artificial intelligence in education. In A. Tatnall (Ed.), Encyclopedia of education and information technologies (pp. 1–10). Springer. https://doi.org/10.1007/978-3-030-10576-1_107

    Hsieh, T.-C., Lee, M.-C., & Su, C.-Y. (2013). Designing and implementing a personalized remedial learning system for enhancing the programming learning. Educational Technology &
    Society, 16(4), 32–46. https://www.jstor.org/stable/jeductechsoci.16.4.32

    Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., Stadler, M., ... Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, Article 102274. https://doi.org/10.1016/j.lindif.2023.102274

    Kaswan, K. S., Dhatterwal, J. S., & Ojha, R. P. (2024). AI in personalized learning. In A. Garg, B. V. Babu, & V. E. Balas (Eds.), Advances in technological innovations in higher education: Theory and practices (pp. 103–117). CRC Press. https://doi.org/10.1201/9781003376699-9

    Krügel, S., Ostermaier, A., & Uhl, M. (2021). Zombies in the loop? Humans trust untrustworthy AI-advisors for ethical decisions. arXiv preprint arXiv:2106.16122. https://arxiv.org/pdf/2106.16122

    Lan, M., & Zhou, X. X. (2025). AI-empowered self-regulated learning in higher education: A systematic review. NPJ
    Science of Learning, 10(1), Article 35. https://doi.org/10.1038/s41539-025-00319-0

    Luckin, R., Cukurova, M., Kent, C., & du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 100076. https://doi.org/10.1016/j.caeai.2022.100076

    Ma, B., Chen, L., & Konomi, S. (2024). Enhancing programming education with ChatGPT: A case study on student perceptions and interactions in a Python course. In N. Wang, G. Rebolledo-Mendez, V. Dimitrova, N. Matsuda, & O. C. Santos (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky (pp. 113–126). Springer. https://doi.org/10.1007/978-3-031-64315-6_9

    Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63. https://doi.org/10.1126/science.159.3810.56

    Möller, M., Nirmal, G., Fabietti, D., Stierstorfer, Q., Zakhvatkin, M., Sommerfeld, H., & Schütt, S. (2024). Revolutionising distance learning: A comparative study of learning progress with AI-driven tutoring. arXiv. https://doi.org/10.48550/arXiv.2403.14642

    OpenAI. (2021). OpenAI Codex. https://openai.com/index/openai-codex/

    OpenAI. (2023). GPT-4. OpenAI. https://openai.com/index/gpt-4-research/

    Ouyang, L., Wu, J., Jiang, X., Almeida, D., ... Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems. https://arxiv.org/pdf/2203.02155

    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451–502). Academic Press. https://doi.org/10.1016/B978-012109890-2/50043-3

    Piteira, M., & Costa, C. (2013). Learning computer programming: Study of difficulties in learning programming. In Proceedings of the 2013 International Conference on Information Systems and Design of Communication (pp. 75–80). ACM. https://doi.org/10.1145/2503859.2503871

    Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

    Radford, A., Wu, J., Child, R., Luan, D., ... Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

    Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education. Information, 15(10), 596. https://doi.org/10.3390/info15100596

    Stanovich, K. E. (2009). Matthew Effects in Reading: Some Consequences of Individual Differences in the Acquisition of Literacy. Journal of Education, 189(1-2), 23–55. https://doi.org/10.1177/0022057409189001-204

    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4

    Tan, C. W. (2023). Large Language Model-Driven Classroom Flipping: Empowering Student-Centric Peer Questioning with Flipped Interaction. arXiv preprint arXiv:2311.14708. https://arxiv.org/abs/2311.14708

    Tsai, H. H., Liang, J. C., & Hsu, C. Y. (2021). Development and validation of the Computational Thinking Scale for Programming (CTS-P) in junior high school students. Journal of Educational Computing Research, 59(4), 617–643. https://doi.org/10.1177/0735633120972356

    Tsai, H. H., Wang, C. Y., & Hsu, C. Y. (2019). Developing the Computer Programming Self-Efficacy Scale for computer literacy education. Journal of Educational Computing Research, 57(1), 191–225. https://doi.org/10.1177/0735633117746747

    U.S. Office of the Press Secretary. (2016). Fact sheet: A year of action supporting computer science for all. The American Presidency Project. https://www.presidency.ucsb.edu/documents/fact-sheet-year-action-supporting-computer-science-for-all

    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., ... Polosukhin, I. (2017). Attention is all you need. arXiv. https://arxiv.org/abs/1706.03762

    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds. & Trans.). Harvard University Press.

    Wei, Y., Jiang, Y.-H., Liu, J., Qi, C., Jia, L., & Jia, R. (2024). The advancement of personalized learning potentially accelerated by generative AI [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2412.00691

    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

    Yıldırım, E., & Ozdener, N. (2022). Development of a programming anxiety scale: Validity and reliability studies. International Journal of Contemporary Educational Research, 9(2), 442–453. https://doi.org/10.21585/ijcses.v5i3.140

    Yılmaz, R., & Karaoğlan Yılmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy, and motivation. Computers and Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/j.caeai.2023.100147

    Zeidner, M., & Schleyer, E. J. (1999). The Big-Fish-Little-Pond Effect for Academic Self-Concept, Test Anxiety, and School Grades in Gifted Children. Contemporary Educational Psychology, 24(4), 305-329. https://doi.org/10.1006/ceps.1998.0985

    Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students' cognitive abilities: A systematic review. Smart Learning Environments, 11(1), 28. https://doi.org/10.1186/s40561-024-00316-7

    Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., Dam, S., Myaet Thwal, C., Tun, Y. L., Huy, L., & et al. (2023). A complete survey on generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 all you need? arXiv preprint arXiv:2303.11717. https://doi.org/10.48550/arXiv.2303.11717

    Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2), 64–70. https://doi.org/10.1207/s15430421tip4102_2
    描述: 碩士
    國立政治大學
    圖書資訊學數位碩士在職專班
    112913014
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112913014
    数据类型: thesis
    显示于类别:[圖書資訊學數位碩士在職專班] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    301401.pdf3307KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈