English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 95905/126495 (76%)
Visitors : 31794308      Online Users : 397
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 期刊論文 >  Item 140.119/7460
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/7460

    Title: 匯率連動遠期生效亞洲選擇權
    Other Titles: Quanto Forward-Start Asian Options
    Authors: 陳松男;姜一銘
    Chen, Son-Nan;Jiang, I-Ming
    Date: 2004
    Issue Date: 2008-11-14 12:26:25 (UTC+8)
    Abstract: 本文考慮針對投資人規避匯率風險與防止股票市場的可能受到人為操縱下,提出幾種匯率連動之遠期生效亞洲選擇權(Quanto Forward-Start Asian Options),同時雖然一般亞洲選擇權無封閉解,本文嘗試提出一階及二階泰勒近似封閉解,並計算避險參數。最後,計算出評價理論公式的最大估計誤差上限,並簡單舉例,發現在波動度較小時,一階及二階泰勒近似封閉解相差不大,可以考慮使用公式簡單的一階泰勒近似封閉解;反之,在波動度較大時,考慮二階泰勒近似封閉解的可靠度相當高。 In this paper, we propose several Quanto Forward-Start Asian options for investors who wish to hedge both currency risk and the risk of being possibly manipulated by some market participants. Although Asian options have no closed-form solutions, we try to find the “approximate” closed-from solution and compute hedge parameters for them. In addition, we also determine the upper bound of maximum estimation error of our pricing model. The numerical results show that the difference between the first-order and the second-order Taylor's expansion of approximate closed-form solution is not significant when the volatility is small. Under this circumstance, we can simply use first-order Taylor's expansion of approximate closed-form solution. However, second-order Taylor's expansion of approximate closed-form solution is employed when the volatility is large.
    Relation: 經濟論文–‡, 32(1), 149-199
    Academia Economic Papers, 32(1), 149-199
    Data Type: article
    Appears in Collections:[金融學系] 期刊論文

    Files in This Item:

    File SizeFormat
    149-199.pdf1442KbAdobe PDF339View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback